1
|
Dilmac S, Hamurcu Z, Ozpolat B. Therapeutic Landscape of FOXM1 in Triple-Negative Breast Cancer and Aggressive Solid Cancers. Cancers (Basel) 2024; 16:3823. [PMID: 39594778 PMCID: PMC11593102 DOI: 10.3390/cancers16223823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive forms of breast cancer, lacking common treatment targets such as estrogen (ER), progesterone (PR), and HER2 receptors. This subtype is associated with significant heterogeneity, chemoresistance, early recurrence, metastasis, and poor patient survival. FOXM1 is a cancer-promoting transcription factor that plays a critical role in TNBC and other highly aggressive cancers by driving cell proliferation, invasion, metastasis, and drug resistance. In TNBC, mutations in the TP53 gene-detected in approximately 80% of patients-lead to the overexpression of FOXM1, making it a promising therapeutic target. Beyond TNBC, FOXM1 is implicated in other solid cancers, such as brain (glioblastoma), lung, and pancreatic cancers, and is considered an Achilles' heel of aggressive cancers. Despite its potential as a therapeutic target, there are currently no FDA-approved FOXM1 inhibitors, and none have advanced to clinical trials. This review explores the role of FOXM1 in cancer progression and highlights the current status of efforts to develop effective FOXM1 inhibitors.
Collapse
Affiliation(s)
- Sayra Dilmac
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Zuhal Hamurcu
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri 38030, Turkey;
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA;
| |
Collapse
|
2
|
Zhang T, Pan W, Tan X, Yu J, Cheng S, Wei S, Fan K, Wang L, Luo H, Hu X. A novel L-shaped ortho-quinone analog suppresses glioblastoma progression by targeting acceleration of AR degradation and regulating PI3K/AKT pathway. Biochem Pharmacol 2024; 226:116398. [PMID: 38944395 DOI: 10.1016/j.bcp.2024.116398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Glioblastoma (GBM) is a primary intracranial malignant tumor with the highest mortality and morbidity among all malignant central nervous system tumors. Tanshinone IIA is a fat-soluble active ingredient obtained from Salvia miltiorrhiza, which has an inhibitory effect against various cancers. We designed and synthesized a novel L-shaped ortho-quinone analog TE5 with tanshinone IIA as the lead compound and tested its antitumor activity against GBM. The results indicated that TE5 effectively inhibited the proliferation, migration, and invasion of GBM cells, and demonstrated low toxicity in vitro. We found that TE5 may bind to androgen receptors and promote their degradation through the proteasome. Inhibition of the PI3K/AKT signaling pathway was also observed in TE5 treated GBM cells. Additionally, TE5 arrested the cell cycle at the G2/M phase and induced mitochondria-dependent apoptosis. In vivo experiments further confirmed the anti-tumor activity, safety, and effect on androgen receptor level of TE5 in animal models of GBM. Our results suggest that TE5 may be a potential therapeutic drug to treat GBM.
Collapse
Affiliation(s)
- Tao Zhang
- GuiZhou University Medical College, Guiyang 550025, Guizhou Province, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou Province, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China; Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou Province, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China
| | - Xin Tan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou Province, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou Province, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou Province, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China
| | - Shinan Wei
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou Province, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China
| | - Kuan Fan
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China
| | - Lu Wang
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou Province, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China.
| | - Xiao Hu
- GuiZhou University Medical College, Guiyang 550025, Guizhou Province, China; Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China.
| |
Collapse
|
3
|
Misbah M, Kumar M, Najmi AK, Akhtar M. Identification of expression profiles and prognostic value of RFCs in colorectal cancer. Sci Rep 2024; 14:6607. [PMID: 38504096 PMCID: PMC10951252 DOI: 10.1038/s41598-024-56361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Abstract
Colorectal cancer (CRC) ranks among the most prevalent cancers globally, with its incidence closely tied to DNA damage. The Replication Factor C (RFC) complexes comprises five protein subunits: RFC1, RFC2, RFC3, RFC4, and RFC5. These RFC complexes play crucial roles in DNA replication, repair pathways, activities post DNA damage, and ATP-dependent processes during DNA synthesis. However, the impact of RFC complexes proteins on CRC prognosis remains unclear. To explore this, we employed a computational analysis approach, utilizing platforms such as the DepMap portal, GEPIA, DAVID Bioinformatics for KEGG pathway analysis, Human Protein Atlas (HPA), STRING, and TIMER. Our results indicate that the mRNA levels of RFC1 and RFC5 were the least expressed among CRC cell lines compared to other RFC complex subunits. Notably, low RFC1 and RFC5 expression was correlated with poor prognosis in terms of CRC patients' overall survival (OS). Immunohistochemical results from the Human Protein Atlas demonstrated medium staining for RFC1, RFC2, and RFC5 in CRC tissues. Furthermore, the low expression of RFC1 and RFC5 showed a significant correlation with high expression levels of miR-26a-5p and miR-636, impacting cell proliferation through mismatch repair, DNA replication, and the nucleotide excision repair pathway. Although the precise functions of RFC1 in cancer are still unknown, our findings suggest that the small-molecule single target, CHEMBL430483, and multiple target molecules could be potential treatments for CRC. In conclusion, the elevated expression of miR-26a-5p and miR-636 targeting RFC1 and RFC5 expression holds promise as a potential biomarker for early-stage CRC detection. These insights provide novel directions and strategies for CRC therapies.
Collapse
Affiliation(s)
- Md Misbah
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
- Bioinformatics Infrastructure Facility, Jamia Hamdard, New Delhi, India.
- Kusumraj Institute of Pharmacy, Bikram, Patna, Bihar, India, 801104.
| | - Manoj Kumar
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mymoona Akhtar
- Bioinformatics Infrastructure Facility, Jamia Hamdard, New Delhi, India.
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
4
|
Merjaneh N, Hajjar M, Lan YW, Kalinichenko VV, Kalin TV. The Promise of Combination Therapies with FOXM1 Inhibitors for Cancer Treatment. Cancers (Basel) 2024; 16:756. [PMID: 38398147 PMCID: PMC10886945 DOI: 10.3390/cancers16040756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Forkhead box M1 (FOXM1) is a transcription factor in the forkhead (FOX) family, which is required for cellular proliferation in normal and neoplastic cells. FOXM1 is highly expressed in many different cancers, and its expression is associated with a higher tumor stage and worse patient-related outcomes. Abnormally high expression of FOXM1 in cancers compared to normal tissue makes FOXM1 an attractive target for pharmacological inhibition. FOXM1-inhibiting agents and specific FOXM1-targeted small-molecule inhibitors have been developed in the lab and some of them have shown promising efficacy and safety profiles in mouse models. While the future goal is to translate FOXM1 inhibitors to clinical trials, potential synergistic drug combinations can maximize anti-tumor efficacy while minimizing off-target side effects. Hence, we discuss the rationale and efficacy of all previously studied drug combinations with FOXM1 inhibitors for cancer therapies.
Collapse
Affiliation(s)
- Nawal Merjaneh
- Center for Cancer and Blood Disorders, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Department of Child Health, Division of Hematology and Oncology, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Mona Hajjar
- The Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA;
| | - Ying-Wei Lan
- Phoenix Children’s Research Institute, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (Y.-W.L.)
| | - Vladimir V. Kalinichenko
- Phoenix Children’s Research Institute, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (Y.-W.L.)
- Division of Neonatology, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Tanya V. Kalin
- Center for Cancer and Blood Disorders, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Department of Child Health, Division of Hematology and Oncology, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- Phoenix Children’s Research Institute, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (Y.-W.L.)
| |
Collapse
|
5
|
Tabnak P, Hasanzade Bashkandi A, Ebrahimnezhad M, Soleimani M. Forkhead box transcription factors (FOXOs and FOXM1) in glioma: from molecular mechanisms to therapeutics. Cancer Cell Int 2023; 23:238. [PMID: 37821870 PMCID: PMC10568859 DOI: 10.1186/s12935-023-03090-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
Glioma is the most aggressive and malignant type of primary brain tumor, comprises the majority of central nervous system deaths, and is categorized into different subgroups according to its histological characteristics, including astrocytomas, oligodendrogliomas, glioblastoma multiforme (GBM), and mixed tumors. The forkhead box (FOX) transcription factors comprise a collection of proteins that play various roles in numerous complex molecular cascades and have been discovered to be differentially expressed in distinct glioma subtypes. FOXM1 and FOXOs have been recognized as crucial transcription factors in tumor cells, including glioma cells. Accumulating data indicates that FOXM1 acts as an oncogene in various types of cancers, and a significant part of studies has investigated its function in glioma. Although recent studies considered FOXO subgroups as tumor suppressors, there are pieces of evidence that they may have an oncogenic role. This review will discuss the subtle functions of FOXOs and FOXM1 in gliomas, dissecting their regulatory network with other proteins, microRNAs and their role in glioma progression, including stem cell differentiation and therapy resistance/sensitivity, alongside highlighting recent pharmacological progress for modulating their expression.
Collapse
Affiliation(s)
- Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Mohammad Ebrahimnezhad
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Soleimani
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Song J, Tang Y, Song F. Lnc‑RGS5 sponges miR‑542‑5p to promote FoxM1/VEGFA signaling and breast cancer cell proliferation. Int J Oncol 2023; 63:111. [PMID: 37594134 PMCID: PMC10552728 DOI: 10.3892/ijo.2023.5559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023] Open
Abstract
Breast cancer (BRCA) exhibits a high incidence rate among women worldwide. LOC127814295 (ENSG00000232995), termed long non‑coding (lnc)‑regulator of G protein signaling 5 (RGS5), is a novel lncRNA with a genomic region overlapping with protein‑coding gene RGS5. Results obtained using The Cancer Genome Atlas demonstrated that lnc‑RGS5 was deregulated in diverse cancer types, including BRCA; however, the functional role of lnc‑RGS5 remains unclear. Results of the present study demonstrated that lnc‑RGS5 was upregulated in BRCA tissues compared with healthy samples (n=30; P<0.0001), and was associated with the overall survival of patients with triple‑negative BRCA (n=106; P<0.05). Moreover, lnc‑RGS5 expression was significantly higher in triple‑negative BRCA samples than in LumA, LumB, or Her2 subtypes (P<0.05). Functionally, lnc‑RGS5 upregulation promoted BRCA cell proliferation in vitro, whereas lnc‑RGS5 knockdown elicited the opposite function. Stable knockdown of lnc‑RGS5 inhibited tumor cell proliferation in vivo. Bioinformatics analysis revealed that lnc‑RGS5 was significantly associated with RNA binding involved in post‑transcriptional gene silencing (P=0.002). Mechanistically, lnc‑RGS5 functions as a competing endogenous RNA via competitively sponging miR‑542‑5p to upregulate forkhead box M1 (FoxM1) and the VEGFA/Neuropilin 1 axis; thus, promoting BRCA cell proliferation in vitro. Moreover, rescue experiments validated that the lnc‑RGS5/miR‑542‑5p/FoxM1 axis promoted BRCA cell growth in vivo. Collectively, results of the present study demonstrated that lnc‑RGS5 may exhibit potential as a novel oncogenic lncRNA in BRCA. The present study may provide a novel theoretical basis for the role of lncRNA in the targeted therapy of BRCA.
Collapse
Affiliation(s)
| | | | - Fangzhou Song
- Molecular and Tumor Research Center, The Basic Medical School of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
7
|
Xu W, Liu L, Cui Z, Li M, Ni J, Huang N, Zhang Y, Luo J, Sun L, Sun F. Identification of key enzalutamide-resistance-related genes in castration-resistant prostate cancer and verification of RAD51 functions. Open Med (Wars) 2023; 18:20230715. [PMID: 37251536 PMCID: PMC10224628 DOI: 10.1515/med-2023-0715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/16/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Patients with castration-resistant prostate cancer (CRPC) often develop drug resistance after treatment with enzalutamide. The goal of our study was to identify the key genes related to enzalutamide resistance in CRPC and to provide new gene targets for future research on improving the efficacy of enzalutamide. Differential expression genes (DEGs) associated with enzalutamide were obtained from the GSE151083 and GSE150807 datasets. We used R software, the DAVID database, protein-protein interaction networks, the Cytoscape program, and Gene Set Cancer Analysis for data analysis. The effect of RAD51 knockdown on prostate cancer (PCa) cell lines was demonstrated using Cell Counting Kit-8, clone formation, and transwell migration experiments. Six hub genes with prognostic values were screened (RAD51, BLM, DTL, RFC2, APOE, and EXO1), which were significantly associated with immune cell infiltration in PCa. High RAD51, BLM, EXO1, and RFC2 expression was associated with androgen receptor signaling pathway activation. Except for APOE, high expression of hub genes showed a significant negative correlation with the IC50 of Navitoclax and NPK76-II-72-1. RAD51 knockdown inhibited the proliferation and migration of PC3 and DU145 cell lines and promoted apoptosis. Additionally, 22Rv1 cell proliferation was more significantly inhibited with RAD51 knockdown than without RAD51 knockdown under enzalutamide treatment. Overall, six key genes associated with enzalutamide resistance were screened (RAD51, BLM, DTL, RFC2, APOE, and EXO1), which are potential therapeutic targets for enzalutamide-resistant PCa in the future.
Collapse
Affiliation(s)
- Wen Xu
- Shanghai Clinical College, Anhui Medical University, Shanghai, 200072, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Li Liu
- Department of Clinical Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Zhongqi Cui
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Mingyang Li
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jinliang Ni
- Shanghai Clinical College, Anhui Medical University, Shanghai, 200072, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Nan Huang
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Yue Zhang
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Jie Luo
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Limei Sun
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Fenyong Sun
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
- Shanghai Clinical College, Anhui Medical University, No. 301, Yanchang Middle Road, Jingan District, Shanghai, 200072, China
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, No. 301, Yanchang Middle Road, Jingan District, 200072, Shanghai, China
| |
Collapse
|
8
|
Chen H, Xie H, Zhang Y, Wang G. Construction of a prognostic signature of RFC5 immune-related genes in patients with cervical cancer. Cancer Biomark 2023:CBM220347. [PMID: 37302025 DOI: 10.3233/cbm-220347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cervical cancer (CC) is a malignant tumor threatening women's health. Replication factor C (RFC) 5 is significantly highly expressed in CC tissues, and the immune microenvironment plays a crucial role in tumor initiation, progression, and metastasis. OBJECTIVE To determine the prognostic role of RFC5 in CC, analyze the immune genes significantly associated with RFC5, and establish a nomogram to evaluate the prognosis of patients with CC. METHODS High RFC5 expression in patients with CC was analyzed and verified through TCGA GEO, TIMER2.0, and HPA databases. A risk score model was constructed using RFC5-related immune genes identified using R packages. Combining the risk score model and clinical information of patients with CC, a nomogram was constructed to evaluate the prognosis of patients with CC. RESULTS Comprehensive analysis showed that the risk score was a prognostic factor for CC. The nomogram could predict the 3-year overall survival of patients with CC. CONCLUSIONS RFC5 was validated as a biomarker for CC. The RFC5 related immune genes were used to establish a new prognostic model of CC.
Collapse
Affiliation(s)
- Huaqiu Chen
- School of Clinical Medicine, Dali University, Dali, Yunnan, China
- Xichang People's Hospital, Xichang, Sichuan, China
- Affiliated Hospital of Xichang College, Xichang, Sichuan, China
| | - Huanyu Xie
- Xichang People's Hospital, Xichang, Sichuan, China
- Affiliated Hospital of Xichang College, Xichang, Sichuan, China
| | - Yuanyuan Zhang
- School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Guangming Wang
- School of Clinical Medicine, Dali University, Dali, Yunnan, China
| |
Collapse
|
9
|
Huang RH, Hong YK, Du H, Ke WQ, Lin BB, Li YL. A machine learning framework develops a DNA replication stress model for predicting clinical outcomes and therapeutic vulnerability in primary prostate cancer. J Transl Med 2023; 21:20. [PMID: 36635710 PMCID: PMC9835390 DOI: 10.1186/s12967-023-03872-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023] Open
Abstract
Recent studies have identified DNA replication stress as an important feature of advanced prostate cancer (PCa). The identification of biomarkers for DNA replication stress could therefore facilitate risk stratification and help inform treatment options for PCa. Here, we designed a robust machine learning-based framework to comprehensively explore the impact of DNA replication stress on prognosis and treatment in 5 PCa bulk transcriptomic cohorts with a total of 905 patients. Bootstrap resampling-based univariate Cox regression and Boruta algorithm were applied to select a subset of DNA replication stress genes that were more clinically relevant. Next, we benchmarked 7 survival-related machine-learning algorithms for PCa recurrence using nested cross-validation. Multi-omic and drug sensitivity data were also utilized to characterize PCa with various DNA replication stress. We found that the hyperparameter-tuned eXtreme Gradient Boosting model outperformed other tuned models and was therefore used to establish a robust replication stress signature (RSS). RSS demonstrated superior performance over most clinical features and other PCa signatures in predicting PCa recurrence across cohorts. Lower RSS was characterized by enriched metabolism pathways, high androgen activity, and a favorable prognosis. In contrast, higher RSS was significantly associated with TP53, RB1, and PTEN deletion, exhibited increased proliferation and DNA replication stress, and was more immune-suppressive with a higher chance of immunotherapy response. In silico screening identified 13 potential targets (e.g. TOP2A, CDK9, and RRM2) from 2249 druggable targets, and 2 therapeutic agents (irinotecan and topotecan) for RSS-high patients. Additionally, RSS-high patients were more responsive to taxane-based chemotherapy and Poly (ADP-ribose) polymerase inhibitors, whereas RSS-low patients were more sensitive to androgen deprivation therapy. In conclusion, a robust machine-learning framework was used to reveal the great potential of RSS for personalized risk stratification and therapeutic implications in PCa.
Collapse
Affiliation(s)
- Rong-Hua Huang
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Ying-Kai Hong
- Department of Urology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China
| | - Heng Du
- Department of Secretion, Baoji Central Hospital, Baoji, 721008, Shaanxi, China
| | - Wei-Qi Ke
- Department of Anesthesiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China
| | - Bing-Biao Lin
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, Guangdong, China.
| | - Ya-Lan Li
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
10
|
Wu G, Zhou J, Zhu X, Tang X, Liu J, Zhou Q, Chen Z, Liu T, Wang W, Xiao X, Wu T. Integrative analysis of expression, prognostic significance and immune infiltration of RFC family genes in human sarcoma. Aging (Albany NY) 2022; 14:3705-3719. [PMID: 35483337 PMCID: PMC9085243 DOI: 10.18632/aging.204039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022]
Abstract
Objective: To reveal the expression and prognostic value of replication factor C family genes (RFCs) in patients with sarcoma. Results: The results showed that the mRNA expression levels of RFC2, RFC3, RFC4, and RFC5 were increased in sarcoma tissues. In addition, Cancer Cell Line Encyclopedia (CCLE) dataset analysis indicated that RFC1, RFC2, RFC3, RFC4, and RFC5 were elevated expressed in sarcoma cell lines. Moreover, Gene Expression Profiling Interactive Analysis (GEPIA) and Kaplan-Meier Plotter showed that highly expressed RFC2-5 were associated with poor overall survival (OS) or relapse-free survival (RFS) in sarcoma patients. The results of the Tumor Immune Estimation Resource (TIMER) database indicated that the expression of RFCs was negatively correlated with the infiltration of CD4+ T cells and macrophages. Conclusions: There were significant differences in the expression of RFCs between normal tissue and sarcoma tissue, and RFC2, RFC3, RFC4, and RFC5 might be promising prognostic biomarkers for sarcoma. Methods: The expression of RFCs was analyzed using the ONCOMINE dataset and GEPIA dataset. CCLE dataset was used to assess the expression of RFCs in the cancer cell line. The prognostic value of RFCs was evaluated by GEPIA and Kaplan-Meier analysis. Furthermore, the association between RFCs and their co-expressed genes were explored via ONCOMINE and GEPIA datasets. We used the TIMER dataset to analyze the immune cell infiltration of RFCs in sarcoma.
Collapse
Affiliation(s)
- Gen Wu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.,Clinical Medicine Eight-Year Program, 02 Class, 2014 Grade, Central South University, Changsha 410013, Hunan Province, China
| | - Jian Zhou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xi Zhu
- Department of Internal Medicine III, University Hospital, Ludwig Maximilian University, Munich 81377, Germany
| | - Xianzhe Tang
- Department of Orthopedics, Chenzhou No.1 People's Hospital, Chenzhou 423000, Hunan, China
| | - Jie Liu
- Department of Cardiology, The Fourth Hospital of Changsha, Changsha 410006, Hunan, China
| | - Qiong Zhou
- Department of Cardiology, The Fourth Hospital of Changsha, Changsha 410006, Hunan, China
| | - Ziyuan Chen
- Department of Orthopedics, The First People's Hospital of Changde City, Changde 415003, Hunan, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xungang Xiao
- Department of Orthopedics, Chenzhou No.1 People's Hospital, Chenzhou 423000, Hunan, China
| | - Tong Wu
- Department of Emergency, The First Hospital of Changsha, Changsha 410005, Hunan, China
| |
Collapse
|
11
|
RFC2: a prognosis biomarker correlated with the immune signature in diffuse lower-grade gliomas. Sci Rep 2022; 12:3122. [PMID: 35210438 PMCID: PMC8873322 DOI: 10.1038/s41598-022-06197-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/24/2022] [Indexed: 11/08/2022] Open
Abstract
Diffuse lower-grade gliomas (LGG) represent the highly heterogeneous and infiltrative neoplasms in the central nervous system (CNS). Replication factor C 2 (RFC2) is a subunit of the RFC complex that modulates DNA replication and repair. However, the prognosis value of RFC2 and its association with the immune signature of tumor microenvironment (TME) in LGG remains unknown. Based on Oncomine, TCGA, GTEx, TIMER, GEPIA, and HPA databases, we evaluated RFC2 expression levels and its clinical prognostic value in LGG and other cancers. Then we analyzed the correlations between RFC2 expression and tumor mutation burden (TMB), tumor microsatellite instability (MSI), and mismatch repair (MMR) genes across cancers. And CIBERSORT and ESTIMATE algorithms were conducted to estimate the association of RFC2 with immune cell infiltration of LGG. Additionally, we performed the functional enrichment analyses of RFC2 in LGG. Then functional experiments were employed to further validate the oncogenic role of RFC2 in LGG. Our results showed that RFC2 was widely highly expressed in most types of cancer. And its expression was closely related to the clinicopathological features and prognosis in LGG and other cancer types. RFC2 levels were also correlated with TMB and MSI across various cancers. Furthermore, RFC2 was positively associated with the infiltration levels of immune cells and immune checkpoint genes in LGG. Additionally, in vitro experiments revealed that RFC2 played an oncogenic role in LGG progression. In conclusion, our findings revealed that RFC2 could serve as a reliable biomarker to predict the prognosis and immune signature for LGG.
Collapse
|
12
|
Bailly C. The bacterial thiopeptide thiostrepton. An update of its mode of action, pharmacological properties and applications. Eur J Pharmacol 2022; 914:174661. [PMID: 34863996 DOI: 10.1016/j.ejphar.2021.174661] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022]
Abstract
The bacterial thiopeptide thiostrepton (TS) is used as a veterinary medicine to treat bacterial infections. TS is a protein translation inhibitor, essentially active against Gram-positive bacteria and some Gram-negative bacteria. In procaryotes, TS abrogates binding of GTPase elongation factors to the 70S ribosome, by altering the structure of rRNA-L11 protein complexes. TS exerts also antimalarial effects by disrupting protein synthesis in the apicoplast genome of Plasmodium falciparum. Interestingly, the drug targets both the infectious pathogen (bacteria or parasite) and host cell, by inducing endoplasmic reticulum stress-mediated autophagy which contributes to enhance the host cell defense. In addition, TS has been characterized as a potent chemical inhibitor of the oncogenic transcription factor FoxM1, frequently overexpressed in cancers or other diseases. The capacity of TS to crosslink FoxM1, and a few other proteins such as peroxiredoxin 3 (PRX3) and the 19S proteasome, contributes to the anticancer effects of the thiopeptide. The anticancer activities of TS evidenced using diverse tumor cell lines, in vivo models and drug combinations are reviewed here, together with the implicated targets and mechanisms. The difficulty to formulate TS is a drag on the pharmaceutical development of the natural product. However, the design of hemisynthetic analogues and the use of micellar drug delivery systems should facilitate a broader utilization of the compound in human and veterinary medicines. This review shed light on the many pharmacological properties of TS, with the objective to promote its use as a pharmacological tool and medicinal product.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille, Wasquehal, 59290, France.
| |
Collapse
|
13
|
Zhang Y, Liu D, Li F, Zhao Z, Liu X, Gao D, Zhang Y, Li H. Identification of biomarkers for acute leukemia via machine learning-based stemness index. Gene 2021; 804:145903. [PMID: 34411647 DOI: 10.1016/j.gene.2021.145903] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/20/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022]
Abstract
Traditional methods to understand leukemia stem cell (LSC)'s biological characteristics include constructing LSC-like cells and mouse models by transgenic or knock-in methods. However, there are some potential pitfalls in using this method, such as retroviral insertion mutagenesis, non-physiological level gene expression, non-physiological expansion, and difficulty to construct. The mRNAsi index for each sample of the Cancer Genome Atlas (TCGA) could avoid these potential pitfalls by machine learning. In this work, we aimed to construct a network of LSC genes utilizing the mRNAsi. First, mRNAsi value was analyzed with expressions distributions, survival analysis, age, and gender in acute myeloid leukemia (AML) samples. Then, we used the weighted gene co-expression network analysis (WGCNA) to construct modules of stemness genes. The correlation of the LSC genes transcription and interplay among LSC proteins was analyzed. We performed functional and pathway enrichment analysis to annotate stemness genes. Survival analysis further identified prognostic biomarkers by clinical data of TCGA and the Gene Expression Omnibus (GEO) database. We found that the result of mRNAsi overall survival is not significant, which may be due to the heterogeneity of AML in the stage of myeloid differentiation, French-American-British (FAB) classification systems. Enrichment analysis indicated that the stemness genes were biologically clustered as a group and mainly associated with cell cycle and mitosis. Moreover, 10 key genes (SNRNP40, RFC4, RFC5, CDC6, HSPE1, PA2G4, SNAP23P, DARS2, MIS18A, and HPRT1) were screened by survival analysis with the data from TCGA and GEO. Among them, RFC4 and RFC5 were the distinguished biomarkers for their double-validated prognostic value in both databases. Additionally, the expression of RFC4 and RFC5 had the same trend as mRNAsi score in FAB subtypes. In conclusion, our result demonstrated that mRNAsi based LSC-related genes were found to have strong interactions as a cluster. These genes, especially RFC4 and RFC5, could be the therapeutic targets for inhibiting the stemness characteristics of AML. This work is also a comprehensive pipeline for future cancer stem cell studies.
Collapse
Affiliation(s)
- Yitong Zhang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Dongzhe Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China; Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Xueyuan AVE 1098, Shenzhen 518000, China
| | - Fenglan Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Zihui Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Xiqing Liu
- The State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Dixiang Gao
- School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Yutong Zhang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Hui Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
14
|
USP21 regulates Hippo signaling to promote radioresistance by deubiquitinating FOXM1 in cervical cancer. Hum Cell 2021; 35:333-347. [PMID: 34825342 DOI: 10.1007/s13577-021-00650-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
The ectopic expression of ubiquitin-specific peptidase 21 (USP21) is common in different types of cancer. However, its relationship with radio-sensitivity in cervical cancer (CC) remains unclear. In this study, we aimed to uncover the effect of USP21 on CC radio-resistance and its underlying mechanism. Our results showed that the expression of USP21 was markedly increased in CC tissues of radio-resistant patients and CC cells treated with radiation. Besides, knockdown of USP21 restrained the survival fractions, and facilitated apoptosis of CC cells in the absence or presence of radiation. Additionally, USP21 in combination with FOXM1 regulated the stability and ubiquitination of FOXM1. However, FOXM1 reversed the effects of USP21 knockdown on the radio-resistance of CC cells. Furthermore, FOXM1 knockdown activated the Hippo pathway by inhibiting the nuclear translocation of Yes-associated protein 1 (YAP1), and FOXM1 knockdown attenuated the radio-resistance of CC cells via inhibiting the Hippo-YAP1 pathway. USP21 activated the Hippo pathway by mediating FOXM1. Knockdown of USP21 enhanced the radio-sensitivity of CC cells in vivo. In summary, USP21 contributed to the radio-resistance of CC cells via FOXM1/Hippo signaling, and may serve as a promising target for radio-sensitizers in the radiotherapy of CC.
Collapse
|
15
|
Su X, Yang Y, Yang Q, Pang B, Sun S, Wang Y, Qiao Q, Guo C, Liu H, Pang Q. NOX4-derived ROS-induced overexpression of FOXM1 regulates aerobic glycolysis in glioblastoma. BMC Cancer 2021; 21:1181. [PMID: 34740322 PMCID: PMC8571893 DOI: 10.1186/s12885-021-08933-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increased expression of the transcription factor Forkhead box M1 (FOXM1) has been reported to play an important role in the progression and development of multiple tumors, but the molecular mechanisms that regulate FOXM1 expression remain unknown, and the role of FOXM1 in aerobic glycolysis is still not clear. METHODS The expression of FOXM1 and NADPH oxidase 4 (NOX4) in normal brain tissues and glioma was detected in data from the TCGA database and in our specimens. The effect of NOX4 on the expression of FOXM1 was determined by Western blot, qPCR, reactive oxygen species (ROS) production assays, and luciferase assays. The functions of NOX4 and FOXM1 in aerobic glycolysis in glioblastoma cells were determined by a series of experiments, such as Western blot, extracellular acidification rate (ECAR), lactate production, and intracellular ATP level assays. A xenograft mouse model was established to test our findings in vivo. RESULTS The expression of FOXM1 and NOX4 was increased in glioma specimens compared with normal brain tissues and correlated with poor clinical outcomes. Aberrant mitochondrial reactive oxygen species (ROS) generation of NOX4 induced FOXM1 expression. Mechanistic studies demonstrated that NOX4-derived MitoROS exert their regulatory role on FOXM1 by mediating hypoxia-inducible factor 1α (HIF-1α) stabilization. Further research showed that NOX4-derived MitoROS-induced HIF-1α directly activates the transcription of FOXM1 and results in increased FOXM1 expression. Overexpression of NOX4 or FOXM1 promoted aerobic glycolysis, whereas knockdown of NOX4 or FOXM1 significantly suppressed aerobic glycolysis, in glioblastoma cells. NOX4-induced aerobic glycolysis was dependent on elevated FOXM1 expression, as FOXM1 knockdown abolished NOX4-induced aerobic glycolysis in glioblastoma cells both in vitro and in vivo. CONCLUSION Increased expression of FOXM1 induced by NOX4-derived MitoROS plays a pivotal role in aerobic glycolysis, and our findings suggest that inhibition of NOX4-FOXM1 signaling may present a potential therapeutic target for glioblastoma treatment.
Collapse
Affiliation(s)
- Xiangsheng Su
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yihang Yang
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, Shandong, China
| | - Qing Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Bo Pang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Shicheng Sun
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yanjun Wang
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, Shandong, China
| | - Qiujiang Qiao
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Changfa Guo
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Huanting Liu
- Department of Neurosurgery, Linyi People's Hospital, Cheeloo College of Medicine, Shandong University, Linyi, 276003, Shandong, China.
| | - Qi Pang
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
16
|
Wang T, Chen X, Jing F, Li Z, Tan H, Luo Y, Shi H. Identifying the hub genes in non-small cell lung cancer by integrated bioinformatics methods and analyzing the prognostic values. Pathol Res Pract 2021; 228:153654. [PMID: 34749208 DOI: 10.1016/j.prp.2021.153654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Lung cancer, a malignant tumor, has the highest mortality and second most common morbidity worldwide. Non-small cell lung cancer (NSCLC) is the most common pathological subtype of lung cancer. This study aimed to identify the gene signature associated with the NSCLC prognosis using bioinformatics analysis. MATERIALS AND METHODS The dataset GSE103512 was utilized to construct co-expression networks using weighted gene co-expression network analysis (WGCNA). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed using Database for Annotation, Visualization, and Integrated Discovery. Gene set enrichment analysis was conducted to ascertain the function of the hub genes more accurately. The relationship between the hub genes and immune infiltration was investigated using a single sample gene set enrichment analysis. Hub genes were screened and validated by other datasets and online websites. RESULTS The results of WGCNA demonstrated that the blue module was most significantly related to tumor progression in NSCLC. Functional enrichment analysis showed that the blue module was associated with DNA replication, cell division, mitotic nuclear division, and cell cycle. A total of five hub genes (RFC5, UBE2S, CHAF1A, FANCI, and TMEM194A) were chosen to be identified and validated at transcriptional and translational levels. Receiver operating characteristic curve verified that the mRNA levels of these five genes can excellently discriminate between normal and tumor tissues. Survival analysis was also performed. Additionally, the protein levels of these five genes were also significantly different between tumor and normal tissues. Immune infiltration analysis showed that the expression levels of the hub genes had a negative correlation with the infiltration levels of many cells related to innate immune response, antigen-presenting process, humoral immune response, or T cell-mediated immune responses. CONCLUSIONS We identified five hub genes associated with the NSCLC tumorigenesis. NSCLC patients with higher expressions of each hub gene had a worse prognosis than those with lower expressions. Moreover, the hub genes might serve as biomarkers and therapeutic targets for precise diagnosis, target therapy, and immunotherapy of NSCLC in the future.
Collapse
Affiliation(s)
- Tengyong Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xiaoxuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Fangqi Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zehua Li
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huaicheng Tan
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yiqiao Luo
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
17
|
Zhao X, Sun Y, Sun X, Li J, Shi X, Liang Z, Ma Y, Zhang X. AEG-1 Knockdown Sensitizes Glioma Cells to Radiation Through Impairing Homologous Recombination Via Targeting RFC5. DNA Cell Biol 2021; 40:895-905. [PMID: 34042508 DOI: 10.1089/dna.2020.6287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Radiotherapy is the most important adjuvant treatment for glioma; however, radioresistance is the major cause for inevitable recurrence and poor survival of glioma patients. Thus, this study aims to investigate the effect of astrocyte elevated gene-1 (AEG-1) on the radiosensitivity of glioma cells. Immunohistochemistry assay found that AEG-1 was generally overexpressed in glioma tissues and was correlated with poor clinicopathological features of glioma patients. AEG-1 knockdown inhibited proliferation of glioma cells. And γ-H2AX foci assay, colony formation assay, and flow cytometry analysis demonstrated that AEG-1 depletion enhanced radiosensitivity and promoted apoptosis as well as cell cycle arrest in G2 phase of glioma cells treated by ionizing radiation. Moreover, replication factor C5 (RFC5) was screened as the target of AEG-1 by using Affymetrix human gene expression array, and RFC5 expression was downregulated in AEG-1 knockdown glioma cells. Mechanistically, AEG-1 knockdown impaired homologous recombination repair activity induced by radiation through inhibiting RFC5 expression. Furthermore, the Kaplan-Meier analysis and multivariate Cox regression analysis indicated that high levels of AEG-1 and RFC5 were related to poor prognosis of glioma patients treated with radiotherapy. Taken together, our findings indicate that AEG-1 may serve as a reliable radiosensitizing target for glioma radiotherapy.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xuanzi Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jing Li
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaobo Shi
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhinan Liang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuan Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaozhi Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
18
|
Qiu X, Tan G, Wen H, Lian L, Xiao S. Forkhead box O1 targeting replication factor C subunit 2 expression promotes glioma temozolomide resistance and survival. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:692. [PMID: 33987390 PMCID: PMC8105996 DOI: 10.21037/atm-21-1523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Additional mechanisms of temozolomide (TMZ) resistance in gliomas remain uncertain. The aim of this study was to identify another DNA repair mechanism involving forkhead box O1 (FoxO1) and replicator C2 (RFC2) in gliomas. Methods We established glioma cells against TMZ, U87R, by exposure to TMZ. Proliferation rate Cell counting kit-8 (CCK8) was used, and epithelial-mesenchymal transition (EMT)-related markers were detected by western blot. The association between FoxO1 and RFC2 was analyzed by heat maps and scatter plot, and Real-time reverse transcription polymerase chain reaction (qRT-PCR) and Western blot were used to detect the effect of FoxO1 on the expression of RFC2. The regulation effect of FoxO1 on RFC2 expression was analyzed by luciferase reporter gene assay. Knockdown of FoxO1/RFC2 was achieved via short hairpin RNA (shRNA), the effect of knockdown on the proliferation was determined by CCK8 assay and colony formation assay, and apoptosis was examined by flow cytometry and immunoblotting. Results The TMZ-resistant glioma cell line, U87R, was established. The FoxO1 and RFC2 proteins increased significantly in U87R. The expression of FoxO1 and RFC2 were positively related in glioma tissues. We found that FoxO1 contributes to TMZ resistance and cell survival via regulating the expression of RFC2. Moreover, FoxO1 functions as a transcriptional activator to RFC2 by binding to the promoter of RFC2. Furthermore, knockdown of FoxO1/RFC2 suppressed cell proliferation, TMZ resistance, and induced apoptosis in U87R. Conclusions The FoxO1/RFC2 signaling pathway promotes glioma cell proliferation and TMZ resistance, suggesting that the FoxO1/RFC2 pathway may be a potential target for TMZ-resistant glioma therapy.
Collapse
Affiliation(s)
- Xingsheng Qiu
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guifeng Tan
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Wen
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lian Lian
- Department of Oncology, Suzhou Xiangcheng People's Hospital, Suzhou, China
| | - Songhua Xiao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Shibui Y, Kohashi K, Tamaki A, Kinoshita I, Yamada Y, Yamamoto H, Taguchi T, Oda Y. The forkhead box M1 (FOXM1) expression and antitumor effect of FOXM1 inhibition in malignant rhabdoid tumor. J Cancer Res Clin Oncol 2020; 147:1499-1518. [PMID: 33221995 DOI: 10.1007/s00432-020-03438-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Malignant rhabdoid tumor (MRT) is a rare, highly aggressive sarcoma with an uncertain cell of origin. Despite the existing standard of intensive multimodal therapy, the prognosis of patients with MRT is very poor. Novel antitumor agents are needed for MRT patients. Forkhead box transcription factor 1 (FOXM1) is overexpressed and is correlated with the pathogenesis in several human malignancies. In this study, we identified the clinicopathological and prognostic values of the expression of FOXM1 and its roles in the progression of MRT. METHODS We investigated the FOXM1 expression levels and their clinical significance in 23 MRT specimens using immunohistochemistry and performed clinicopathologic and prognostic analyses. We also demonstrated correlations between the downregulation of FOXM1 and oncological characteristics using small interfering RNA (siRNA) and FOXM1 inhibitor in MRT cell lines. RESULTS Histopathological analyses revealed that primary renal MRTs showed significantly low FOXM1 protein expression levels (p = 0.032); however, there were no significant differences in other clinicopathological characteristics or the survival rate. FOXM1 siRNA and FOXM1 inhibitor (thiostrepton) successfully downregulated the mRNA and protein expression of FOXM1 in vitro and the downregulation of FOXM1 inhibited cell proliferation, drug resistance to chemotherapeutic agents, migration, invasion, and caused the cell cycle arrest and apoptosis of MRT cell lines. A cDNA microarray analysis showed that FOXM1 regulated FANCD2 and NBS1, which are key genes for DNA damage repair. CONCLUSION This study demonstrates that FOXM1 may serve as a promising therapeutic target for MRT.
Collapse
Affiliation(s)
- Yuichi Shibui
- Department of Anatomic Pathology Graduate School of Medical Sciences, Kyushu University, Maidashi3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology Graduate School of Medical Sciences, Kyushu University, Maidashi3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akihiko Tamaki
- Department of Anatomic Pathology Graduate School of Medical Sciences, Kyushu University, Maidashi3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Izumi Kinoshita
- Department of Anatomic Pathology Graduate School of Medical Sciences, Kyushu University, Maidashi3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuichi Yamada
- Department of Anatomic Pathology Graduate School of Medical Sciences, Kyushu University, Maidashi3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hidetaka Yamamoto
- Department of Anatomic Pathology Graduate School of Medical Sciences, Kyushu University, Maidashi3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomoaki Taguchi
- Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, Maidashi3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology Graduate School of Medical Sciences, Kyushu University, Maidashi3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
20
|
Yu H, Xu Z, Guo M, Wang W, Zhang W, Liang S, Xu Z, Ye J, Zhu G, Zhang C, Lin J. FOXM1 modulates docetaxel resistance in prostate cancer by regulating KIF20A. Cancer Cell Int 2020; 20:545. [PMID: 33292277 PMCID: PMC7653758 DOI: 10.1186/s12935-020-01631-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
Background Docetaxel resistance affects prognosis in advanced prostate cancer (PCa). The precise mechanisms remain unclear. Transcription factor Forkhead box M1 (FOXM1), which participates in cell proliferation and cell cycle progression, has been reported to affect the sensitivity of chemotherapy. This study explores the role of FOXM1 in PCa docetaxel resistance and its association with kinesin family member 20 A (KIF20A), which is known to promote therapeutic resistance in some cancers. Methods We monitored cell growth using MTT and colony formation assays, and cell apoptosis and cell cycle progression using flow cytometry. Wound-healing and transwell assays were used to detect cell invasion and migration. mRNA and protein expression were analyzed using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blotting. We monitored FOXM1 binding to the KIF20A promoter using a ChIP assay. Tumorigenicity in nude mice was used to assess in vivo tumorigenicity. Results FOXM1 knockdown induced cell apoptosis and G2/M cell cycle arrest, suppressing cell migration and invasion in docetaxel-resistant PCa cell lines (DU145-DR and VCaP-DR). Exogenous FOXM1 overexpression was found in their parental cells. Specific FOXM1 inhibitor thiostrepton significantly weakened docetaxel resistance in vitro and in vivo. We also found that FOXM1 and KIF20A exhibited consistent and highly correlated overexpression in PCa cells and tissues. FOXM1 also regulated KIF20A expression at the transcriptional level by acting directly on a Forkhead response element (FHRE) in its promoter. KIF20A overexpression could partially reverse the effect on cell proliferation, cell cycle proteins (cyclinA2, cyclinD1 and cyclinE1) and apoptosis protein (bcl-2 and PARP) of FOXM1 depletion. Conclusions Our findings indicate that highly expressed FOXM1 may help promote docetaxel resistance by inducing KIF20A expression, providing insight into novel chemotherapeutic strategies for combatting PCa docetaxel resistance.
Collapse
Affiliation(s)
- Hongbo Yu
- Department of Urology, BenQ Medical Center, Nanjing Medical University, Nanjing, China
| | - Zheng Xu
- Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Maomao Guo
- Department of Urology, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), No. 366, Taihu Road, Taizhou, China
| | - Weiwan Wang
- Central Laboratory, BenQ Medical Center, Nanjing Medical University, Nanjing, China
| | - Weican Zhang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Sudong Liang
- Department of Urology, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), No. 366, Taihu Road, Taizhou, China
| | - Zhibin Xu
- Central Laboratory, BenQ Medical Center, Nanjing Medical University, Nanjing, China
| | - Jun Ye
- Central Laboratory, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, China
| | - Gangyi Zhu
- Central Laboratory, BenQ Medical Center, Nanjing Medical University, Nanjing, China
| | - Chenyang Zhang
- Central Laboratory, BenQ Medical Center, Nanjing Medical University, Nanjing, China
| | - Jianzhong Lin
- Department of Urology, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), No. 366, Taihu Road, Taizhou, China.
| |
Collapse
|
21
|
Zeng WJ, Cheng Q, Wen ZP, Wang JY, Chen YH, Zhao J, Gong ZC, Chen XP. Aberrant ASPM expression mediated by transcriptional regulation of FoxM1 promotes the progression of gliomas. J Cell Mol Med 2020; 24:9613-9626. [PMID: 32667745 PMCID: PMC7520292 DOI: 10.1111/jcmm.15435] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 04/20/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Gliomas are the most common form of malignant tumour in the central nervous system. However, the molecular mechanism of the tumorigenesis and progression of gliomas remains unclear. In this study, we used the GEO database to identify genes differentially expressed in gliomas and predict the prognosis of glioma. We observed that ASPM mRNA was increased obviously in glioma tissue, and higher ASPM mRNA expression predicted worse disease prognosis. ASPM was highly expressed in glioma cell lines U87‐MG and U251, and knockdown of ASPM expression in these cells significantly repressed the proliferation, migration and invasion ability and induced G0/G1 phase arrest. In addition, down‐regulation of ASPM suppressed the growth of glioma in nude mice. Five potential binding sites for transcription factor FoxM1 were predicted in the ASPM promoter. FoxM1 overexpression significantly increased the expression of ASPM and promoted the proliferation and migration of glioma cells, which was abolished by ASPM ablation. ChIP and dual‐luciferase reporter analysis confirmed that FoxM1 bound to the ASPM promoter at −236 to ‐230 bp and −1354 to ‐1348 bp and activated the transcription of ASPM directly. Collectively, our results demonstrated for the first time that aberrant ASPM expression mediated by transcriptional regulation of FoxM1 promotes the malignant properties of glioma cells.
Collapse
Affiliation(s)
- Wen-Jing Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Cheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Peng Wen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Jie-Ya Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Yan-Hong Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Jie Zhao
- Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Cheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Interaction of Deubiquitinase 2A-DUB/MYSM1 with DNA Repair and Replication Factors. Int J Mol Sci 2020; 21:ijms21113762. [PMID: 32466590 PMCID: PMC7312997 DOI: 10.3390/ijms21113762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 01/09/2023] Open
Abstract
The deubiquitination of histone H2A on lysine 119 by 2A-DUB/MYSM1, BAP1, USP16, and other enzymes is required for key cellular processes, including transcriptional activation, apoptosis, and cell cycle control, during normal hematopoiesis and tissue development, and in tumor cells. Based on our finding that MYSM1 colocalizes with γH2AX foci in human peripheral blood mononuclear cells, leukemia cells, and melanoma cells upon induction of DNA double-strand breaks with topoisomerase inhibitor etoposide, we applied a mass spectrometry-based proteomics approach to identify novel 2A-DUB/MYSM1 interaction partners in DNA-damage responses. Differential display of MYSM1 binding proteins significantly enriched after exposure of 293T cells to etoposide revealed an interacting network of proteins involved in DNA damage and replication, including factors associated with poor melanoma outcome. In the context of increased DNA-damage in a variety of cell types in Mysm1-deficient mice, in bone marrow cells upon aging and in UV-exposed Mysm1-deficient skin, our current mass spectrometry data provide additional evidence for an interaction between MYSM1 and key DNA replication and repair factors, and indicate a potential function of 2A-DUB/MYSM1 in DNA repair processes.
Collapse
|
23
|
Abstract
Introduction: FOXM1 is one of the most frequently overexpressed proteins in human solid cancers. Here, we discuss novel direct targets of FOXM1 as well as new pathways involving FOXM1, through which this protein exerts its oncogenic activity.Areas covered: We give a detailed review of FOXM1 transcriptional targets involved in 16 different types of human cancer as published in the literature in the last 5 years. We also discuss a novel positive feedback loop between FOXM1 and AKT - both well-established master regulators of cancer.Expert opinion: Despite the discovery of several FOXM1 inhibitors over the years (by our team and others), their therapeutic use is limited by their adverse off-target effects.Newly-discovered proteins regulated by FOXM1 present a promising alternative approach to target its pro-cancer activity. In addition, targeting regulating proteins that take part in the positive feedback loop between FOXM1/AKT has the double advantage of suppressing both, and can lead to developing novel anti-cancer drugs.
Collapse
Affiliation(s)
- Soheila Borhani
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Andrei L Gartel
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
24
|
Tang JH, Yang L, Chen JX, Li QR, Zhu LR, Xu QF, Huang GH, Zhang ZX, Xiang Y, Du L, Zhou Z, Lv SQ. Bortezomib inhibits growth and sensitizes glioma to temozolomide (TMZ) via down-regulating the FOXM1-Survivin axis. Cancer Commun (Lond) 2019; 39:81. [PMID: 31796105 PMCID: PMC6892143 DOI: 10.1186/s40880-019-0424-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Background High-grade glioma (HGG) is a fatal human cancer. Bortezomib, a proteasome inhibitor, has been approved for the treatment of multiple myeloma but its use in glioma awaits further investigation. This study aimed to explore the chemotherapeutic effect and the underlying mechanism of bortezomib on gliomas. Methods U251 and U87 cell viability and proliferation were detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, tumor cell spheroid growth, and colony formation assay. Cell apoptosis and cell cycle were detected by flow cytometry. Temozolomide (TMZ)-insensitive cell lines were induced by long-term TMZ treatment, and cells with stem cell characteristics were enriched with stem cell culture medium. The mRNA levels of interested genes were measured via reverse transcription-quantitative polymerase chain reaction, and protein levels were determined via Western blotting/immunofluorescent staining in cell lines and immunohistochemical staining in paraffin-embedded sections. Via inoculating U87 cells subcutaneously, glioma xenograft models in nude mice were established for drug experiments. Patient survival data were analyzed using the Kaplan–Meier method. Results Bortezomib inhibited the viability and proliferation of U251 and U87 cells in a dose- and time-dependent manner by inducing apoptosis and cell cycle arrest. Bortezomib also significantly inhibited the spheroid growth, colony formation, and stem-like cell proliferation of U251 and U87 cells. When administrated in combination, bortezomib showed synergistic effect with TMZ in vitro and sensitized glioma to TMZ treatment both in vitro and in vivo. Bortezomib reduced both the mRNA and protein levels of Forkhead Box M1 (FOXM1) and its target gene Survivin. The FOXM1–Survivin axis was markedly up-regulated in established TMZ-insensitive glioma cell lines and HGG patients. Expression levels of FOXM1 and Survivin were positively correlated with each other and both related to poor prognosis in glioma patients. Conclusions Bortezomib was found to inhibit glioma growth and improved TMZ chemotherapy efficacy, probably via down-regulating the FOXM1–Survivin axis. Bortezomib might be a promising agent for treating malignant glioma, alone or in combination with TMZ.
Collapse
Affiliation(s)
- Jun-Hai Tang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China
| | - Lin Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China
| | - Ju-Xiang Chen
- Department of Neurosurgery, Changzheng Hospital and Shanghai Institute of Neurosurgery, Second Military Medical University, Shanghai, 200003, P. R. China
| | - Qing-Rui Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Li-Rong Zhu
- Department of Ultrasound, Children Hospital, Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Qing-Fu Xu
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P. R. China
| | - Guo-Hao Huang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China
| | - Zuo-Xin Zhang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China
| | - Yan Xiang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China
| | - Lei Du
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China
| | - Zheng Zhou
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China.
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China.
| |
Collapse
|
25
|
Yang Q, Wang R, Wei B, Peng C, Wang L, Hu G, Kong D, Du C. Gene and microRNA Signatures Are Associated with the Development and Survival of Glioblastoma Patients. DNA Cell Biol 2019; 38:688-699. [PMID: 31188028 DOI: 10.1089/dna.2018.4353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Qi Yang
- Department of Gynecology and Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Rui Wang
- Department of Radiology, and China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Bo Wei
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Chuangang Peng
- Orthopaedic Medical Center, The 2nd Hospital of Jilin University, Changchun, P.R. China
| | - Le Wang
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, P.R. China
| | - Guozhang Hu
- Department of Emergency Medicine and China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Daliang Kong
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Chao Du
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
26
|
Bertolini I, Terrasi A, Martelli C, Gaudioso G, Di Cristofori A, Storaci AM, Formica M, Braidotti P, Todoerti K, Ferrero S, Caroli M, Ottobrini L, Vaccari T, Vaira V. A GBM-like V-ATPase signature directs cell-cell tumor signaling and reprogramming via large oncosomes. EBioMedicine 2019; 41:225-235. [PMID: 30737083 PMCID: PMC6441844 DOI: 10.1016/j.ebiom.2019.01.051] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 12/17/2022] Open
Abstract
Background The V-ATPase proton pump controls acidification of intra and extra-cellular milieu in both physiological and pathological conditions. We previously showed that some V-ATPase subunits are enriched in glioma stem cells and in patients with poor survival. In this study, we investigated how expression of a GBM-like V-ATPase pump influences the non-neoplastic brain microenvironment. Methods Large oncosome (LO) vesicles were isolated from primary glioblastoma (GBM) neurospheres, or from patient sera, and co-cultured with primary neoplastic or non-neoplastic brain cells. LO transcript and protein contents were analyzed by qPCR, immunoblotting and immunogold staining. Activation of pathways in recipient cells was determined at gene and protein expression levels. V-ATPase activity was impaired by Bafilomycin A1 or gene silencing. Findings GBM neurospheres influence their non-neoplastic microenvironment by delivering the V-ATPase subunit V1G1 and the homeobox genes HOXA7, HOXA10, and POU3F2 to recipient cells via LO. LOs reprogram recipient cells to proliferate, grow as spheres and to migrate. Moreover, LOs are particularly abundant in the circulation of GBM patients with short survival time. Finally, impairment of V-ATPase reduces LOs activity. Interpretation We identified a novel mechanism adopted by glioma stem cells to promote disease progression via LO-mediated reprogramming of their microenvironment. Our data provide preliminary evidence for future development of LO-based liquid biopsies and suggest a novel potential strategy to contrast glioma progression. Fund This work was supported by Fondazione Cariplo (2014-1148 to VV) and by the Italian Minister of Health-Ricerca Corrente program 2017 (to SF).
Collapse
Affiliation(s)
- Irene Bertolini
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Terrasi
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cristina Martelli
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Gabriella Gaudioso
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Di Cristofori
- Division of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Maria Storaci
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Miriam Formica
- Department of Biosciences, Universita' degli Studi di Milano, Milan, Italy
| | | | - Katia Todoerti
- Department of Oncology and Hemato-oncology, University of Milan, Hematology Division, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Biosciences, University of Milan, Milan, Italy
| | - Manuela Caroli
- Division of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luisa Ottobrini
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Thomas Vaccari
- Department of Biosciences, University of Milan, Milan, Italy.
| | - Valentina Vaira
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; Fondazione Istituto Nazionale Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy.
| |
Collapse
|
27
|
Bach DH, Long NP, Luu TTT, Anh NH, Kwon SW, Lee SK. The Dominant Role of Forkhead Box Proteins in Cancer. Int J Mol Sci 2018; 19:E3279. [PMID: 30360388 PMCID: PMC6213973 DOI: 10.3390/ijms19103279] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/16/2022] Open
Abstract
Forkhead box (FOX) proteins are multifaceted transcription factors that are significantly implicated in cancer, with various critical roles in biological processes. Herein, we provide an overview of several key members of the FOXA, FOXC, FOXM1, FOXO and FOXP subfamilies. Important pathophysiological processes of FOX transcription factors at multiple levels in a context-dependent manner are discussed. We also specifically summarize some major aspects of FOX transcription factors in association with cancer research such as drug resistance, tumor growth, genomic alterations or drivers of initiation. Finally, we suggest that targeting FOX proteins may be a potential therapeutic strategy to combat cancer.
Collapse
Affiliation(s)
- Duc-Hiep Bach
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | | | | | - Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
28
|
Identification of RFC5 as a novel potential prognostic biomarker in lung cancer through bioinformatics analysis. Oncol Lett 2018; 16:4201-4210. [PMID: 30214556 PMCID: PMC6126192 DOI: 10.3892/ol.2018.9221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 04/18/2018] [Indexed: 01/04/2023] Open
Abstract
Lung cancer is the leading cause of mortalities among all types of cancer. Therefore, the screening of biomarkers that are related with the progression of lung cancer is crucial for early diagnosis and efficient therapy of lung cancer. In the present study, bioinformatic analysis identified replication factor C 5 (RFC5) as a potential novel oncogene in lung cancer. RFC5 functions as a clamp loader and is involved in DNA replication and repair. Analysis of public databases and reverse transcription-quantitative polymerase chain reaction indicated that RFC5 was significantly increased in tumor tissues compared with adjacent normal tissues. A high RFC5 expression was observed to be associated with more aggressive malignant clinicopathological features, including higher T stage, more advanced regional lymph node metastasis and a higher probability of relapse. Notably, there were notable differences in overall survival (OS), first progression and post-progression survival between the high RFC5 expression group and low RFC5 expression group. Univariate and multivariate Cox regression analyses indicated that RFC5 was an independent risk factor that was associated with poorer OS and disease-free survival. According to GSEA, several gene sets that are associated with cell cycle and DNA damage were enriched in the RFC5 overexpression group, which indicated that RFC5 might promote the proliferation of lung cancer cells. Our finding indicated that RFC5 might be a novel prognostic biomarker of lung cancer, and it might be serve as a potential diagnosis and therapy target for lung cancer in the future.
Collapse
|
29
|
Jin S, Qian Z, Liang T, Liang J, Yang F, Sun L, Li W, Qiu X, Zhang M. Identification of a DNA Repair-Related Multigene Signature as a Novel Prognostic Predictor of Glioblastoma. World Neurosurg 2018; 117:e34-e41. [PMID: 29807183 DOI: 10.1016/j.wneu.2018.05.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is an extremely challenging malignancy to treat. Although temozolomide (TMZ) is a standard treatment regimen, many patients with GBM develop chemoresistance. The aim of this study was to identify a DNA repair-related gene signature to better stratify patients treated with TMZ. METHODS We selected 89 cases of primary GBM (pGBM) from the Chinese Glioma Genome Atlas RNA-seq dataset as the training cohort, whereas The Cancer Genome Atlas RNA-seq and Gene Set Enrichment (GSE) 16011 mRNA array sets were used as validation cohorts. Regression analysis and linear risk score assessment were performed to build a DNA repair-related signature. We used Kaplan-Meier analysis to evaluate the predictive value of the signature for overall survival (OS) in the different groups. Multivariate Cox regression analysis was used to determine whether the 5-gene signature could independently predict OS. RESULTS Using our 5-gene signature panel of APEX1, APRT, PARP2, PMS2L2, and POLR2L, we divided patients with pGBM into high- and low-risk groups. Patients with a low-risk score were predicted to have favorable survival and greater benefit from TMZ therapy compared with patients from the high-risk group (P < 0.05). Moreover, receiver operating characteristic curves showed that the multigene signature was the most sensitive and specific model for survival prediction (P < 0.05). CONCLUSIONS Among patients with pGBM, classification based on a risk score determined using a 5-gene panel indicated different OS and reaction to TMZ. The findings in this study demonstrate that this unique 5-gene signature could be a novel model to predict OS and provide accurate therapy for patients with pGBM.
Collapse
Affiliation(s)
- Shuai Jin
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; The General Hospital of Chinese People's Armed Police Forces, Beijing, China
| | - Zenghui Qian
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tingyu Liang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jingshan Liang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fuqiang Yang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lihua Sun
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoguang Qiu
- Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Man Zhang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China.
| |
Collapse
|
30
|
Zhang C, Han X, Xu X, Zhou Z, Chen X, Tang Y, Cheng J, Moazzam NF, Liu F, Xu J, Peng W, Du F, Zhang B, Song Z, Zeng J, Gong A. FoxM1 drives ADAM17/EGFR activation loop to promote mesenchymal transition in glioblastoma. Cell Death Dis 2018; 9:469. [PMID: 29700308 PMCID: PMC5920065 DOI: 10.1038/s41419-018-0482-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 12/22/2022]
Abstract
Mesenchymal transition (MES transition) is a hallmark of glioblastoma multiforme (GBM), however, the mechanism regulating the process remains to be elucidated. Here we report that FoxM1 drives ADAM17/EGFR activation loop to promote MES transition in GBM. Firstly, FoxM1 expression was positively associated with ADAM17 expression, and their expression was correlated with the mesenchymal features and overall patient survival of GBM. Overexpressing FoxM1 or ADAM17 increased the mesenchymal phenotype of glioma cells, which could be reversed by silencing FoxM1 or ADAM17. Importantly, FoxM1 bound to the ADAM17 promoter to transcriptionally upregulate its expression. Using gain- and loss-of-function studies, we showed that FoxM1/ADAM17 axis promoted the MES transition in glioma cells. Moreover, tissue microarray analysis and orthotopic xenograft model further confirmed that FoxM1/ADAM17 axis played key roles in malignancy of GBM. Mechanistically, FoxM1/ADAM17 axis activated the EGFR/AKT/GSK3β signaling pathway and ADAM17/EGFR/GSK3β axis could maintain FoxM1 stability in glioma cells. Taken together, our study demonstrated that FoxM1/ADAM17 feedback loop controlled the MES transition and regulated the progression of GBM, raising the possibility that deregulation of this loop might improve the durability of therapies in GBM.
Collapse
Affiliation(s)
- Chunli Zhang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.,Department of Clinical Laboratory, Maternal and Child Health Hospital of Jiading District, Shanghai, 201821, China
| | - Xiu Han
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiao Xu
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhengrong Zhou
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xi Chen
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yu Tang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jie Cheng
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Nida Fatima Moazzam
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Fei Liu
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jing Xu
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wanxin Peng
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Fengyi Du
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong, P. R. China
| | - Zhiwen Song
- Department of Orthopedics, The Third Affiliated Hospital, Soochow University, Changzhou, 213003, Jiangsu, China
| | - Jian Zeng
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Aihua Gong
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
31
|
Yao S, Fan LYN, Lam EWF. The FOXO3-FOXM1 axis: A key cancer drug target and a modulator of cancer drug resistance. Semin Cancer Biol 2017; 50:77-89. [PMID: 29180117 PMCID: PMC6565931 DOI: 10.1016/j.semcancer.2017.11.018] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/30/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022]
Abstract
The FOXO3 and FOXM1 forkhead box transcription factors, functioning downstream of the essential PI3K-Akt, Ras-ERK and JNK/p38MAPK signalling cascades, are crucial for cell proliferation, differentiation, cell survival, senescence, DNA damage repair and cell cycle control. The development of resistance to both conventional and newly emerged molecularly targeted therapies is a major challenge confronting current cancer treatment in the clinic. Intriguingly, the mechanisms of resistance to ‘classical’ cytotoxic chemotherapeutics and to molecularly targeted therapies are invariably linked to deregulated signalling through the FOXO3 and FOXM1 transcription factors. This is owing to the involvement of FOXO3 and FOXM1 in the regulation of genes linked to crucial drug action-related cellular processes, including stem cell renewal, DNA repair, cell survival, drug efflux, and deregulated mitosis. A better understanding of the mechanisms regulating the FOXO3-FOXM1 axis, as well as their downstream transcriptional targets and functions, may render these proteins reliable and early diagnostic/prognostic factors as well as crucial therapeutic targets for cancer treatment and importantly, for overcoming chemotherapeutic drug resistance.
Collapse
Affiliation(s)
- Shang Yao
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Lavender Yuen-Nam Fan
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Eric Wing-Fai Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.
| |
Collapse
|
32
|
Ma Q, Liu Y, Shang L, Yu J, Qu Q. The FOXM1/BUB1B signaling pathway is essential for the tumorigenicity and radioresistance of glioblastoma. Oncol Rep 2017; 38:3367-3375. [PMID: 29039578 PMCID: PMC5783581 DOI: 10.3892/or.2017.6032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence indicates that mitotic checkpoint serine/threonine kinase B (BUB1B) plays a critical role in multiple types of cancer. However, the biological function and molecular regulatory mechanism of BUB1B in glioblastoma (GBM) remain unclear. In the present study, we identified that BUB1B expression was enriched in GBM tumors and was functionally required for tumor proliferation both in vitro and in vivo. Clinically, BUB1B expression was associated with poor prognosis in GBM patients and BUB1B-dependent radioresistance in GBM was decreased by targeting BUB1B via shRNAs. Mechanistically, forkhead box protein M1 (FOXM1) transcriptionally regulated BUB1B expression by binding to and then activating the BUB1B promoter. Therapeutically, we found that FOXM1 inhibitor attenuated tumorigenesis and radioresistance of GBM both in vitro and in vivo. Altogether, BUB1B promotes tumor proliferation and induces radioresistance in GBM, indicating that BUB1B could be a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Qing Ma
- The Third Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Yanmei Liu
- The Department of West Yard Ward 2 (Geriatrics), Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Liang Shang
- The Department of West Yard Ward 2 (Geriatrics), Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Jiao Yu
- Department of Radiotherapy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Qiumin Qu
- Department of Internal Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
33
|
Nandi D, Cheema PS, Jaiswal N, Nag A. FoxM1: Repurposing an oncogene as a biomarker. Semin Cancer Biol 2017; 52:74-84. [PMID: 28855104 DOI: 10.1016/j.semcancer.2017.08.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/08/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022]
Abstract
The past few decades have witnessed a tremendous progress in understanding the biology of cancer, which has led to more comprehensive approaches for global gene expression profiling and genome-wide analysis. This has helped to determine more sophisticated prognostic and predictive signature markers for the prompt diagnosis and precise screening of cancer patients. In the search for novel biomarkers, there has been increased interest in FoxM1, an extensively studied transcription factor that encompasses most of the hallmarks of malignancy. Considering the attractive potential of this multifarious oncogene, FoxM1 has emerged as an important molecule implicated in initiation, development and progression of cancer. Bolstered with the skill to maneuver the proliferation signals, FoxM1 bestows resistance to contemporary anti-cancer therapy as well. This review sheds light on the large body of literature that has accumulated in recent years that implies that FoxM1 neoplastic functions can be used as a novel predictive, prognostic and therapeutic marker for different cancers. This assessment also highlights the key features of FoxM1 that can be effectively harnessed to establish FoxM1 as a strong biomarker in diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Deeptashree Nandi
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| | - Pradeep Singh Cheema
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| | - Neha Jaiswal
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| | - Alo Nag
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
34
|
How Far Can Mitochondrial DNA Drive the Disease? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1038:1-8. [DOI: 10.1007/978-981-10-6674-0_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Zhang L, Reyes A, Wang X. The Role of DNA Repair in Maintaining Mitochondrial DNA Stability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1038:85-105. [PMID: 29178071 DOI: 10.1007/978-981-10-6674-0_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondria are vital double-membrane organelles that act as a "powerhouse" inside the cell and have essential roles to maintain cellular functions, e.g., ATP production, iron-sulfur synthesis metabolism, and steroid synthesis. An important difference with other organelles is that they contain their own mitochondrial DNA (mtDNA). Such powerful organelles are also sensitive to both endogenous and exogenous factors that can cause lesions to their structural components and their mtDNA, resulting in gene mutations and eventually leading to diseases. In this review, we will mainly focus on mammalian mitochondrial DNA repair pathways that safeguard mitochondrial DNA integrity and several important factors involved in the repair process, especially on an essential pathway, base excision repair. We eagerly anticipate to explore more methods to treat related diseases by constantly groping for these complexes and precise repair mechanisms.
Collapse
Affiliation(s)
- Linlin Zhang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China.
| | - Aurelio Reyes
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China.
| |
Collapse
|