1
|
Liu X, Zhang L, Zhu B, Liu Y, Li L, Hou J, Qian M, Zheng N, Zeng Y, Chen C, Goel A, Wang X. Role of GSDM family members in airway epithelial cells of lung diseases: a systematic and comprehensive transcriptomic analysis. Cell Biol Toxicol 2023; 39:2743-2760. [PMID: 37462807 DOI: 10.1007/s10565-023-09799-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/05/2023] [Indexed: 12/03/2023]
Abstract
Gasdermin (GSDM) family, the key executioners of pyroptosis, play crucial roles in anti-pathogen and anti-tumor immunities, although little is known about the expression of GSDM in lung diseases at single-cell resolution, especially in lung epithelial cells. We comprehensively investigated the transcriptomic profiles of GSDM members in various lung tissues from healthy subjects or patients with different lung diseases at single cell level, e.g., chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), lung adenocarcinoma (LUAD), or systemic sclerosis (SSC). The expression of GSDM members varied among pulmonary cell types (immune cells, structural cells, and especially epithelial cells) and even across lung diseases. Regarding disease-associated specificities, we found that GSDMC or GSDMD altered significantly in ciliated epithelia of COPD or LUAD, GSDMD in mucous, club, and basal cells of LUAD and GSDMC in mucous epithelia of para-tumor tissue, as compared with the corresponding epithelia of other diseases. The phenomic specificity of GSDM in lung cancer subtypes was noticed by comparing with 15 non-pulmonary cancers and para-cancer samples. GSDM family gene expression changes were also observed in different lung epithelial cell lines (e.g., HBE, A549, H1299, SPC-1, or H460) in responses to external challenges, including lipopolysaccharide (LPS), lysophosphatidylcholine (lysoPC), cigarette smoking extract (CSE), cholesterol, and AR2 inhibitor at various doses or durations. GSDMA is rarely expressed in those cell lines, while GSDMB and GSDMC are significantly upregulated in human lung epithelia. Our data indicated that the heterogeneity of GSDM member expression exists at different cells, pathologic conditions, challenges, probably dependent upon cell biological phenomes, functions, and behaviors, upon cellular responses to external changes, and the nature and severity of lung disease. Thus, the deep exploration of GSDM phenomes may provide new insights into understanding the single-cell roles in the tissue, regulatory roles of the GSDM family in the pathogenesis, and potential values of biomarker identification and development.
Collapse
Affiliation(s)
- Xuanqi Liu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
- Shanghai Institute of Clinical Bioinformatics, Shanghai, China
- Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai, China
| | - Linlin Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Bijun Zhu
- Shanghai Institute of Clinical Bioinformatics, Shanghai, China
- Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai, China
| | - Yifei Liu
- Center of Molecular Diagnosis and Therapy, The Second Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Liyang Li
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Jiayun Hou
- Shanghai Institute of Clinical Bioinformatics, Shanghai, China
| | - Mengjia Qian
- Shanghai Institute of Clinical Bioinformatics, Shanghai, China
| | - Nannan Zheng
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Yiming Zeng
- Center of Molecular Diagnosis and Therapy, The Second Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| | - Chengshui Chen
- Quzhou Hospital of Wenzhou Medical University, Quzhou, Zhejiang Province, China.
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China.
- Shanghai Institute of Clinical Bioinformatics, Shanghai, China.
- Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai, China.
| |
Collapse
|
2
|
Fu H, Liu X, Shi L, Wang L, Fang H, Wang X, Song D. Regulatory roles of Osteopontin in lung epithelial inflammation and epithelial-telocyte interaction. Clin Transl Med 2023; 13:e1381. [PMID: 37605313 PMCID: PMC10442477 DOI: 10.1002/ctm2.1381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Lung epithelial cells play important roles in lung inflammation and injury, although mechanisms remain unclear. Osteopontin (OPN) has essential roles in epithelial damage and repair and in lung cancer biological behaviours. Telocyte (TC) is a type of interstitial cell that interacts with epithelial cells to alleviate acute inflammation and lung injury. The present studies aim at exploring potential mechanisms by which OPN regulates the epithelial origin lung inflammation and the interaction of epithelial cells with TCs in acute and chronic lung injury. METHODS The lung disease specificity of OPN and epithelial inflammation were defined by bioinformatics. We evaluated the regulatory roles of OPN in OPN-knockdown or over-expressed bronchial epithelia (HBEs) challenged with cigarette smoke extracts (CSE) or in animals with genome OPN knockout (gKO) or lung conditional OPN knockout (cKO). Acute lung injury and chronic obstructive pulmonary disease (COPD) were induced by smoking or lipopolysaccharide (LPS). Effects of OPN on PI3K subunits and ERK were assessed using the inhibitors. Spatialization and distribution of OPN, OPN-positive epithelial subtypes, and TCs were defined by spatial transcriptomics. The interaction between HBEs and TCs was assayed by the co-culture system. RESULTS Levels of OPN expression increased in smokers, smokers with COPD, and smokers with COPD and lung cancer, as compared with healthy nonsmokers. LPS and/or CSE induced over-production of cytokines from HBEs, dependent upon the dysfunction of OPN. The severity of lung inflammation and injury was significantly lower in OPN-gKO or OPN-cKO mice. HBEs transferred with OPN enhanced the expression of phosphoinositide 3-kinase (PI3K)CA/p110α, PIK3CB/p110β, PIK3CD/p110δ, PIK3CG/p110γ, PIK3R1, PIK3R2 or PIK3R3. Spatial locations of OPN and OPN-positive epithelial subtypes showed the tight contact of airway epithelia and TCs. Epithelial OPN regulated the epithelial communication with TCs, and the down-regulation of OPN induced more alterations in transcriptomic profiles than the up-regulation. CONCLUSION Our data evidenced that OPN regulated lung epithelial inflammation, injury, and cell communication between epithelium and TCs in acute and chronic lung injury. The conditional control of lung epithelial OPN may be an alternative for preventing and treating epithelial-origin lung inflammation and injury.
Collapse
Affiliation(s)
- Huirong Fu
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Center for Tumor Diagnosis & TherapyJinshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
| | - Xuanqi Liu
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
| | - Lin Shi
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
| | - Lingyan Wang
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Hao Fang
- Department of AnesthesiologyZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Department of AnesthesiologyShanghai Geriatric Medical CenterShanghaiChina
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Center for Tumor Diagnosis & TherapyJinshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Dongli Song
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Department of Pulmonary MedicineShanghai Xuhui Central HospitalFudan UniversityShanghaiChina
| |
Collapse
|
3
|
Zhang L, Liu X, Liu Y, Yan F, Zeng Y, Song Y, Fang H, Song D, Wang X. Lysophosphatidylcholine inhibits lung cancer cell proliferation by regulating fatty acid metabolism enzyme long-chain acyl-coenzyme A synthase 5. Clin Transl Med 2023; 13:e1180. [PMID: 36639836 PMCID: PMC9839868 DOI: 10.1002/ctm2.1180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Lung cancer is a widespread malignancy with a high death rate and disorder of lipid metabolism. Lysophosphatidylcholine (lysoPC) has anti-tumour effects, although the underlying mechanism is not entirely known. The purpose of this study aims at defining changes in lysoPC in lung cancer patients, the effects of lysoPC on lung cancer cells and molecular mechanisms. Lung cancer cell sensitivity to lysoPC was evaluated and decisive roles of long-chain acyl-coenzyme A synthase 5 (ACSL5) in lysoPC regulation were defined by comprehensively evaluating transcriptomic changes of ACSL5-downregulated epithelia. ACSL5 over-expressed in ciliated, club and Goblet cells in lung cancer patients, different from other lung diseases. LysoPC inhibited lung cancer cell proliferation, by inducing mitochondrial dysfunction, altering lipid metabolisms, increasing fatty acid oxidation and reprograming ACSL5/phosphoinositide 3-kinase/extracellular signal-regulated kinase-regulated triacylglycerol-lysoPC balance. Thus, this study provides a general new basis for the discovery of reprogramming metabolisms and metabolites as a new strategy of lung cancer precision medicine.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Pulmonary and Critical Care MedicineZhongshan Hospital, Fudan University Shanghai Medical CollegeShanghaiChina
| | - Xuanqi Liu
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
| | - Yifei Liu
- Center of Molecular Diagnosis and TherapyThe Second Hospital of Fujian Medical UniversityQuanzhouChina
| | - Furong Yan
- Department of Pulmonary and Critical Care MedicineZhongshan Hospital, Fudan University Shanghai Medical CollegeShanghaiChina,Center of Molecular Diagnosis and TherapyThe Second Hospital of Fujian Medical UniversityQuanzhouChina
| | - Yiming Zeng
- Center of Molecular Diagnosis and TherapyThe Second Hospital of Fujian Medical UniversityQuanzhouChina
| | - Yuanlin Song
- Department of Pulmonary and Critical Care MedicineZhongshan Hospital, Fudan University Shanghai Medical CollegeShanghaiChina,Shanghai Institute of Clinical BioinformaticsShanghaiChina,Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Hao Fang
- Department of AnesthesiologyZhongshan and Minhang HospitalFudan UniversityShanghaiChina
| | - Dongli Song
- Department of Pulmonary and Critical Care MedicineZhongshan Hospital, Fudan University Shanghai Medical CollegeShanghaiChina,Shanghai Institute of Clinical BioinformaticsShanghaiChina,Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care MedicineZhongshan Hospital, Fudan University Shanghai Medical CollegeShanghaiChina,Shanghai Institute of Clinical BioinformaticsShanghaiChina,Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| |
Collapse
|
4
|
Guan Q, Zhao P, Tian Y, Yang L, Zhang Z, Li J. Identification of cancer risk assessment signature in patients with chronic obstructive pulmonary disease and exploration of the potential key genes. Ann Med 2022; 54:2309-2320. [PMID: 35993327 PMCID: PMC9415445 DOI: 10.1080/07853890.2022.2112070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
It is essential to assess the cancer risk for patients with chronic obstructive pulmonary disease (COPD). Comparing gene expression data from patients with lung cancer (a total of 506 samples) and those with cancer-adjacent normal lung tissues (a total of 370 samples), we generated a qualitative transcriptional signature consisting of 2046 gene pairs. The signature was verified in an evaluation dataset comprising 18 subjects with severe disease and 52 subjects with moderate disease (Wilcoxon rank-sum test; p = 7.33 × 10-5). Similar results were obtained in other independent datasets. Among the gene pairs in the signature, 326 COPD stage-related gene pairs were identified based on Spearman's rank correlation tests and those gene pairs comprised 368 unique genes. Of these 368 genes, 16 genes were significantly dysregulated in COPD rat model data compared with control data. Some of these genes (Dhx16, Upf2, Notch3, Sec61a1, Dyrk2, and Hmmr) were altered when the COPD rat model was treated with traditional Chinese medicines (TCM), including Bufei Yishen formula, Bufei Jianpi formula, and Yiqi Zishen formula. Overall, the signature could predict the cancer incidence-risk of COPD and the identified key genes might provide guidance regarding both the treatment of COPD using TCM and the prevention of cancer in patients with COPD. KEY MESSAGESA cancer risk assessment signature was identified in patients with COPD.The signature is insensitive to batch effects and is well verified.COPD key genes identified in this study might play a crucial role in TCM treatment and cancer prevention.
Collapse
Affiliation(s)
- Qingzhou Guan
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Peng Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yange Tian
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Liping Yang
- School of Basic Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhenzhen Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China.,The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
5
|
Song D, Yan F, Fu H, Li L, Hao J, Zhu Z, Ye L, Zhang Y, Jin M, Dai L, Fang H, Song Z, Wu D, Wang X. A cellular census of human peripheral immune cells identifies novel cell states in lung diseases. Clin Transl Med 2021; 11:e579. [PMID: 34841705 PMCID: PMC8611783 DOI: 10.1002/ctm2.579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence supports a central role of the immune system in lung diseases. Understanding how immunological alterations between lung diseases provide opportunities for immunotherapy. Exhausted T cells play a key role of immune suppression in lung cancer and chronic obstructive pulmonary disease was proved in our previous study. The present study aims to furthermore define molecular landscapes and heterogeneity of systemic immune cell target proteomic and transcriptomic profiles and interactions between circulating immune cells and lung residential cells in various lung diseases. We firstly measured target proteomic profiles of circulating immune cells from healthy volunteers and patients with stable pneumonia, stable asthma, acute asthma, acute exacerbation of chronic obstructive pulmonary disease, chronic obstructive pulmonary disease and lung cancer, using single-cell analysis by cytometry by time-of-flight with 42 antibodies. The nine immune cells landscape was mapped among those respiratory system diseases, including CD4+ T cells, CD8+ T cells, dendritic cells, B cells, eosinophil, γδT cells, monocytes, neutrophil and natural killer cells. The double-negative T cells and exhausted CD4+ central memory T cells subset were identified in patients with acute pneumonia. This T subset expressed higher levels of T-cell immunoglobulin and mucin domain-containing protein 3 (Tim3) and T-cell immunoreceptor with Ig and ITIM domains (TIGIT) in patients with acute pneumonia and stable pneumonia. Biological processes and pathways of immune cells including immune response activation, regulation of cell cycle and pathways in cancer in peripheral blood immune cells were defined by bulk RNA sequencing (RNA-seq). The heterogeneity among immune cells including CD4+ , CD8+ T cells and NK T cells by single immune cell RNA-seq with significant difference was found by single-cell sequencing. The effect of interstitial telocytes on the immune cell types and immune function was finally studied and the expressions of CD8a and chemokine C-C motif receptor 7 (CCR7) were increased significantly in co-cultured groups. Our data indicate that proteomic and transcriptomic profiles and heterogeneity of circulating immune cells provides new insights for understanding new molecular mechanisms of immune cell function, interaction and modulation as a source to identify and develop biomarkers and targets for lung diseases.
Collapse
Affiliation(s)
- Dongli Song
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Furong Yan
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Huirong Fu
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Liyang Li
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Jie Hao
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Zhenhua Zhu
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Ling Ye
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Yong Zhang
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Meiling Jin
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Lihua Dai
- Department of EmergencyShidong Hospital of Yangpu DistrictShanghaiChina
| | - Hao Fang
- Department of AnesthesiologyZhongshan HospitalShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Zhenju Song
- Department of EmergencyZhongshan HospitalShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Duojiao Wu
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Jinshan Hospital Centre for Tumour Diagnosis and TherapyShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Xiangdong Wang
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Jinshan Hospital Centre for Tumour Diagnosis and TherapyShanghai Medical UniversityFudan UniversityShanghaiChina
| |
Collapse
|
6
|
Komaromy A, Reider B, Jarvas G, Guttman A. Glycoprotein biomarkers and analysis in chronic obstructive pulmonary disease and lung cancer with special focus on serum immunoglobulin G. Clin Chim Acta 2020; 506:204-213. [PMID: 32243984 DOI: 10.1016/j.cca.2020.03.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 01/11/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer are two major diseases of the lung with high rate of mortality, mostly among tobacco smokers. The glycosylation patterns of various plasma proteins show significant changes in COPD and subsequent hypoxia, inflammation and lung cancer, providing promising opportunities for screening aberrant glycan structures contribute to early detection of both diseases. Glycoproteins associated with COPD and lung cancer consist of highly sialylated N-glycans, which play an important role in inflammation whereby hypoxia leads to accumulation of sialyl Lewis A and X glycans. Although COPD is an inflammatory disease, it is an independent risk factor for lung cancer. Marked decrease in galactosylation of plasma immunoglobulin G (IgG) together with increased presence of sialic acids and more complex highly branched N-glycan structures are characteristic for COPD and lung cancer. Numerous glycan biomarkers have been discovered, and analysis of glycovariants associated with COPD and lung cancer has been carried out. In this paper we review fundamental glycosylation changes in COPD and lung cancer glycoproteins, focusing on IgG to provide an opportunity to distinguish between the two diseases at the glycoprotein level with diagnostic value.
Collapse
Affiliation(s)
- Andras Komaromy
- University of Pannonia, 10 Egyetem Street, Veszprem 8200, Hungary
| | - Balazs Reider
- University of Pannonia, 10 Egyetem Street, Veszprem 8200, Hungary
| | - Gabor Jarvas
- University of Pannonia, 10 Egyetem Street, Veszprem 8200, Hungary; Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 98 Nagyerdei Krt, Debrecen 4032, Hungary.
| | - Andras Guttman
- University of Pannonia, 10 Egyetem Street, Veszprem 8200, Hungary; Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 98 Nagyerdei Krt, Debrecen 4032, Hungary
| |
Collapse
|
7
|
Fu S, Zhang L, Lv J, Zhu B, Wang W, Wang X. Two main stream methods analysis and visual 3D genome architecture. Semin Cell Dev Biol 2019; 90:43-53. [DOI: 10.1016/j.semcdb.2018.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 01/07/2023]
|
8
|
Hou J, Wang X. The polycomb group proteins functions in epithelial to mesenchymal transition in lung cancer. Semin Cell Dev Biol 2019; 90:138-143. [PMID: 30004017 DOI: 10.1016/j.semcdb.2018.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 07/08/2018] [Indexed: 12/29/2022]
|
9
|
Interferon gamma induces inflammatory responses through the interaction of CEACAM1 and PI3K in airway epithelial cells. J Transl Med 2019; 17:147. [PMID: 31072323 PMCID: PMC6507156 DOI: 10.1186/s12967-019-1894-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/25/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Interferon gamma (IFNγ) plays an important role in the development of chronic lung diseases via the production of inflammatory mediators, although the exact mechanism remains unclear. The present study aimed at investigating the potential mechanisms by which IFNγ induced over-production of interleukins through the interaction between carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathway. METHODS IFN-γ induced over-production of interleukin (IL) 6 and IL8, and RNA expression of CEACAM1 and its subtypes or PI3K and its subtypes in human bronchial epithelial cells (HBE). The production of IL6 and IL8 or cell proliferation and movement were also evaluated in cellCEACAM1- or cellCEACAM1+ after the induction of IFN-γ. Roles of PI3K subtype proteins, e.g. PI3Kp110α/δ, Akt, p110α/γ/δ/β/mTOR, PI3Kp110α/δ/β, PI3Kp110δ, or pan-PI3K in IFN-γ-induced CEACAM1 subtype alterations were furthermore validated using those proteins of PI3K subtypes. RESULTS CEACAM1, especially CEACAM1-S isoforms, was significantly up-regulated in HBE cells after treatment with IFN-γ. CEACAM1 played roles in expression of IL-6 and IL-8, and facilitated cellular proliferation and migration. IFN-γ up-regulated the expression of CEACAM1 in airway epithelial cells, especially CEACAM1-S isoforms, promoting cellular proliferation, migration, and the production of inflammatory factors. PI3K (p110δ)/Akt/mTOR pathway was involved in the process of IFN-γ-upregulated CEACAM1, especially CEACAM1-S. On the other hand, CEACAM1 could promote the activation of PI3K/Akt/mTOR pathway. CONCLUSION IFN-γ could induce inflammatory responses, cellular growth and proliferation through the interaction of CEACAM1 (especially CEACAM1-S isoforms) and PI3K(p110δ)/Akt/mTOR in airway epithelial cells, which might be new alternative of future therapies against epithelial transition from inflammation to cancer.
Collapse
|
10
|
Wang Z, Zhang X. Single Cell Proteomics for Molecular Targets in Lung Cancer: High-Dimensional Data Acquisition and Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:73-87. [PMID: 29943297 DOI: 10.1007/978-981-13-0502-3_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the proteomic and genomic era, lung cancer researchers are increasingly under challenge with traditional protein analyzing tools. High output, multiplexed analytical procedures are in demand for disclosing the post-translational modification, molecular interactions and signaling pathways of proteins precisely, specifically, dynamically and systematically, as well as for identifying novel proteins and their functions. This could be better realized by single-cell proteomic methods than conventional proteomic methods. Using single-cell proteomic tools including flow cytometry, mass cytometry, microfluidics and chip technologies, chemical cytometry, single-cell western blotting, the quantity and functions of proteins are analyzed simultaneously. Aside from deciphering disease mechanisms, single-cell proteomic techniques facilitate the identification and screening of biomarkers, molecular targets and promising compounds as well. This review summarized single-cell proteomic tools and their use in lung cancer.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Zhengzhou, China. .,Biomedical Research Center, Zhengzhou University People's Hospital, Zhengzhou, China.
| |
Collapse
|
11
|
Is Pooled CRISPR-Screening the Dawn of a New Era for Functional Genomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:171-176. [PMID: 29943304 DOI: 10.1007/978-981-13-0502-3_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Functional genomics aims to develop an in-depth understanding of how specific gene dysfunctions are related to diseases. A common method for investigating the genome and its complex functions is via perturbation of the interactions between the DNA, RNA and their protein respective protein derivatives. Commonly, arrayed and pooled genetic screens are utilized to achieve this and in recent years have been fundamental in achieving the current level of understanding for gene dysfunctions. However, they are limited in specific aspects which scientists have attempted to address. Clustered regularly palindromic repeats (CRISPR)-based methods for genetic screens have in recent years become more prevalent but crucially shared similar properties to previous methods and failing to provide a distinct advantage over previous methods. CROP-seq, Perturb-seq, and CRISPR-seq have combined CRISPR and single-cell RNA-sequencing (scRNA-seq) and is the newest addition to the geneticist's arsenal, providing scientists with methods to edit DNA with improved speed, accuracy, and efficiency which could usher us into a new era of study methods for functional genomics. We briefly overview the CRISPR-Cas9 systems, the evolution of genetic screening in recent years, and evaluate and discuss the significance of CROP-seq, Perturb-seq, and CRISPR-seq.
Collapse
|
12
|
Emergence of Bias During the Synthesis and Amplification of cDNA for scRNA-seq. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:149-158. [PMID: 29943302 DOI: 10.1007/978-981-13-0502-3_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The advent of single-cell omics technology has promoted our understanding of the genomic, epigenomic, and transcriptomic heterogeneity in individual cells. Compared to traditional sequencing studies using bulk cells, single-cell transcriptome technology is naturally more dynamic for in depth analysis of genomic variation resulting from cell division and is useful in unraveling the regulatory mechanisms of gene networks in many diseases. However, there are still some limitations of current single-cell RNA sequencing (scRNA-seq) protocols. Biases that arise during the RNA reverse transcription and cDNA pre-amplification steps are the most common problems and play pivotal roles in limiting the quantitative accuracy of scRNA-seq. In this review, we will describe how these biases emerge and impact scRNA-seq protocols. Moreover, we will introduce several current and convenient modified scRNA-seq methods that allow for bias to be decreased and estimated.
Collapse
|
13
|
Detection and Application of RNA Editing in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:159-170. [PMID: 29943303 DOI: 10.1007/978-981-13-0502-3_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RNA editing is the process which happened in the post-transcriptional stage that the genetic information contained in an RNA molecule will be changed. RNA editing has been found to be related with many cancers, so through identifying RNA editing sites, we can find useful information on the process of carcinogenesis. In this review, we will discuss the main types of RNA editing and their role in cancers, as well as the current detection methods of RNA editing and the challenges we should overcome.
Collapse
|
14
|
Zhang L, Han X, Wang X. Is the clinical lipidomics a potential goldmine? Cell Biol Toxicol 2018; 34:421-423. [PMID: 30032454 PMCID: PMC6208904 DOI: 10.1007/s10565-018-9441-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/09/2018] [Indexed: 01/11/2023]
Abstract
Clinical lipidomics is a new extension of lipidomics to study lipid profiles, pathways, and networks by characterizing and quantifying the complete lipid molecules in cells, biopsy, or body fluids of patients. It undoubtfully has more values if lipidomics can be integrated with the data of clinical proteomic, genomic, and phenomic profiles. A number of challenges, e.g., instability, specificity, and sensitivity, in lipidomics have to be faced and overcome before clinical application. The association of lipidomics data with gene expression and sequencing of lipid-specific proteins/enzymes should be furthermore clarified. Therefore, clinical lipidomics is expected to be more stable during handling, sensitive in response to changes, specific for diseases, efficient in data analyses, and standardized in measurements, in order to meet clinical needs. Clinical lipidomics will become a more important approach in clinical applications and will be the part of "natural" measures for early diagnosis and progress of disease. Thus, clinical lipidomics will be one of the most powerful approaches for disease-specific diagnosis and therapy, once the mystery of lipidomic profiles and metabolic enzymes is deciphered.
Collapse
Affiliation(s)
- Linlin Zhang
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Fudan University Shanghai Medical School, Shanghai, China
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, Department of Medicine, Division of Diabetes, Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, USA.
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Fudan University Shanghai Medical School, Shanghai, China.
| |
Collapse
|
15
|
Lv J, Gao D, Zhang Y, Wu D, Shen L, Wang X. Heterogeneity of lipidomic profiles among lung cancer subtypes of patients. J Cell Mol Med 2018; 22:5155-5159. [PMID: 29999584 PMCID: PMC6156354 DOI: 10.1111/jcmm.13782] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/07/2018] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is a leading cause of cancer-related deaths with an increasing incidence and poor prognoses. To further understand the regulatory mechanisms of lipidomic profiles in lung cancer subtypes, we measure the profiles of plasma lipidome between health and patients with lung cancer or among patients with squamous cell carcinomas, adenocarcinoma or small cell lung cancer and to correct lipidomic and genomic profiles of lipid-associated enzymes and proteins by integrating the data of large-scale genome screening. Our studies demonstrated that circulating levels of PS and lysoPS significantly increased, while lysoPE and PE decreased in patients with lung cancer. Our data indicate that lung cancer-specific and subtype-specific lipidomics in the circulation are important to understand mechanisms of systemic metabolisms and identify diagnostic biomarkers and therapeutic targets. The carbon atoms, dual bonds or isomerism in the lipid molecule may play important roles in lung cancer cell differentiations and development. This is the first try to integrate lipidomic data with lipid protein-associated genomic expression among lung cancer subtypes as the part of clinical trans-omics. We found that a large number of lipid protein-associated genes significantly change among cancer subtypes, with correlations with altered species and spatial structures of lipid metabolites.
Collapse
Affiliation(s)
- Jiapei Lv
- Zhongshan Hospital Institute of Clinical ScienceShanghai Institute of Clinical BioinformaticsFudan University Institute of Biomedical ScienceFudan UniversityShanghaiChina
| | - Danyan Gao
- Zhongshan Hospital Institute of Clinical ScienceShanghai Institute of Clinical BioinformaticsFudan University Institute of Biomedical ScienceFudan UniversityShanghaiChina
| | - Yong Zhang
- Zhongshan Hospital Institute of Clinical ScienceShanghai Institute of Clinical BioinformaticsFudan University Institute of Biomedical ScienceFudan UniversityShanghaiChina
| | - Duojiao Wu
- Zhongshan Hospital Institute of Clinical ScienceShanghai Institute of Clinical BioinformaticsFudan University Institute of Biomedical ScienceFudan UniversityShanghaiChina
| | - Lihua Shen
- Zhongshan Hospital Institute of Clinical ScienceShanghai Institute of Clinical BioinformaticsFudan University Institute of Biomedical ScienceFudan UniversityShanghaiChina
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical ScienceShanghai Institute of Clinical BioinformaticsFudan University Institute of Biomedical ScienceFudan UniversityShanghaiChina
| |
Collapse
|
16
|
Lv J, Bhatia M, Wang X. Roles of Mitochondrial DNA in Energy Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1038:71-83. [PMID: 29178070 DOI: 10.1007/978-981-10-6674-0_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Mitochondria are independent double-membrane organelles responsible for energy production, specifically by completing oxidative phosphorylation. Mitochondria are essential to regulate energy metabolism, signaling pathways, and cell death. Mitochondrial DNA (mtDNA) can be altered by metabolic disorders, oxidative stress, or inflammation in the progression and development of various diseases. In this chapter, we overview the role of mtDNA in energy metabolism and the diseases that are associated with mtDNA abnormality, with a special focus on the major factors which regulate the mechanism of mtDNA in metabolism.
Collapse
Affiliation(s)
- Jiapei Lv
- Zhongshan Hospital Institute of Fudan University, Shanghai Medical School, Shanghai, China
| | - Madhav Bhatia
- Department of Pathology, University of Otago, Wellington, New Zealand
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China.
| |
Collapse
|
17
|
Metabolic Regulation in Mitochondria and Drug Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1038:149-171. [PMID: 29178075 DOI: 10.1007/978-981-10-6674-0_11] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondria are generally considered as a powerhouse in a cell where the majority of the cellular ATP and metabolite productions occur. Metabolic rewiring and reprogramming may be initiated and regulated by mitochondrial enzymes. The hypothesis that cellular metabolic rewiring and reprogramming processes may occur as cellular microenvironment is disturbed, resulting in alteration of cell phenotype, such as cancer cells resistant to therapeutics seems to be now acceptable. Cancer metabolic reprogramming regulated by mitochondrial enzymes is now one of the hallmarks of cancer. This chapter provides an overview of cancer metabolism and summarizes progress made in mitochondria-mediated metabolic regulation in cancer drug resistance.
Collapse
|
18
|
Clinical trans-omics: an integration of clinical phenomes with molecular multiomics. Cell Biol Toxicol 2018; 34:163-166. [PMID: 29691682 DOI: 10.1007/s10565-018-9431-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
|
19
|
Wang, DC, Wang, W, Zhu, B, Wang X. Lung Cancer Heterogeneity and New Strategies for Drug Therapy. Annu Rev Pharmacol Toxicol 2018; 58:531-546. [PMID: 28977762 DOI: 10.1146/annurev-pharmtox-010716-104523] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Diane C. Wang,
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Shanghai 200032, China
| | - William Wang,
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Shanghai 200032, China
| | - Bijun Zhu,
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Shanghai 200032, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Shanghai 200032, China
| |
Collapse
|
20
|
Zhuge W, Yan F, Zhu Z, Wang X. The Significance of Single-Cell Biomedicine in Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:187-195. [PMID: 29943306 DOI: 10.1007/978-981-13-0502-3_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Clinical application of stem cells (SCs) progresses significantly in the treatment of a large number of diseases, e.g. leukemia, respiratory diseases, kidney disease, cerebral palsy, autism, or autoimmune diseases. Of those, the population, biological phenotypes, and functions of individual SCs are mainly concerned, due to the lack of cell separation and purification processes. The single-cell technology, including microfluidic technology and single-cell genome amplification technology, is widely used to study SCs and gains some recognitions. The present review will address the importance of single-cell technologies in the recognition and heterogeneity of SCs and highlight the significance of current single-cell approaches in the understanding of SC phenotypes. We also discuss the values of single-cell studies to overcome the bottleneck in explore of biological mechanisms and reveal the therapeutic potentials of SCs in diseases, especially tumor-related diseases, as new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Weishan Zhuge
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical School, Shanghai, China
| | - Furong Yan
- Department of Respiratory Pulmonary and Critical Care Medicine, The Second Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Zhitu Zhu
- The First Hospital of Jinzhou Medical University, JinZhou, Liaoning Province, China.
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical School, Shanghai, China.
| |
Collapse
|
21
|
Zeng Y, Chen X, Wang X. Roles of Single Cell Systems Biomedicine in Lung Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:177-185. [PMID: 29943305 DOI: 10.1007/978-981-13-0502-3_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Single cell sequencing is important to detect the gene heterogeneity between cells, as the part of single-cell systems biology which combines computational science, mathematical modelling and high-throughput technologies with biological function and organization in the cell. We initially arise the question how to integrate the outcomes of single-cell systems biology with clinical phenotype, interpret alterations of single-cell gene sequencing and function in patient response to therapies, and understand the significance of single-cell systems biology in the discovery and development of new molecular diagnostics and therapeutics. The present review furthermore focuses the significance of singe cell systems biology in respiratory diseases and calls the special attention from scientists who are working on single cell systems biology to improve the diagnosis and therapy for patients with lung diseases.
Collapse
Affiliation(s)
- Yiming Zeng
- Department of Respiratory Pulmonary and Critical Care Medicine, The Second Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| | - Xiaoyang Chen
- Department of Respiratory Pulmonary and Critical Care Medicine, The Second Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xiangdong Wang
- Department of Respiratory Pulmonary and Critical Care Medicine, The Second Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
22
|
Can the Single Cell Make Biomedicine Different? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:1-6. [PMID: 29943291 DOI: 10.1007/978-981-13-0502-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The single-cell as the basic unit of biological organs and tissues has recently been considered an important window to furthermore understand molecular mechanisms of organ function and biology. The current issue with a special focus on single cell biomedicine is the first effort to collect the evidence of disease-associated single cell research, define the significance of single cell biomedicine in the pathogenesis of diseases, value the correlation of single cell gene sequencing with disease-specific biomarkers, and monitor the dynamics of RNA processes and responses to microenvironmental changes and drug resistances.
Collapse
|
23
|
Liu X, Chen Z. The pathophysiological role of mitochondrial oxidative stress in lung diseases. J Transl Med 2017; 15:207. [PMID: 29029603 PMCID: PMC5640915 DOI: 10.1186/s12967-017-1306-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/30/2017] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are critically involved in reactive oxygen species (ROS)-dependent lung diseases, such as lung fibrosis, asbestos, chronic airway diseases and lung cancer. Mitochondrial DNA (mtDNA) encodes mitochondrial proteins and is more sensitive to oxidants than nuclear DNA. Damage to mtDNA causes mitochondrial dysfunction, including electron transport chain impairment and mitochondrial membrane potential loss. Furthermore, damaged mtDNA also acts as a damage-associated molecular pattern (DAMP) that drives inflammatory and immune responses. In this review, crosstalk among alveolar epithelial cells, alveolar macrophages and mitochondria is examined. ROS-related transcription factors and downstream cell signaling pathways are also discussed. We conclude that targeting oxidative stress with antioxidant agents, such as thiol molecules, polyphenols and superoxide dismutase (SOD), and promoting mitochondrial biogenesis should be considered as novel strategies for treating lung diseases that currently have no effective treatment options.
Collapse
Affiliation(s)
- Xiaojing Liu
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Diseases, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.,Geriatric Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No 600 Yishan Road, Shanghai, China
| | - Zhihong Chen
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Diseases, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
24
|
Qian M, Fang X, Wang X. Autophagy and inflammation. Clin Transl Med 2017; 6:24. [PMID: 28748360 PMCID: PMC5529308 DOI: 10.1186/s40169-017-0154-5] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/18/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a homeostatic mechanism involved in the disposal of damaged organelles, denatured proteins as well as invaded pathogens through a lysosomal degradation pathway. Recently, increasing evidences have demonstrated its role in both innate and adaptive immunity, and thereby influence the pathogenesis of inflammatory diseases. The detection of autophagy machinery facilitated the measurement of autophagy during physiological and pathophysiological processes. Autophagy plays critical roles in inflammation through influencing the development, homeostasis and survival of inflammatory cells, including macrophages, neutrophils and lymphocytes; effecting the transcription, processing and secretion of a number of cytokines, as well as being regulated by cytokines. Recently, autophagy-dependent mechanisms have been studied in the pathogenesis of several inflammatory diseases, including infectious diseases, Crohn’s disease, cystic fibrosis, pulmonary hypertension, chronic obstructive pulmonary diseases and so on. These studies suggested that modulation of autophagy might lead to therapeutic interventions for diseases associated with inflammation. Here we highlight recent advances in investigating the roles of autophagy in inflammation as well as inflammatory diseases.
Collapse
Affiliation(s)
- Mengjia Qian
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Fudan University Medical School, Shanghai, China
| | - Xiaocong Fang
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Fudan University Medical School, Shanghai, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Fudan University Medical School, Shanghai, China.
| |
Collapse
|
25
|
Wang W, Gao D, Wang X. Can single-cell RNA sequencing crack the mystery of cells? Cell Biol Toxicol 2017; 34:1-6. [DOI: 10.1007/s10565-017-9404-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/28/2017] [Indexed: 12/15/2022]
|
26
|
Wang W, Wang X. Single-cell CRISPR screening in drug resistance. Cell Biol Toxicol 2017; 33:207-210. [PMID: 28474250 DOI: 10.1007/s10565-017-9396-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/25/2017] [Indexed: 12/28/2022]
Affiliation(s)
- William Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University; Shanghai Institute of Clinical Bioinformatics, Shanghai, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University; Shanghai Institute of Clinical Bioinformatics, Shanghai, China.
| |
Collapse
|
27
|
Wang L, Zhu B, Zhang M, Wang X. Roles of immune microenvironment heterogeneity in therapy-associated biomarkers in lung cancer. Semin Cell Dev Biol 2017; 64:90-97. [DOI: 10.1016/j.semcdb.2016.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022]
|
28
|
Zhu HX, Shi L, Zhang Y, Zhu YC, Bai CX, Wang XD, Zhou JB. Myocyte enhancer factor 2D provides a cross-talk between chronic inflammation and lung cancer. J Transl Med 2017; 15:65. [PMID: 28340574 PMCID: PMC5366127 DOI: 10.1186/s12967-017-1168-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/19/2017] [Indexed: 01/11/2023] Open
Abstract
Background Lung cancer is the leading cause of cancer-related morbidity and mortality worldwide. Patients with chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD), are exposed to a higher risk of developing lung cancer. Chronic inflammation may play an important role in the lung carcinogenesis among those patients. The present study aimed at identifying candidate biomarker predicting lung cancer risk among patients with chronic respiratory diseases. Methods We applied clinical bioinformatics tools to analyze different gene profile datasets with a special focus on screening the potential biomarker during chronic inflammation-lung cancer transition. Then we adopted an in vitro model based on LPS-challenged A549 cells to validate the biomarker through RNA-sequencing, quantitative real time polymerase chain reaction, and western blot analysis. Results Bioinformatics analyses of the 16 enrolled GSE datasets from Gene Expression Omnibus online database showed myocyte enhancer factor 2D (MEF2D) level significantly increased in COPD patients coexisting non-small-cell lung carcinoma (NSCLC). Inflammation challenge increased MEF2D expression in NSCLC cell line A549, associated with the severity of inflammation. Extracellular signal-regulated protein kinase inhibition could reverse the up-regulation of MEF2D in inflammation-activated A549. MEF2D played a critical role in NSCLC cell bio-behaviors, including proliferation, differentiation, and movement. Conclusions Inflammatory conditions led to increased MEF2D expression, which might further contribute to the development of lung cancer through influencing cancer microenvironment and cell bio-behaviors. MEF2D might be a potential biomarker during chronic inflammation-lung cancer transition, predicting the risk of lung cancer among patients with chronic respiratory diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1168-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hai-Xing Zhu
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Respiratory Research Institute, Shanghai, China
| | - Lin Shi
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yong Zhang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Respiratory Research Institute, Shanghai, China
| | - Yi-Chun Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Chun-Xue Bai
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Respiratory Research Institute, Shanghai, China
| | - Xiang-Dong Wang
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan University Center for Clinical Bioinformatics, Shanghai, China
| | - Jie-Bai Zhou
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China. .,Shanghai Respiratory Research Institute, Shanghai, China.
| |
Collapse
|
29
|
|
30
|
Zhu Z, Wang X. Significance of Mitochondria DNA Mutations in Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1038:219-230. [PMID: 29178079 DOI: 10.1007/978-981-10-6674-0_15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitochondria are essential double-membraned cytoplasmic organelles to support aerobic respiration and produce cellular energy by oxidative phosphorylation (OXPHOS). Mitochondrial functions are controlled by mitochondrial (mtDNA) and nuclear genomes (nDNA). Mutations of mtDNA result in mitochondrial dysfunction and multisystem diseases through compromising OXPHOS function directly by a point mutation or a large-scale mtDNA rearrangement. One or more of OXPHOS complexes are impaired and dysfunctional to affect tissues with high energy demands. mtDNA is more susceptible to oxidative damage and has more mutations than nDNA. Unlike diploid nDNA, mtDNA is a multi-copy genome transmitted and maternally inherited through oocyte. The multi-copy nature of mtDNA easily causes the heteroplasmy as a unique aspect of mtDNA, making mitochondrial diseases more complex and heterogeneous. mtDNA-associated mitochondrial dysfunction plays the important role in the development of multisystemic primary mitochondrial disease, neurodegeneration, and cancer. The present article overviews the occurrence of mtDNA mutation, interactions with other factors, and molecular mechanisms of mtDNA-associated diseases.
Collapse
Affiliation(s)
- Zhenhua Zhu
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China.
| |
Collapse
|
31
|
Epithelial Mitochondrial Dysfunction in Lung Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1038:201-217. [DOI: 10.1007/978-981-10-6674-0_14] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Roles of Mitochondrial DNA Signaling in Immune Responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1038:39-53. [PMID: 29178068 DOI: 10.1007/978-981-10-6674-0_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondrial DNA (mtDNA) plays an important role in immune responses during the evolution. The present chapter systemically describes its role on immune-related diseases and its interaction on immune responses. It is important to explore the main function and mechanisms of mtDNA in immune responses by which mtDNA regulates the signaling pathways of Toll-like receptor 9, autophagy, and STING. There are potentials to discover therapeutic targets of mtDNA in immune diseases and inflammation. It will be more exciting if the CRISPR-Cas9 method can be applied for mtDNA gene editing to cure diseases and provide a novel insight of mtDNA in immune responses as well as new therapies.
Collapse
|
33
|
Abstract
Telocyte (TC) is a new identified interstitial cell type with a small nuclear and one or several long and thin prolongations with enlargements on them. They were found in many mammals including humans, mouse, rats, dogs, and monkeys and play vital roles in many physiological and pathological conditions. The ultrastructure of mitochondria was observed in TCs, and the alterations were found in TCs from inflammatory ureter tissue. MtDNA is associated with mitochondria normal functions and involved in physiological and pathological processes. However, mitochondria and mtDNA in TCs were not investigated deeply. This review will introduce the origin, distribution, morphology, and functions of TCs and the distribution and functions of TC mitochondria in order to improve a better understanding of the potential functions of mtDNA in TCs.
Collapse
|
34
|
Liu F, Sanin DE, Wang X. Mitochondrial DNA in Lung Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1038:9-22. [DOI: 10.1007/978-981-10-6674-0_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
How Far Can Mitochondrial DNA Drive the Disease? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1038:1-8. [DOI: 10.1007/978-981-10-6674-0_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Hou J, Zhang Y, Zhu Z. Gene heterogeneity in metastasis of colorectal cancer to the lung. Semin Cell Dev Biol 2016; 64:58-64. [PMID: 27590223 DOI: 10.1016/j.semcdb.2016.08.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022]
Abstract
Colorectal cancer (CRC) as a heterogeneous disease, is one of the most common and serious cancers with high metastases and mortality. Lung is one of the most common sites of CRC metastases with high heterogeneity between cells, pathways, or molecules. The present review will focus on potential roles of gene heterogeneity in KRAS pathway in the development of CRC metastasis to lung and clinical therapies, which would lead to better understanding of the metastatic control and benefit to the treatment of metastases. KRAS is the central relay for pathways originating at the epidermal growth factor receptor (EGFR) family. KRAS mutation exists in about 40% CRC, associated with higher cumulative incidence of CRC lung metastasis, and acts as an independent predictor of metastasis to lung. Mutations in KRAS can lead to poor response of patients to panitumumab, and inferior progression-free survival. However, most patients with KRAS wild-type tumors still do not respond, which indicates other mutations. Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) mutation was associated with lung metastases in metastatic colorectal cancer. PIK3CA mutation in exon 20 was found to be correlated with patient survival in the metastatic setting after the treatment with cetuximab and chemotherapy. The heterogeneity of KRAS pathway was found in the phosphatase and tensin homologue deleted on chromosome ten loss, disheveled binding antagonist of beta catenin 2 overexpression and increased dual-specificity protein phosphatase 4 expression of CRC lung metastasis.
Collapse
Affiliation(s)
- Jiayun Hou
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Institute of Clinical Bioinformatics, Biomedical Research Center, Shanghai, China
| | - Yong Zhang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Institute of Clinical Bioinformatics, Biomedical Research Center, Shanghai, China.
| | - Zhitu Zhu
- Jinzhou Hospital of Jinzhou Medical University, JinZhou, China.
| |
Collapse
|
37
|
Wang DC, Wang X. Systems heterogeneity: An integrative way to understand cancer heterogeneity. Semin Cell Dev Biol 2016; 64:1-4. [PMID: 27552921 DOI: 10.1016/j.semcdb.2016.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 12/14/2022]
Abstract
The concept of systems heterogeneity was firstly coined and explained in the Special Issue, as a new alternative to understand the importance and complexity of heterogeneity in cancer. Systems heterogeneity can offer a full image of heterogeneity at multi-dimensional functions and multi-omics by integrating gene or protein expression, epigenetics, sequencing, phosphorylation, transcription, pathway, or interaction. The Special Issue starts with the roles of epigenetics in the initiation and development of cancer heterogeneity through the interaction between permanent genetic mutations and dynamic epigenetic alterations. Cell heterogeneity was defined as the difference in biological function and phenotypes between cells in the same organ/tissue or in different organs, as well as various challenges, as exampled in telocytes. The single cell heterogeneity has the value of identifying diagnostic biomarkers and therapeutic targets and clinical potential of single cell systems heterogeneity in clinical oncology. A number of signaling pathways and factors contribute to the development of systems heterogeneity. Proteomic heterogeneity can change the strategy and thinking of drug discovery and development by understanding the interactions between proteins or proteins with drugs in order to optimize drug efficacy and safety. The association of cancer heterogeneity with cancer cell evolution and metastasis was also overviewed as a new alternative for diagnostic biomarkers and therapeutic targets in clinical application.
Collapse
Affiliation(s)
- Diane Catherine Wang
- Minghang Hospital of Fudan University, Shanghai Medical College, Shanghai, China
| | - Xiangdong Wang
- Minghang Hospital of Fudan University, Shanghai Medical College, Shanghai, China.
| |
Collapse
|