1
|
Du LX, Gao XY, Ren XQ, Yang YY, Ding YY, Xu A, Wang XY, Zhang YX, Shu S, Yang YF, Mi WL, Wang ZF. Baicalein ameliorates chronic itch in ACD mice by suppressing the spinal astrocytic STAT3-LCN2 cascade. Acta Pharmacol Sin 2025; 46:366-379. [PMID: 39284878 PMCID: PMC11747173 DOI: 10.1038/s41401-024-01386-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/26/2024] [Indexed: 01/30/2025]
Abstract
Chronic itch is a maladaptive and debilitating symptom in patients with allergic contact dermatitis (ACD), adversely affecting their quality of life. There is a lack of effective treatments for ACD-associated uncontrollable itch. In this study, we explored the antipruritic effects of baicalein (BE), a bioactive flavonoid extracted from the root of Scutellaria baicalensis Georgi, and the underlying mechanisms in alleviating chronic itch triggered by diphenylcyclopropenone (DCP) in a mouse model of ACD. The ACD mice were intraperitoneally injected with BE (5, 30, and 60 mg·kg-1·d-1) for 7 days during the DCP challenge phase. The results showed that DCP-treated mice exhibited severe spontaneous scratching behaviors that was reduced after BE injections in a dose-dependent manner accompanied by inhibition of spinal astrocyte activation. We observed that the spinal astrocytic STAT3-LCN2 cascade plays a crucial role in controlling the activation of astrocytes in chronic itch. Intrathecal injection of the STAT3 inhibitor AG490 or Lcn2 siRNA significantly reduced scratching behavior and astrocyte activation in ACD mice. Moreover, BE markedly attenuated the increased phosphorylation of STAT3 (p-STAT3) and LCN2 expression in the spinal cords of ACD mice and in lipopolysaccharide-stimulated primary spinal astrocytes. Altogether, BE relieved chronic itch by suppressing the spinal astrocytic STAT3-LCN2 cascade. These findings provide a potential avenue for the management of chronic itch. Schematic summary of the main findings illustrating that BE alleviates chronic itch through suppressing the spinal astrocytic STAT3-LCN2 cascade. Specifically, BE suppresses the expression of p-STAT3 to inhibit the reactive state of astrocytes in spinal dorsal horn, and then decreases the expression of astrocytic LCN2 to alleviate chronic itch in ACD mice.
Collapse
Affiliation(s)
- Li-Xia Du
- Department of Biochemistry, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin-Yi Gao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xue-Qi Ren
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ya-Yue Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yang-Yang Ding
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ao Xu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Yu Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu-Xin Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shi Shu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu-Fang Yang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Fei Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
2
|
Nuclear factor Nrf2 promotes glycosidase OGG1 expression by activating the AKT pathway to enhance leukemia cell resistance to cytarabine. J Biol Chem 2022; 299:102798. [PMID: 36528059 PMCID: PMC9823221 DOI: 10.1016/j.jbc.2022.102798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Chemotherapy resistance is the dominant challenge in the treatment of acute myeloid leukemia (AML). Nuclear factor E2-related factor 2 (Nrf2) exerts a vital function in drug resistance of many tumors. Nevertheless, the potential molecular mechanism of Nrf2 regulating the base excision repair pathway that mediates AML chemotherapy resistance remains unclear. Here, in clinical samples, we found that the high expression of Nrf2 and base excision repair pathway gene encoding 8-hydroxyguanine DNA glycosidase (OGG1) was associated with AML disease progression. In vitro, Nrf2 and OGG1 were highly expressed in drug-resistant leukemia cells. Upregulation of Nrf2 in leukemia cells by lentivirus transfection could decrease the sensitivity of leukemia cells to cytarabine, whereas downregulation of Nrf2 in drug-resistant cells could enhance leukemia cell chemosensitivity. Meanwhile, we found that Nrf2 could positively regulate OGG1 expression in leukemia cells. Our chromatin immunoprecipitation assay revealed that Nrf2 could bind to the promoter of OGG1. Furthermore, the use of OGG1 inhibitor TH5487 could partially reverse the inhibitory effect of upregulated Nrf2 on leukemia cell apoptosis. In vivo, downregulation of Nrf2 could increase the sensitivity of leukemia cell to cytarabine and decrease OGG1 expression. Mechanistically, Nrf2-OGG1 axis-mediated AML resistance might be achieved by activating the AKT signaling pathway to regulate downstream apoptotic proteins. Thus, this study reveals a novel mechanism of Nrf2-promoting drug resistance in leukemia, which may provide a potential therapeutic target for the treatment of drug-resistant/refractory leukemia.
Collapse
|
3
|
Zhou L, Chang J, Gao Y, Wang C. [Procyanidin B2 protects neurons from cypermethrin-induced oxidative stress through the P13K/Akt/Nrf2 signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1158-1164. [PMID: 34549705 DOI: 10.12122/j.issn.1673-4254.2021.08.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore whether procyanidin B2 (PCB2) regulates the P13K/Akt/Nrf2 signaling pathway to protect neurons from oxidative stress induced by cypermethrin (CYP). METHODS Primary cultures of cerebral cortex neurons from C57BL/6 mice were randomly divided into 5 groups: normal control group (cultured in serum-free neurobasal-B27 medium), PCB2 treatment group(treated with 5 μg/mL PCB2 for 24 h), CYP exposure group(treated with 50 μmol/L CYP for 24 h), PCB2 pretreatment group(pretreated with 5 μg/mL PCB2 for 30 min followed by exposure to 50 μmol/L CYP for 24 h), and LY294002 treatment group (pretreated with 20 μmol/L LY294002 for 30 min before treatment with PCB2 for 30 min and then CYP for 24 h).CCK-8 assay was used to analyze the neuronal viability after the treatments.Reactive oxygen species (ROS) production in the cells was detected using the fluorescent probe DCFH-DA and flow cytometry.The changes in nuclear morphology and mitochondrial membrane potential of the cells were examined with Hoechst 33342 and JC-1 staining, respectively.Western blotting was performed to detect the protein expressions of Nrf2, HO-1, p-Akt and Akt in the cells. RESULTS In CYP exposure group, the cells showed significantly decreased viability and mitochondrial membrane potential with obvious apoptotic morphological changes and abnormal ROS production.By comparison, the cells in PCB2 preconditioning group showed improved cell survival rate, reduced abnormalities in nuclear morphology, increased mitochondrial membrane potential, and lowered intracellular ROS production.CYP exposure caused Nrf2 nuclear translocation and up-regulated Nrf2, HO-1, p-Akt protein expressions in the cells, which were inhibited by PCB2 pretreatment.Inhibition of the P13K/Akt signaling pathway obviously neutralized the protective effect of PCB2 against CYP-induced neuronal injury. CONCLUSIONS PCB2 regulates the Nrf2/ARE signaling pathway by activating the P13K/Akt signaling pathway to protect mouse cerebral cortical neurons against oxidative injury induced by cypermethrin.
Collapse
Affiliation(s)
- L Zhou
- School of Public Health, Bengbu Medical College, Bengbu 233030, China
| | - J Chang
- Scientific Research Center, Bengbu Medical College, Bengbu 233030, China
| | - Y Gao
- School of Public Health, Bengbu Medical College, Bengbu 233030, China
| | - C Wang
- School of Public Health, Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
4
|
Wahyuni EA, Chen CY, Wu HN, Chien CC, Chen SC. Propolis alleviates 4-aminobiphenyl-induced oxidative DNA damage by inhibition of CYP2E1 expression in human liver cells. ENVIRONMENTAL TOXICOLOGY 2021; 36:1504-1513. [PMID: 33847444 DOI: 10.1002/tox.23147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
4-Aminobiphenyl (4-ABP) may cause DNA damage in human liver cells (HepG2 and L-02). Propolis exhibits antioxidant properties through reactive oxygen species (ROS) scavenging. We determined the effects of propolis in alleviating 4-ABP -induced DNA damage using the comet assay. Results revealed that propolis could significantly alleviated oxidative damaged DNA by 4-ABP. Furthermore, we proved that inhibition of cytochrome P450 2E1 (CYP2E1) expression by propolis could contribute to the decreased oxidative DNA damage in the treated cells, as the conversion of 4-ABP into its metabolite, N-hydroxy-ABP (HOABP), was blocked; after all, HOABP showed more genotoxic than its parent chemical, 4-ABP. With the homologous recombination assay, propolis failed to induce DNA repair enzymes. Furthermore, the expression of RAD51, Ku70/Ku80, and OGG1 in treated cells were determined with the western blot, revealing that the expression of these protein were unchanged in comparison with those in nontreated cells. However, propolis could protect the treated cells from DNA damage. In conclusion, propolis could antagonize 4-ABP-induced oxidative DNA damage though the removal of ROS and inhibition of CYP2E1 expression in the treated cells.
Collapse
Affiliation(s)
- Eva Ari Wahyuni
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
- Department of Natural Science Education, University of Trunojoyo Madura, East Java, Indonesia
| | - Chien Yi Chen
- Department of Applied Physics and Chemistry, University of Taipei, Taipei, Taiwan
| | - Huery Nuo Wu
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Chih-Ching Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| |
Collapse
|
5
|
Baicalein 5,6-Dimethyl Ether Prevents Memory Deficits in the Scopolamine Zebrafish Model by Regulating Cholinergic and Antioxidant Systems. PLANTS 2021; 10:plants10061245. [PMID: 34207381 PMCID: PMC8233988 DOI: 10.3390/plants10061245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022]
Abstract
Baicalein 5,6-dimethyl ether, a bioactive flavonoid isolated for the first time from Alnus rugosa, was explored for its capability to relieve memory deficits and decrease oxidative stress. We examined the neuropharmacological effects of baicalein 5,6-dimethyl ether on scopolamine (Sco)-induced zebrafish (Danio rerio) anxiety, amnesia, and brain oxidative stress and attempted to elucidate the underlying mechanisms. Anxiety-like behavior, exploratory behavior, and memory performance were measured using novel tank-diving test (NTT), Y-maze, and novel object recognition (NOR) tests. For 10 days, baicalein 5,6-dimethyl ether (1, 3, and 5 µg/L) was administered through immersion, whereas Sco (100 μM) was delivered 30 min before behavioral tests. Treatment with baicalein 5,6-dimethyl ether reduced anxiety and memory impairment, and increased exploratory behavior in specific tests, along with significant protection from neuronal oxidative stress in the brain tissue of Sco-treated zebrafish. Antioxidant and anti-acetylcholinesterase (AChE) activities of baicalein 5,6-dimethyl ether in the Sco-induced zebrafish were further confirmed using in vivo assays. In Sco-treated zebrafish, baicalein 5,6-dimethyl ether regulated cholinergic function by inhibiting AChE activity. Baicalein 5,6-dimethyl ether may be a promising candidate compound for treating anxiety and amnesia by restoring cholinergic activity and reducing brain oxidative stress, according to our findings.
Collapse
|
6
|
Wang R, Li J, Niu DB, Xu FY, Zeng XA. Protective effect of baicalein on DNA oxidative damage and its binding mechanism with DNA: An in vitro and molecular docking study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119605. [PMID: 33667888 DOI: 10.1016/j.saa.2021.119605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
In this work, the protective effect of baicalein on DNA oxidative damage and its possible protection mechanisms were investigated. 2-thiobarbituric acid (TBA) colorimetry and agarose gel electrophoresis study found that baicalein protected the deoxyribose residue and double-stranded backbone of DNA from the damage of hydroxyl radicals. Antioxidant analysis results showed that baicalein has excellent radicals scavenging effects and Fe2+ chelating ability, which might be the mechanism of baicalein protecting DNA. DNA binding studies indicated that baicalein bound to the minor groove of DNA with moderate binding affinity (K = (7.35 ± 0.91) × 103 M-1). Hydrogen bonding and van der Waals forces played a major role in driving the binding process. Molecular docking further confirmed the experimental results. This binding could stabilize DNA double helix structure, thereby protecting DNA from oxidative damage. This study may provide theoretical basis for designing new functional foods of baicalein for DNA damage protection.
Collapse
Affiliation(s)
- Rui Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Jian Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - De-Bao Niu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Fei-Yue Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| |
Collapse
|
7
|
Zhu X, Wang F, Lei X, Dong W. Resveratrol alleviates alveolar epithelial cell injury induced by hyperoxia by reducing apoptosis and mitochondrial dysfunction. Exp Biol Med (Maywood) 2020; 246:596-606. [PMID: 33215523 DOI: 10.1177/1535370220975106] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bronchopulmonary dysplasia is a severe and long-term pulmonary disease in premature infants. Hyperoxia-induced acute lung injury plays a critical role in bronchopulmonary dysplasia. Resveratrol is a polyphenolic phytoalexin and a natural agonist of Sirtuin 1. Many studies have shown that resveratrol has a protective effect on hyperoxia-induced lung damage, but its specific protective mechanism is still not clear. Further exploration of the possible protective mechanism of resveratrol was the main goal of this study. In this study, human alveolar epithelial cells were used to establish a hyperoxia-induced acute lung injury cell model, and resveratrol (Res or R), the Sirtuin 1 activator SRT1720 (S) and the Sirtuin 1 inhibitor EX-527 (E) were administered to alveolar epithelial cells, which were then exposed to hyperoxia to investigate the role of Res in mitochondrial function and apoptosis. We divided human alveolar epithelial cells into the following groups: (1) the control group, (2) hyperoxia group, (3) hyperoxia+Res20 group, (4) hyperoxia+Res20+E5 group, (5) hyperoxia+Res20+E10 group, (6) hyperoxia+S2 group, (7) hyperoxia+S2+E5 group, and (8) hyperoxia+S2+E10 group. Hyperoxia-induced cell apoptosis and mitochondrial dysfunction were alleviated by Res and SRT1720. Res and SRT1720 upregulated Sirtuin 1, PGC-1α, NRF1, and TFAM but decreased the expression of acetyl-p53 in human alveolar epithelial cells that were exposed to hyperoxia. These findings revealed that Res may alleviated hyperoxia-induced mitochondrial dysfunction and apoptosis in alveolar epithelial cells through the SIRT1/PGC-1a signaling pathway. Thus, Sirtuin 1 upregulation plays an important role in lung protection.
Collapse
Affiliation(s)
- Xiaodan Zhu
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| | - Fan Wang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| | - Xiaoping Lei
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| |
Collapse
|
8
|
Jin H, Wang Q, Wu J, Han X, Qian T, Zhang Z, Wang J, Pan X, Wu A, Wang X. Baicalein Inhibits the IL-1β-Induced Inflammatory Response in Nucleus Pulposus Cells and Attenuates Disc Degeneration In vivo. Inflammation 2019; 42:1032-1044. [PMID: 30729381 DOI: 10.1007/s10753-019-00965-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Intervertebral disc degeneration (IDD) is widely considered one of the main causes of low back pain, which is a chronic progressive disease closely related to inflammation and degeneration of nucleus pulposus (NP) cells. Baicalein is a natural bioactive compound with anti-inflammatory effects in different diseases, including inhibition of the inflammatory response in chondrocytes, whose morphology and avascular supply are similar to those of NP cells. Therefore, we hypothesized that baicalein may have a therapeutic effect on IDD by suppressing the inflammatory response. In vitro, NP cells were pretreated with baicalein for 2 h and then incubated with IL-1β for 24 h. We found that baicalein not only inhibited the overexpression of inflammatory cytokine production, including NO, PGE2, TNF-α, and IL-6, but also suppressed the expression of COX-2 and iNOS. The IL-1β-induced overexpression of MMP13 and ADAMTS5 and degradation of aggrecan and type II collagen were reversed by baicalein in a dose-dependent manner. Mechanistically, we found that baicalein suppressed the IL-1β-induced activation of the NF-κB and MAPK pathways. Moreover, an in vivo study demonstrated that baicalein treatment could ameliorate IDD in a puncture-induced rat model. Thus, baicalein has great value as a potential therapeutic agent for IDD.
Collapse
Affiliation(s)
- Haiming Jin
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingqing Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianwei Wu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuyao Han
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tianchen Qian
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zengjie Zhang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianle Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangxiang Pan
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Aimin Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang, China.
| | - Xiangyang Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang, China.
| |
Collapse
|
9
|
Liu XP, He L, Zhang QP, Zeng XT, Liu SQ. Baicalein Inhibits Proliferation of Myeloma U266 Cells by Downregulating IKZF1 and IKZF3. Med Sci Monit 2018; 24:2809-2817. [PMID: 29729093 PMCID: PMC5958785 DOI: 10.12659/msm.907058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Baicalein can suppress the growth of multiple tumors, including multiple myeloma (MM), but the exact mechanisms remains elusive. Here, we investigated the exact mechanisms of the anti-myeloma activity of baicalein. MATERIAL AND METHODS Proliferation and rates of apoptosis of myeloma U266 cells exposed to baicalein were detected. Microarray, polymerase chain reaction (PCR) assay, and Western blot analysis were applied to evaluate the mRNA and protein levels of associated molecules. Survival analysis of IKZF1 and IKZF3 was conducted as well. RESULTS Baicalein suppressed the growth and stimulated apoptosis of myeloma U266 cells in a dose- and time-dependent way. Baicalein increased mRNA level of CRBN, and further studies suggested that baicalein downregulated IKZF1 and IKZF3 on a post-transcriptional level. Although the differences did not reach statistical significance, IKZF1 and IKZF3 were associated with poor overall survival. CONCLUSIONS Our results suggest that baicalein suppresses the growth and promotes apoptosis of myeloma U266 cells through downregulating IKZF1 and IKZF3. Baicalein increased the expression of CRBN, which might exert a reversion effect on resistance of IMiDs. MM patients in IKZF1 and IKZF3 low-expression groups had better overall survival than those in IKZF1 and IKZF3 high-expression groups. Thus, the present results indicate that baicalein might be a therapeutic choice for targeting IKZF1 and IKZF3.
Collapse
Affiliation(s)
- Xiao-Ping Liu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Li He
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Qiu-Ping Zhang
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei, China (mainland)
| | - Xian-Tao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Shang-Qin Liu
- Department of Hematology, Zhongnan hospital of Wuhan University, , China (mainland)
| |
Collapse
|
10
|
Wu D, Li D, Liu Z, Liu X, Zhou S, Duan H. Role and underlying mechanism of SPATA12 in oxidative damage. Oncol Lett 2018; 15:3676-3684. [PMID: 29467887 PMCID: PMC5796374 DOI: 10.3892/ol.2018.7749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/02/2017] [Indexed: 12/19/2022] Open
Abstract
Spermatogenesis-associated gene 12 (SPATA12) functions as an inhibitor in spermatogenesis and tumorigenesis. Our previous study demonstrated that SPATA12 may be induced in tumor cells by ultraviolet (UV) C-mediated DNA damage, suggesting its importance in maintaining genomic integrity. In order to understand whether and how SPATA12 responds to oxidative damage, the present study established a cellular model of oxidative stress by detecting the effect of H2O2 on cell viability and intracellular superoxide dismutase activity, and the levels of glutathione and malondialdehyde (MDA). Quantitative polymerase chain reaction results demonstrated that H2O2 upregulated the expression of SPATA12, and a dual luciferase reporter gene assay indicated that transcription factor activator protein-1 (AP-1) was involved in the response of SPATA12 to oxidative stress. Through the exogenous expression of SPATA12, it was identified that SPATA12 decreased the level of reactive oxygen species and MDA, and also may reduce the degree of cellular oxidative damage and apoptosis induced by H2O2. In addition, resveratrol was demonstrated to increase the expression of SPATA12 by activating AP-1, and it may be used as a nontoxic activator of the SPATA12 gene. In conclusion, these results suggest that SPATA12 is upregulated by oxidative stress via AP-1, and that the exogenous expression of SPATA12 protects against H2O2-induced oxidative damage and apoptosis.
Collapse
Affiliation(s)
- Daobing Wu
- Department of Life Science, College of Biology, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Dan Li
- Department of Life Science, College of Biology, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Zhiyong Liu
- Department of Life Science, College of Biology, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Xiaowen Liu
- Department of Life Science, College of Biology, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Shihua Zhou
- Department of Life Science, College of Biology, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Hongyan Duan
- Department of Life Science, College of Biology, Hunan University, Changsha, Hunan 410082, P.R. China
| |
Collapse
|
11
|
Phytochemical study and evaluation of cytotoxicity, mutagenicity, cell cycle kinetics and gene expression of Bauhinia holophylla (Bong.) Steud. in HepG2 cells in vitro. Cytotechnology 2017; 70:713-728. [PMID: 29230630 DOI: 10.1007/s10616-017-0173-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 11/21/2017] [Indexed: 12/11/2022] Open
Abstract
Bauhinia holophylla (Bong.) Steud. (Fabaceae) is a plant used in Brazilian folk medicine to treat diabetes and inflammation. This study evaluated the phytochemical properties, cytotoxic, apoptotic, mutagenic/antimutagenic effects and alterations in gene expression (RNAm) in HepG2 cells treated with the B. holophylla extract. The phytochemical profile highlight the presence of flavonoids isorhamentin and quercetin derivates. The MTT assay was used to evaluate the cytotoxicity of different concentrations for different treatment times. Three concentrations (7.5, 15, 30 µg/mL) were chosen for assessment of apoptosis (AO/EB), mutagenicity (micronucleus), and cell cycle kinetics (flow cytometry). Thereafter, the concentration of 7.5 µg/mL was chosen to evaluate the protective effects against DNA damage induced by benzo[a]pyrene (B[a]P). At concentrations higher than 7.5 µg/mL (between 10 and 50 µg/mL), the extract was cytotoxic, induced apoptosis, and caused antiproliferative effects. However, it did not induce micronucleus and a reduction of apoptotic and micronucleated cells was observed in treatments that included the extract and B[a]P. The protective effect is attributable to the presence of flavonoids, described as antioxidants, inhibitors of DNA adduct and activators of detoxifying enzymes. The results of the present study such as absence of cytotoxic and mutagenic effects and protective effects against known carcinogens suggest that B. holophylla has potential for use soon as herbal medicine.
Collapse
|
12
|
Liu X, Chen Z. The pathophysiological role of mitochondrial oxidative stress in lung diseases. J Transl Med 2017; 15:207. [PMID: 29029603 PMCID: PMC5640915 DOI: 10.1186/s12967-017-1306-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/30/2017] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are critically involved in reactive oxygen species (ROS)-dependent lung diseases, such as lung fibrosis, asbestos, chronic airway diseases and lung cancer. Mitochondrial DNA (mtDNA) encodes mitochondrial proteins and is more sensitive to oxidants than nuclear DNA. Damage to mtDNA causes mitochondrial dysfunction, including electron transport chain impairment and mitochondrial membrane potential loss. Furthermore, damaged mtDNA also acts as a damage-associated molecular pattern (DAMP) that drives inflammatory and immune responses. In this review, crosstalk among alveolar epithelial cells, alveolar macrophages and mitochondria is examined. ROS-related transcription factors and downstream cell signaling pathways are also discussed. We conclude that targeting oxidative stress with antioxidant agents, such as thiol molecules, polyphenols and superoxide dismutase (SOD), and promoting mitochondrial biogenesis should be considered as novel strategies for treating lung diseases that currently have no effective treatment options.
Collapse
Affiliation(s)
- Xiaojing Liu
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Diseases, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.,Geriatric Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No 600 Yishan Road, Shanghai, China
| | - Zhihong Chen
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Diseases, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
13
|
Wei N, Wei Y, Li B, Pang L. Baicalein Promotes Neuronal and Behavioral Recovery After Intracerebral Hemorrhage Via Suppressing Apoptosis, Oxidative Stress and Neuroinflammation. Neurochem Res 2017; 42:1345-1353. [PMID: 28108850 DOI: 10.1007/s11064-017-2179-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/07/2017] [Accepted: 01/10/2017] [Indexed: 01/10/2023]
Abstract
Intracerebral hemorrhage (ICH) is an important public health problem in neurology, which is not only associated with high mortality but also leading to disability. Yet no satisfactory treatment has been developed. The secondary injury that resulted from a number of self-destructive processes such as neuroinflammation, apoptosis and oxidative stress, is the key factor contributing to ICH-induced brain damage. Baicalein has been proved to improve neuronal functional recovery in rat model of subarachnoid hemorrhage and ischemic brain damage. To investigate the effect of baicalein on ICH and its underlying mechanism, a collagenase-induced ICH rat model was performed. Baicalein treatment significantly decreased neurological severity score at day 1 and 3 after ICH injury. Our results showed that the lesion volume, the brain water content, the expression levels of four pro-inflammatory cytokines (IL-1β, IL-4 and IL-6 and TNF-α) and the numbers of apoptotic cells were reduced significantly in ICH rats receiving baicalein treatment, especially in 50 mg/kg baicalein-treated group. Moreover, baicalein increased SOD and GSH-Px activities and down-regulated MDA level of brain tissues in rats. These results suggested that the therapeutic efficacy of baicalein on repairing brain damage is probably caused by suppressing apoptosis, oxidative stress and neuroinflammation. Baicalein could be developed into a novel drug for clinical treatment of ICH and ICH-related brain injuries.
Collapse
Affiliation(s)
- Ning Wei
- Department of the Fifth Yard of Neurology, Affiliated Guangxi Minzu Hospital of Guangxi Medical University, Min Xiu Rd. #232, 530001, Nanning, China.
| | - Yinghai Wei
- Department of the Fifth Yard of Neurology, Affiliated Guangxi Minzu Hospital of Guangxi Medical University, Min Xiu Rd. #232, 530001, Nanning, China
| | - Binru Li
- Department of the Fifth Yard of Neurology, Affiliated Guangxi Minzu Hospital of Guangxi Medical University, Min Xiu Rd. #232, 530001, Nanning, China
| | - Linlin Pang
- Department of the Fifth Yard of Neurology, Affiliated Guangxi Minzu Hospital of Guangxi Medical University, Min Xiu Rd. #232, 530001, Nanning, China
| |
Collapse
|
14
|
Das U, Manna K, Khan A, Sinha M, Biswas S, Sengupta A, Chakraborty A, Dey S. Ferulic acid (FA) abrogates γ-radiation induced oxidative stress and DNA damage by up-regulating nuclear translocation of Nrf2 and activation of NHEJ pathway. Free Radic Res 2017; 51:47-63. [PMID: 28074659 DOI: 10.1080/10715762.2016.1267345] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The present study was aimed to evaluate the radioprotective effect of ferulic acid (FA), a naturally occurring plant flavonoid in terms of DNA damage and damage related alterations of repair pathways by gamma radiation. FA was administered at a dose of 50 mg/kg body weight for five consecutive days prior to exposing the swiss albino mice to a single dose of 10 Gy gamma radiation. Ionising radiation induces oxidative damage manifested by decreased expression of Cu, Zn-SOD (SOD stands for super oxide dismutase), Mn-SOD and catalase. Gamma radiation promulgated reactive oxygen species (ROS) mediated DNA damage and modified repair pathways. ROS enhanced nuclear translocation of p53, activated ATM (ataxia telangiectasia-mutated protein), increased expression of GADD45a (growth arrest and DNA-damage-inducible protein) gene and inactivated Non homologous end joining (NHEJ) repair pathway. The comet formation in irradiated mice peripheral blood mononuclear cells (PBMC) reiterated the DNA damage in IR exposed groups. FA pretreatment significantly prevented the comet formation and regulated the nuclear translocation of p53, inhibited ATM activation and expression of GADD45a gene. FA promoted the nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and activated NHEJ repair pathway to overcome ROS mediated oxidative stress and DNA damage. Therefore, the current study stated that FA can challenge the oxidative stress by (i) inducing nuclear translocation of Nrf2, (ii) scavenging ROS, and (iii) activating NHEJ DNA repair process.
Collapse
Affiliation(s)
- Ujjal Das
- a Department of Physiology , Centre for Nanoscience and Nanotechnology and Centre with Potential for Excellence in Particular Area (CPEPA), University of Calcutta , Kolkata , West Bengal , India
| | - Krishnendu Manna
- a Department of Physiology , Centre for Nanoscience and Nanotechnology and Centre with Potential for Excellence in Particular Area (CPEPA), University of Calcutta , Kolkata , West Bengal , India
| | - Amitava Khan
- a Department of Physiology , Centre for Nanoscience and Nanotechnology and Centre with Potential for Excellence in Particular Area (CPEPA), University of Calcutta , Kolkata , West Bengal , India
| | - Mahuya Sinha
- a Department of Physiology , Centre for Nanoscience and Nanotechnology and Centre with Potential for Excellence in Particular Area (CPEPA), University of Calcutta , Kolkata , West Bengal , India
| | - Sushobhan Biswas
- a Department of Physiology , Centre for Nanoscience and Nanotechnology and Centre with Potential for Excellence in Particular Area (CPEPA), University of Calcutta , Kolkata , West Bengal , India
| | - Aaveri Sengupta
- a Department of Physiology , Centre for Nanoscience and Nanotechnology and Centre with Potential for Excellence in Particular Area (CPEPA), University of Calcutta , Kolkata , West Bengal , India
| | - Anindita Chakraborty
- b Division of Radiation Biology , UGC-DAE CSR Center Kolkata , Kolkata , West Bengal , India
| | - Sanjit Dey
- a Department of Physiology , Centre for Nanoscience and Nanotechnology and Centre with Potential for Excellence in Particular Area (CPEPA), University of Calcutta , Kolkata , West Bengal , India
| |
Collapse
|
15
|
Clinical and Preclinical Cognitive Function Improvement after Oral Treatment of a Botanical Composition Composed of Extracts from Scutellaria baicalensis and Acacia catechu. Behav Neurol 2016; 2016:7240802. [PMID: 28042201 PMCID: PMC5155129 DOI: 10.1155/2016/7240802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/31/2016] [Accepted: 09/22/2016] [Indexed: 11/18/2022] Open
Abstract
Dementia and cognitive impairment have become the major concerns worldwide due to a significantly aging population, increasing life span and lack of effective pharmacotherapy. In light of limited pharmaceutical drug choices and the socioeconomic implications of these conditions, the search for safe and effective alternatives from natural sources has gained many attractions within the medical food and dietary supplement industry. Two polyphenol extracts derived from roots of Scutellaria baicalensis and heartwoods of Acacia catechu containing free-B-ring flavonoids and flavans, respectively, were combined into a proprietary blend called UP326. A similar bioflavonoid composition, UP446, has been reported with modulation of pathways related to systemic inflammation. To test the effect of UP326 on memory and learning, a radial arm water maze (RAWM) and contextual fear conditioning (CF) were utilized in aged F344 rats fed with UP326 at doses of 3, 7, and 34 mg/kg for 11 weeks. The 7 and 34 mg/kg dosage groups had significantly fewer errors than aged vehicle control animals and their performance was equivalent to young animal controls. In a separate human clinical trial, test subjects orally given 300 mg of UP326 BID for 30 days showed marked improvement in speed and accuracy of processing complex information in computer tasks and reduced their standard deviation of performance compared to baseline and the placebo group. This data suggest that UP326 may help maintain memory, sustain speed of processing, and reduce the number or memory errors as we age.
Collapse
|
16
|
Oh MC, Piao MJ, Fernando PMDJ, Han X, Madduma Hewage SRK, Park JE, Ko MS, Jung U, Kim IG, Hyun JW. Baicalein Protects Human Skin Cells against Ultraviolet B-Induced Oxidative Stress. Biomol Ther (Seoul) 2016; 24:616-622. [PMID: 27257012 PMCID: PMC5098541 DOI: 10.4062/biomolther.2016.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/18/2016] [Accepted: 03/24/2016] [Indexed: 01/06/2023] Open
Abstract
Baicalein (5,6,7-trihydroxy-2-phenyl-chromen-4-one) is a flavone, a type of flavonoid, originally isolated from the roots of Scutellaria baicalensis. This study evaluated the protective effects of baicalein against oxidative damage-mediated apoptosis induced by ultraviolet B (UVB) radiation in a human keratinocyte cell line (HaCaT). Baicalein absorbed light within the wavelength range of UVB. In addition, baicalein decreased the level of intracellular reactive oxygen species (ROS) in response to UVB radiation. Baicalein protected cells against UVB radiation-induced DNA breaks, 8-isoprostane generation and protein modification in HaCaT cells. Furthermore, baicalein suppressed the apoptotic cell death by UVB radiation. These findings suggest that baicalein protected HaCaT cells against UVB radiation-induced cell damage and apoptosis by absorbing UVB radiation and scavenging ROS.
Collapse
Affiliation(s)
- Min Chang Oh
- School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Mei Jing Piao
- School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | | | - Xia Han
- School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | | | - Jeong Eon Park
- School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Mi Sung Ko
- College of Medicine, Soonchunhyang University, Cheonan 31140, Republic of Korea
| | - Uhee Jung
- Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - In Gyu Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea.,Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jin Won Hyun
- School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
17
|
Huang KF, Ma KH, Liu PS, Chen BW, Chueh SH. Baicalein increases keratin 1 and 10 expression in HaCaT keratinocytes via TRPV4 receptor activation. Exp Dermatol 2016; 25:623-9. [DOI: 10.1111/exd.13024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Kuo-Feng Huang
- Division of Plastic Surgery; Department of Surgery; Chi Mei Medical Center; Tainan Taiwan
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy; National Defense Medical Center; Taipei Taiwan
| | - Pei-Shan Liu
- Department of Microbiology; Soochow University; Taipei Taiwan
| | - Bo-Wei Chen
- Department of Biochemistry; National Defense Medical Center; Taipei Taiwan Republic of China
| | - Sheau-Huei Chueh
- Department of Biochemistry; National Defense Medical Center; Taipei Taiwan Republic of China
| |
Collapse
|
18
|
Cao Y, Liang L, Xu J, Wu J, Yan Y, Lin P, Chen Q, Zheng F, Wang Q, Ren Q, Gou Z, Du Y. The effect of Scutellaria baicalensis stem-leaf flavonoids on spatial learning and memory in chronic cerebral ischemia-induced vascular dementia of rats. Acta Biochim Biophys Sin (Shanghai) 2016; 48:437-46. [PMID: 27118553 DOI: 10.1093/abbs/gmw024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 01/23/2016] [Indexed: 12/19/2022] Open
Abstract
Flavonoids have been shown to improve cognitive function and delay the dementia progression. However, the underlying mechanisms remain elusive. In the present study, we examined the effect of Scutellaria baicalensis stem-leaf total flavonoids (SSTFs) extracted from S. baicalensis Georgi on spatial learning and memory in a vascular dementia (VaD) rat model and explored its molecular mechanisms. The VaD rats were developed by permanent bilateral occlusion of the common carotid artery. Seven days after recovery, the VaD rats were treated with either 50 or 100 mg/kg of SSTF for 60 days. The spatial learning and memory was evaluated in the Morris water maze (MWM) test. The tau hyperphosphorylation and the levels of the related protein kinases or phosphatases were examined by western blot analysis. In VaD rats, SSTF treatment at 100 mg/kg significantly reduced the escape latency in training trial in MWM test. In the probe trial, SSTF treatment increased the searching time and travel distance in the target quadrant. SSTF treatment inhibited the tau phosphorylation in both cortex and hippocampus in VaD rats. Meanwhile, SSTF reduced the activity of glycogen synthase kinase 3β and cyclin-dependent kinase 5 in VaD rats. In contrast, SSTF treatment increased the level of the protein phosphatase 2A subunit B in VaD rats. SSTF treatment significantly improved the spatial cognition in VaD rats. Our results suggest that SSTF may alleviate tau-hyperphosphorylation-induced neurotoxicity through coordinating the activity of kinases and phosphatase after a stroke. SSTF may be developed into promising novel therapeutics for VaD.
Collapse
Affiliation(s)
- Yanjing Cao
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250013, China Department of Neurology, Third Hospital of Hangzhou, Hangzhou 310009, China
| | - Lizhen Liang
- Department of Neurology, Third Hospital of Hangzhou, Hangzhou 310009, China
| | - Jian Xu
- Department of Histology and Embryology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiali Wu
- Department of Neurology, Third Hospital of Hangzhou, Hangzhou 310009, China
| | - Yongxing Yan
- Department of Neurology, Third Hospital of Hangzhou, Hangzhou 310009, China
| | - Ping Lin
- Department of Neurology, Third Hospital of Hangzhou, Hangzhou 310009, China
| | - Qiang Chen
- Department of Neurology, Third Hospital of Hangzhou, Hangzhou 310009, China
| | - Fengming Zheng
- Department of Neurology, Third Hospital of Hangzhou, Hangzhou 310009, China
| | - Qin Wang
- Department of Neurology, Third Hospital of Hangzhou, Hangzhou 310009, China
| | - Qian Ren
- Department of Neurology, Third Hospital of Hangzhou, Hangzhou 310009, China
| | - Zengmei Gou
- Department of Neurology, The Second People's Hospital of Weifang, Weifang 261041, China
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250013, China
| |
Collapse
|
19
|
Kamran MZ, Ranjan A, Kaur N, Sur S, Tandon V. Radioprotective Agents: Strategies and Translational Advances. Med Res Rev 2016; 36:461-93. [PMID: 26807693 DOI: 10.1002/med.21386] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/15/2015] [Accepted: 01/01/2016] [Indexed: 01/08/2023]
Abstract
Radioprotectors are agents required to protect biological system exposed to radiation, either naturally or through radiation leakage, and they protect normal cells from radiation injury in cancer patients undergoing radiotherapy. It is imperative to study radioprotectors and their mechanism of action comprehensively, looking at their potential therapeutic applications. This review intimately chronicles the rich intellectual, pharmacological story of natural and synthetic radioprotectors. A continuous effort is going on by researchers to develop clinically promising radioprotective agents. In this article, for the first time we have discussed the impact of radioprotectors on different signaling pathways in cells, which will create a basis for scientific community working in this area to develop novel molecules with better therapeutic efficacy. The bright future of exceptionally noncytotoxic derivatives of bisbenzimidazoles is also described as radiomodulators. Amifostine, an effective radioprotectant, has been approved by the FDA for limited clinical use. However, due to its adverse side effects, it is not routinely used clinically. Recently, CBLB502 and several analog of a peptide are under clinical trial and showed high success against radiotherapy in cancer. This article reviews the different types of radioprotective agents with emphasis on the strategies for the development of novel radioprotectors for drug development. In addition, direction for future strategies relevant to the development of radioprotectors is also addressed.
Collapse
Affiliation(s)
- Mohammad Zahid Kamran
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Atul Ranjan
- Kansas University of Medical Center, Kansas City, KS, 66160
| | - Navrinder Kaur
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Souvik Sur
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.,Department of Chemistry, University of Delhi, Delhi, 110007, India
| |
Collapse
|
20
|
Yeh CH, Ma KH, Liu PS, Kuo JK, Chueh SH. Baicalein Decreases Hydrogen Peroxide-Induced Damage to NG108-15 Cells via Upregulation of Nrf2. J Cell Physiol 2015; 230:1840-51. [PMID: 25557231 DOI: 10.1002/jcp.24900] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 12/16/2014] [Indexed: 11/06/2022]
Abstract
Baicalein is a flavonoid inhibitor of 12-lipoxygenase. Here, we investigated its effect on hydrogen peroxide-induced damage to NG108-15 cells. Hydrogen peroxide activated the mitochondrial apoptotic pathway, decreased Nrf2 expression, increased reactive oxygen species (ROS) levels, reduced viability, and increased cell death after 2-24 h treatment of NG108-15 cells. Co-treatment with hydrogen peroxide and baicalein completely suppressed the activation of mitochondrial apoptotic pathway by upregulating Nrf2 expression and reducing ROS stress and partially inhibited the effects on cell viability and cell death. Silencing of 12-lipoxygenase had a similar protective effect to baicalein on hydrogen peroxide-induced damage by blocking the hydrogen peroxide-induced decrease in Nrf2 expression and increase in ROS levels. Neither protective effect was altered by addition of 12-hydroxyeicosatetraenoic acid, the product of 12-lipoxygenase, suggesting that hydrogen peroxide induced damage via 12-lipoxygenase by another, as yet unknown, mechanism, rather than activating it. Co-treatment of cells with hydrogen peroxide and N-acetylcysteine or the Nrf2 inducer sulforaphane reduced hydrogen peroxide-induced damage in a similar fashion to baicalein, while the Nrf2 inhibitor retinoic acid blocked the protective effect of baicalein. Silencing Nrf2 also inhibited the protective effects of baicalein, sulforaphane, and N-acetylcysteine and resulted in high ROS levels, suggesting ROS elimination was mediated by Nrf2. Taken together our results suggest that baicalein protects cells from hydrogen peroxide-induced activation of the mitochondrial apoptotic pathway by upregulating Nrf2 and inhibiting 12-lipoxygenase to block the increase in ROS levels. Hydrogen peroxide also activates a second mitochondrial dysfunction independent death pathway which is resistant to baicalein.
Collapse
Affiliation(s)
- Chao-Hung Yeh
- Department of Neurosurgery, Chi Mei Medical Center, Tainan, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
21
|
Xiao JR, Do CW, To CH. Potential Therapeutic Effects of Baicalein, Baicalin, and Wogonin in Ocular Disorders. J Ocul Pharmacol Ther 2014; 30:605-14. [DOI: 10.1089/jop.2014.0074] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Jing-Ru Xiao
- Laboratory of Experimental Optometry, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Hong Kong
| | - Chi-Wai Do
- Laboratory of Experimental Optometry, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Hong Kong
| | - Chi-Ho To
- Laboratory of Experimental Optometry, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Hong Kong
- State Key Laboratory of Ophthalmology, Department of Ophthalmology, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
22
|
Kumar KH, Venuprasad MP, Jayashree GV, Rachitha P, Krupashree K, Pal A, Khanum F. Celastrus paniculatus Willd. mitigates t-BHP induced oxidative and apoptotic damage in C2C12 murine muscle cells. Cytotechnology 2014; 67:955-67. [PMID: 25118832 DOI: 10.1007/s10616-014-9733-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/16/2014] [Indexed: 11/27/2022] Open
Abstract
Identification, exploration and scientific validation of antioxidant rich herbal extracts to mitigate the radical induced cell damage provide new insights in the field of ayurvedic research/therapies. In the present study, we evaluated the anti-oxidant and anti-apoptotic potential of Celastrus paniculatus seed extract (CPSE) against tertiary butyl hydroperoxide (t-BHP) induced mice muscle cell damage. The extract at a dose of 50 µg/ml protected the cells up to 70 % as evidenced by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell survival assay and also prevented LDH leakage against t-BHP induced cytotoxicity. CPSE showed potential antioxidant activity by restoring mitochondrial membrane potential and inhibited reactive oxygen species generation and lipid peroxidation. CPSE pretreatment also regulated the antioxidant markers such as superoxide dismutase and catalase enzymes content and proteins expression. Further CPSE showed anti-apoptotic effects by regulating cytochrome-C and heat shock protein-70 expression and also showed 43 % muscle cell DNA damage inhibitory activity against t-BHP challenge as observed by single cell gel electrophoresis assay. Overall the extract inhibits the muscle cell damage, thus explaining the possible anti-oxidant/anti-apoptotic defense status of the C. paniculatus seed extract.
Collapse
Affiliation(s)
- Kandikattu Hemanth Kumar
- Biochemistry and Nanosciences Discipline, Defence Food Research Laboratory, Siddarthanagar, Mysore, 570011, Karnataka, India
| | - M P Venuprasad
- Biochemistry and Nanosciences Discipline, Defence Food Research Laboratory, Siddarthanagar, Mysore, 570011, Karnataka, India
| | - G V Jayashree
- Biochemistry and Nanosciences Discipline, Defence Food Research Laboratory, Siddarthanagar, Mysore, 570011, Karnataka, India
| | - P Rachitha
- Biochemistry and Nanosciences Discipline, Defence Food Research Laboratory, Siddarthanagar, Mysore, 570011, Karnataka, India
| | - K Krupashree
- Biochemistry and Nanosciences Discipline, Defence Food Research Laboratory, Siddarthanagar, Mysore, 570011, Karnataka, India
| | - Ajay Pal
- Biochemistry and Nanosciences Discipline, Defence Food Research Laboratory, Siddarthanagar, Mysore, 570011, Karnataka, India
- Department of Biochemistry, College of Basic Sciences and Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Farhath Khanum
- Biochemistry and Nanosciences Discipline, Defence Food Research Laboratory, Siddarthanagar, Mysore, 570011, Karnataka, India.
| |
Collapse
|