1
|
Tavella S, di Lillo A, Conti A, Iannelli F, Mancheno-Ferris A, Matti V, Di Micco R, Fagagna FDD. Weaponizing CRISPR/Cas9 for selective elimination of cells with an aberrant genome. DNA Repair (Amst) 2025; 149:103840. [PMID: 40319546 PMCID: PMC12086175 DOI: 10.1016/j.dnarep.2025.103840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/27/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
The CRISPR/Cas9 technology is a powerful and versatile tool to disrupt genes' functions by introducing sequence-specific DNA double-strand breaks (DSBs). Here, we repurpose this technology to eradicate aberrant cells by specifically targeting silent and non-functional genomic sequences present only in target cells to be eliminated. Indeed, an intrinsic challenge of most current therapies against cancer and viral infections is the non-specific toxicity that they can induce in normal tissues because of their impact on important cellular mechanisms shared, to different extents, between unhealthy and healthy cells. The CRISPR/Cas9 technology has potential to overcome this limitation; however, so far effectiveness of these approaches was made dependent on the targeting and inactivation of a functional gene product. Here, we generate proof-of-principle evidence by engineering HeLa and RKO cells with a promoterless Green Fluorescent Protein (GFP) construct. The integration of this construct simulates either a genomic alteration, as in cancer cells, or a silent proviral genome. Cas9-mediated DSBs in the GFP sequence activate the DNA damage response (DDR), reduce cell viability and increase mortality. This is associated with increased cell size, multinucleation, cGAS-positive micronuclei accumulation and the activation of an inflammatory response. Pharmacological inhibition of the DNA repair factor DNA-PK enhances cell death. These results demonstrate the therapeutic potential of the CRISPR/Cas9 system in eliminating cells with an aberrant genome, regardless of the expression or the function of the target DNA sequence.
Collapse
Affiliation(s)
- Sara Tavella
- Institute of Molecular Genetics (IGM), National Research Institute (CNR), Pavia, Italy; IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy.
| | - Alessia di Lillo
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Anastasia Conti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Hospital, Milan, Italy
| | - Fabio Iannelli
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Valentina Matti
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Hospital, Milan, Italy; University School of Advanced Studies IUSS, Pavia 27100, Italy
| | - Fabrizio d'Adda di Fagagna
- Institute of Molecular Genetics (IGM), National Research Institute (CNR), Pavia, Italy; IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy; Lead Contact, Italy.
| |
Collapse
|
2
|
Popsuj S, Cohen L, Ward S, Lewis A, Yoshida S, Herrera R A, Cota CD, Stolfi A. CRISPR/Cas9 Protocols for Disrupting Gene Function in the Non-vertebrate Chordate Ciona. Integr Comp Biol 2024; 64:1182-1193. [PMID: 38982335 PMCID: PMC11579527 DOI: 10.1093/icb/icae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
The evolutionary origins of chordates and their diversification into the three major subphyla of tunicates, vertebrates, and cephalochordates pose myriad questions about the genetic and developmental mechanisms underlying this radiation. Studies in non-vertebrate chordates have refined our model of what the ancestral chordate may have looked like, and have revealed the pre-vertebrate origins of key cellular and developmental traits. Work in the major tunicate laboratory model Ciona has benefitted greatly from the emergence of CRISPR/Cas9 techniques for targeted gene disruption. Here we review some of the important findings made possible by CRISPR in Ciona, and present our latest protocols and recommended practices for plasmid-based, tissue-specific CRISPR/Cas9-mediated mutagenesis.
Collapse
Affiliation(s)
- Sydney Popsuj
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lindsey Cohen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sydney Ward
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Agnes Scott College, Decatur, GA 30030, USA
| | - Arabella Lewis
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Agnes Scott College, Decatur, GA 30030, USA
| | | | | | | | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
3
|
Li YJ, Chien SH, Huang R, Herrmann A, Zhao Q, Li PC, Zhang C, Martincuks A, Santiago NL, Zong K, Swiderski P, Okimoto RA, Song M, Rodriguez L, Forman SJ, Wang X, Yu H. A platform to deliver single and bi-specific Cas9/guide RNA to perturb genes in vitro and in vivo. Mol Ther 2024; 32:3629-3649. [PMID: 39091030 PMCID: PMC11489542 DOI: 10.1016/j.ymthe.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/20/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Although CRISPR-Cas9 technology is poised to revolutionize the treatment of diseases with underlying genetic mutations, it faces some significant issues limiting clinical entry. They include low-efficiency in vivo systemic delivery and undesired off-target effects. Here, we demonstrate, by modifying Cas9 with phosphorothioate-DNA oligos (PSs), that one can efficiently deliver single and bi-specific CRISPR-Cas9/guide RNA (gRNA) dimers in vitro and in vivo with reduced off-target effects. We show that PS-Cas9/gRNA-mediated gene knockout preserves chimeric antigen receptor T cell viability and expansion in vitro and in vivo. PS-Cas9/gRNA mediates gene perturbation in patient-derived tumor organoids and mouse xenograft tumors, leading to potent tumor antitumor effects. Further, HER2 antibody-PS-Cas9/gRNA conjugate selectively perturbs targeted genes in HER2+ ovarian cancer xenografts in vivo. Moreover, we created bi-specific PS-Cas9 with two gRNAs to target two adjacent sequences of the same gene, leading to efficient targeted gene disruption ex vivo and in vivo with markedly reduced unintended gene perturbation. Thus, the cell-penetrating PS-Cas9/gRNA can achieve efficient systemic delivery and precision in gene disruption.
Collapse
Affiliation(s)
- Yi-Jia Li
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA.
| | - Sheng-Hsuan Chien
- Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, and Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei 11201, Taiwan
| | - Rui Huang
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA
| | - Andreas Herrmann
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA
| | - Qianqian Zhao
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA
| | - Pei-Chuan Li
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA
| | - Chunyan Zhang
- Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Antons Martincuks
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA
| | - Nicole Lugo Santiago
- Department of Surgery, Division of Gynecologic Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Katherine Zong
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA
| | - Piotr Swiderski
- DNA/RNA Synthesis Laboratory, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Ross A Okimoto
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Mihae Song
- Department of Surgery, Division of Gynecologic Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Lorna Rodriguez
- Department of Surgery, Division of Gynecologic Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Stephen J Forman
- Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Xiuli Wang
- Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Hua Yu
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
4
|
Lemoine J, Dubois A, Dorval A, Jaber A, Warthi G, Mamchaoui K, Wang T, Corre G, Bovolenta M, Richard I. Correction of exon 2, exon 2-9 and exons 8-9 duplications in DMD patient myogenic cells by a single CRISPR/Cas9 system. Sci Rep 2024; 14:21238. [PMID: 39261505 PMCID: PMC11390959 DOI: 10.1038/s41598-024-70075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024] Open
Abstract
Duchenne Muscular dystrophy (DMD), a yet-incurable X-linked recessive disorder that results in muscle wasting and loss of ambulation is due to mutations in the dystrophin gene. Exonic duplications of dystrophin gene are a common type of mutations found in DMD patients. In this study, we utilized a single guide RNA CRISPR strategy targeting intronic regions to delete the extra duplicated regions in patient myogenic cells carrying duplication of exon 2, exons 2-9, and exons 8-9 in the DMD gene. Immunostaining on CRISPR-corrected derived myotubes demonstrated the rescue of dystrophin protein. Subsequent RNA sequencing of the DMD cells indicated rescue of genes of dystrophin related pathways. Examination of predicted close-match off-targets evidenced no aberrant gene editing at these loci. Here, we further demonstrate the efficiency of a single guide CRISPR strategy capable of deleting multi-exon duplications in the DMD gene without significant off target effect. Our study contributes valuable insights into the safety and efficacy of using single guide CRISPR strategy as a potential therapeutic approach for DMD patients with duplications of variable size.
Collapse
Affiliation(s)
- Juliette Lemoine
- Genethon, 1, bis rue de l'internationale, 91000, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, 91000, Evry-Courcouronnes, France
| | - Auriane Dubois
- Genethon, 1, bis rue de l'internationale, 91000, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, 91000, Evry-Courcouronnes, France
| | - Alan Dorval
- Genethon, 1, bis rue de l'internationale, 91000, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, 91000, Evry-Courcouronnes, France
- ADLIN Science, Pépinière « Genopole Entreprises », 91058, Evry, France
| | - Abbass Jaber
- Genethon, 1, bis rue de l'internationale, 91000, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, 91000, Evry-Courcouronnes, France
| | - Ganesh Warthi
- Genethon, 1, bis rue de l'internationale, 91000, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, 91000, Evry-Courcouronnes, France
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - Tao Wang
- Genethon, 1, bis rue de l'internationale, 91000, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, 91000, Evry-Courcouronnes, France
| | - Guillaume Corre
- Genethon, 1, bis rue de l'internationale, 91000, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, 91000, Evry-Courcouronnes, France
| | - Matteo Bovolenta
- Genethon, 1, bis rue de l'internationale, 91000, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, 91000, Evry-Courcouronnes, France
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Isabelle Richard
- Genethon, 1, bis rue de l'internationale, 91000, Evry, France.
- Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, 91000, Evry-Courcouronnes, France.
| |
Collapse
|
5
|
Qin M, Deng C, Wen L, Luo G, Meng Y. CRISPR-Cas and CRISPR-based screening system for precise gene editing and targeted cancer therapy. J Transl Med 2024; 22:516. [PMID: 38816739 PMCID: PMC11138051 DOI: 10.1186/s12967-024-05235-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Target cancer therapy has been developed for clinical cancer treatment based on the discovery of CRISPR (clustered regularly interspaced short palindromic repeat) -Cas system. This forefront and cutting-edge scientific technique improves the cancer research into molecular level and is currently widely utilized in genetic investigation and clinical precision cancer therapy. In this review, we summarized the genetic modification by CRISPR/Cas and CRISPR screening system, discussed key components for successful CRISPR screening, including Cas enzymes, guide RNA (gRNA) libraries, target cells or organs. Furthermore, we focused on the application for CAR-T cell therapy, drug target, drug screening, or drug selection in both ex vivo and in vivo with CRISPR screening system. In addition, we elucidated the advantages and potential obstacles of CRISPR system in precision clinical medicine and described the prospects for future genetic therapy.In summary, we provide a comprehensive and practical perspective on the development of CRISPR/Cas and CRISPR screening system for the treatment of cancer defects, aiming to further improve the precision and accuracy for clinical treatment and individualized gene therapy.
Collapse
Affiliation(s)
- Mingming Qin
- Reproductive Medical Center, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University (Foshan Women and Children Hospital), Foshan, Guangdong, 528000, China
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chunhao Deng
- Chinese Medicine and Translational Medicine R&D center, Zhuhai UM Science & Technology Research Institute, Zhuhai, Guangdong, 519031, China
| | - Liewei Wen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong, 519000, China
| | - Guoqun Luo
- Reproductive Medical Center, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University (Foshan Women and Children Hospital), Foshan, Guangdong, 528000, China.
| | - Ya Meng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
6
|
Kulcsár PI, Tálas A, Ligeti Z, Tóth E, Rakvács Z, Bartos Z, Krausz SL, Welker Á, Végi VL, Huszár K, Welker E. A cleavage rule for selection of increased-fidelity SpCas9 variants with high efficiency and no detectable off-targets. Nat Commun 2023; 14:5746. [PMID: 37717069 PMCID: PMC10505190 DOI: 10.1038/s41467-023-41393-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/04/2023] [Indexed: 09/18/2023] Open
Abstract
Streptococcus pyogenes Cas9 (SpCas9) has been employed as a genome engineering tool with a promising potential within therapeutics. However, its off-target effects present major safety concerns for applications requiring high specificity. Approaches developed to date to mitigate this effect, including any of the increased-fidelity (i.e., high-fidelity) SpCas9 variants, only provide efficient editing on a relatively small fraction of targets without detectable off-targets. Upon addressing this problem, we reveal a rather unexpected cleavability ranking of target sequences, and a cleavage rule that governs the on-target and off-target cleavage of increased-fidelity SpCas9 variants but not that of SpCas9-NG or xCas9. According to this rule, for each target, an optimal variant with matching fidelity must be identified for efficient cleavage without detectable off-target effects. Based on this insight, we develop here an extended set of variants, the CRISPRecise set, with increased fidelity spanning across a wide range, with differences in fidelity small enough to comprise an optimal variant for each target, regardless of its cleavability ranking. We demonstrate efficient editing with maximum specificity even on those targets that have not been possible in previous studies.
Collapse
Affiliation(s)
- Péter István Kulcsár
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - András Tálas
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Zoltán Ligeti
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Science, University of Szeged, Szeged, Hungary
| | - Eszter Tóth
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Zsófia Rakvács
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Zsuzsa Bartos
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Sarah Laura Krausz
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Biospiral-2006 Ltd, Szeged, Hungary
- School of Ph.D. Studies, Semmelweis University, Budapest, Hungary
| | - Ágnes Welker
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Gene Design Ltd, Szeged, Hungary
| | - Vanessza Laura Végi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Biospiral-2006 Ltd, Szeged, Hungary
| | - Krisztina Huszár
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Gene Design Ltd, Szeged, Hungary
| | - Ervin Welker
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
7
|
Zhang Z, Jeong H, Zu D, Zhao X, Senaratne P, Filbin J, Silber B, Kang S, Gladstone A, Lau M, Cui G, Park Y, Lee SE. Dynamic observations of CRISPR-Cas target recognition and cleavage heterogeneities. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4419-4425. [PMID: 39634158 PMCID: PMC11502048 DOI: 10.1515/nanoph-2022-0286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/24/2022] [Accepted: 08/13/2022] [Indexed: 12/07/2024]
Abstract
CRISPR-Cas systems (clustered regularly interspaced short palindromic repeats) have shown great potential as efficient gene editing tools in disease therapeutics. Although numerous CRISPR-Cas systems have been developed, detailed mechanisms of target recognition and DNA cleavage are still unclear. In this work, we dynamically observe the entire process of conjugation, target recognition and DNA cleavage by single particle spectroscopy of CRISPR-Cas systems on single particle surfaces (gold) with the unique advantage of extended time periods. We show the CRISPR-Cas system, comprised of Cas endonuclease and single guide RNA, is stable and functional on single particle surfaces. Owing to the photostability of single particle surfaces, we directly observe in real time the entire dynamic process of conjugation, target recognition and DNA cleavage without photobleaching. We find heterogeneity in target recognition and DNA cleavage processes in which individual spectra vary significantly from one another as well as from the ensemble. We believe an in depth understanding of heterogeneities in CRISPR-Cas systems can overcome potential barriers in precision medicine and personalized disease therapeutics.
Collapse
Affiliation(s)
- Zhijia Zhang
- Department of Electrical & Computer Engineering, Biomedical Engineering, Applied Physics, Biointerfaces Institute, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, USA
| | - Haechan Jeong
- Department of Electrical & Computer Engineering, Biomedical Engineering, Applied Physics, Biointerfaces Institute, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, USA
| | - Di Zu
- Department of Electrical & Computer Engineering, Biomedical Engineering, Applied Physics, Biointerfaces Institute, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, USA
| | - Xintao Zhao
- Department of Electrical & Computer Engineering, Biomedical Engineering, Applied Physics, Biointerfaces Institute, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, USA
| | - Pramith Senaratne
- Department of Electrical & Computer Engineering, Biomedical Engineering, Applied Physics, Biointerfaces Institute, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, USA
| | - John Filbin
- Department of Electrical & Computer Engineering, Biomedical Engineering, Applied Physics, Biointerfaces Institute, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, USA
| | - Brett Silber
- Department of Electrical & Computer Engineering, Biomedical Engineering, Applied Physics, Biointerfaces Institute, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, USA
| | - Sarah Kang
- Department of Electrical & Computer Engineering, Biomedical Engineering, Applied Physics, Biointerfaces Institute, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, USA
| | - Ann Gladstone
- Department of Electrical & Computer Engineering, Biomedical Engineering, Applied Physics, Biointerfaces Institute, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, USA
| | - Matthew Lau
- Department of Electrical & Computer Engineering, Biomedical Engineering, Applied Physics, Biointerfaces Institute, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, USA
| | - Guangjie Cui
- Department of Electrical & Computer Engineering, Biomedical Engineering, Applied Physics, Biointerfaces Institute, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, USA
| | - Younggeun Park
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, USA
| | - Somin Eunice Lee
- Department of Electrical & Computer Engineering, Biomedical Engineering, Applied Physics, Biointerfaces Institute, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, USA
| |
Collapse
|
8
|
Li W, Huang C, Chen J. The application of CRISPR /Cas mediated gene editing in synthetic biology: Challenges and optimizations. Front Bioeng Biotechnol 2022; 10:890155. [PMID: 36091445 PMCID: PMC9452635 DOI: 10.3389/fbioe.2022.890155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and its associated enzymes (Cas) is a simple and convenient genome editing tool that has been used in various cell factories and emerging synthetic biology in the recent past. However, several problems, including off-target effects, cytotoxicity, and low efficiency of multi-gene editing, are associated with the CRISPR/Cas system, which have limited its application in new species. In this review, we briefly describe the mechanisms of CRISPR/Cas engineering and propose strategies to optimize the system based on its defects, including, but not limited to, enhancing targeted specificity, reducing toxicity related to Cas protein, and improving multi-point editing efficiency. In addition, some examples of improvements in synthetic biology are also highlighted. Finally, future perspectives of system optimization are discussed, providing a reference for developing safe genome-editing tools for new species.
Collapse
Affiliation(s)
- Wenqian Li
- MOE Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing,China
| | - Can Huang
- MOE Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing,China
| | - Jingyu Chen
- MOE Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing,China
- *Correspondence: Jingyu Chen,
| |
Collapse
|
9
|
Hunter AL, Adamson AD, Poolman TM, Grudzien M, Loudon ASI, Ray DW, Bechtold DA. HaloChIP-seq for Antibody-Independent Mapping of Mouse Transcription Factor Cistromes in vivo. Bio Protoc 2022; 12:e4460. [PMID: 35937930 PMCID: PMC9303821 DOI: 10.21769/bioprotoc.4460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 12/29/2022] Open
Abstract
Chromatin immunoprecipitation (ChIP) maps, on a genome-wide scale, transcription factor binding sites, and the distribution of other chromatin-associated proteins and their modifications. As such, it provides valuable insights into mechanisms of gene regulation. However, successful ChIP experiments are dependent on the availability of a high-quality antibody against the target of interest. Using antibodies with poor sensitivity and specificity can yield misleading results. This can be partly circumvented by using epitope-tagged systems ( e.g. , HA, Myc, His), but these approaches are still antibody-dependent. HaloTag ® is a modified dehalogenase enzyme, which covalently binds synthetic ligands. This system can be used for imaging and purification of HaloTag ® fusion proteins, and has been used for ChIP in vitro . Here, we present a protocol for using the HaloTag ® system for ChIP in vivo , to map, with sensitivity and specificity, the cistrome of a dynamic mouse transcription factor expressed at its endogenous locus. Graphical abstract.
Collapse
Affiliation(s)
- Ann Louise Hunter
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Antony D. Adamson
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Toryn M. Poolman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
| | - Magdalena Grudzien
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Andrew S. I. Loudon
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - David W. Ray
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - David A. Bechtold
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
10
|
Silachev D, Koval A, Savitsky M, Padmasola G, Quairiaux C, Thorel F, Katanaev VL. Mouse models characterize GNAO1 encephalopathy as a neurodevelopmental disorder leading to motor anomalies: from a severe G203R to a milder C215Y mutation. Acta Neuropathol Commun 2022; 10:9. [PMID: 35090564 PMCID: PMC8796625 DOI: 10.1186/s40478-022-01312-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/08/2022] [Indexed: 02/07/2023] Open
Abstract
GNAO1 encephalopathy characterized by a wide spectrum of neurological deficiencies in pediatric patients originates from de novo heterozygous mutations in the gene encoding Gαo, the major neuronal G protein. Efficient treatments and even the proper understanding of the underlying etiology are currently lacking for this dominant disease. Adequate animal models of GNAO1 encephalopathy are urgently needed. Here we describe establishment and characterization of mouse models of the disease based on two point mutations in GNAO1 with different clinical manifestations. One of them is G203R leading to the early-onset epileptic seizures, motor dysfunction, developmental delay and intellectual disability. The other is C215Y producing much milder clinical outcomes, mostly-late-onset hyperkinetic movement disorder. The resultant mouse models show distinct phenotypes: severe neonatal lethality in GNAO1[G203R]/ + mice vs. normal vitality in GNAO1[C215Y]/ + . The latter model further revealed strong hyperactivity and hyperlocomotion in a panel of behavioral assays, without signs of epilepsy, recapitulating the patients' manifestations. Importantly, despite these differences the two models similarly revealed prenatal brain developmental anomalies, such as enlarged lateral ventricles and decreased numbers of neuronal precursor cells in the cortex. Thus, our work unveils GNAO1 encephalopathy as to a large extent neurodevelopmental malady. We expect that this understanding and the tools we established will be instrumental for future therapeutic developments.
Collapse
Affiliation(s)
- Denis Silachev
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992, Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva, 1211, Geneva, Switzerland
- School of Biomedicine, Far Eastern Federal University, 690090, Vladivostok, Russia
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva, 1211, Geneva, Switzerland
| | - Mikhail Savitsky
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva, 1211, Geneva, Switzerland
| | - Guru Padmasola
- Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Charles Quairiaux
- Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Fabrizio Thorel
- Transgenesis Core Facility, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva, 1211, Geneva, Switzerland.
- School of Biomedicine, Far Eastern Federal University, 690090, Vladivostok, Russia.
| |
Collapse
|
11
|
Ahmad A, Munawar N, Khan Z, Qusmani AT, Khan SH, Jamil A, Ashraf S, Ghouri MZ, Aslam S, Mubarik MS, Munir A, Sultan Q, Abd-Elsalam KA, Qari SH. An Outlook on Global Regulatory Landscape for Genome-Edited Crops. Int J Mol Sci 2021; 22:11753. [PMID: 34769204 PMCID: PMC8583973 DOI: 10.3390/ijms222111753] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022] Open
Abstract
The revolutionary technology of CRISPR/Cas systems and their extraordinary potential to address fundamental questions in every field of biological sciences has led to their developers being awarded the 2020 Nobel Prize for Chemistry. In agriculture, CRISPR/Cas systems have accelerated the development of new crop varieties with improved traits-without the need for transgenes. However, the future of this technology depends on a clear and truly global regulatory framework being developed for these crops. Some CRISPR-edited crops are already on the market, and yet countries and regions are still divided over their legal status. CRISPR editing does not require transgenes, making CRISPR crops more socially acceptable than genetically modified crops, but there is vigorous debate over how to regulate these crops and what precautionary measures are required before they appear on the market. This article reviews intended outcomes and risks arising from the site-directed nuclease CRISPR systems used to improve agricultural crop plant genomes. It examines how various CRISPR system components, and potential concerns associated with CRISPR/Cas, may trigger regulatory oversight of CRISPR-edited crops. The article highlights differences and similarities between GMOs and CRISPR-edited crops, and discusses social and ethical concerns. It outlines the regulatory framework for GMO crops, which many countries also apply to CRISPR-edited crops, and the global regulatory landscape for CRISPR-edited crops. The article concludes with future prospects for CRISPR-edited crops and their products.
Collapse
Affiliation(s)
- Aftab Ahmad
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan; (A.J.); (S.A.); (A.M.)
| | - Nayla Munawar
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates;
| | - Zulqurnain Khan
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture Multan, Multan 60000, Pakistan;
| | - Alaa T. Qusmani
- Biology Department, Al-Jumum University College, Umm Al-Qura University, Makkah 24243, Saudi Arabia;
| | - Sultan Habibullah Khan
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
- Center for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Amer Jamil
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan; (A.J.); (S.A.); (A.M.)
- Center for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Sidra Ashraf
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan; (A.J.); (S.A.); (A.M.)
| | - Muhammad Zubair Ghouri
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
- Center for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Sabin Aslam
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
| | - Muhammad Salman Mubarik
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
| | - Ahmad Munir
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan; (A.J.); (S.A.); (A.M.)
| | - Qaiser Sultan
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Sameer H. Qari
- Molecular Biology Central Laboratory (GMCL), Department of Biology/Genetics, Aljumum University College, Umm Al-Qura University, Makkah 24243, Saudi Arabia
| |
Collapse
|
12
|
Wang DC, Wang X. Discovery in clinical and translational medicine. Clin Transl Med 2021; 11:e568. [PMID: 34709762 PMCID: PMC8521278 DOI: 10.1002/ctm2.568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
With the rapid development of biotechnologies and deep improvement of knowledge, “Discovery” is the initial period and source of innovation of clinical and translational medicine. The international journal of Clinical and Translational Discovery serves to highlight unknown or unclear aspects of clinical and translational medicine‐associated knowledge, technologies, mechanisms, and therapies (https://onlinelibrary.wiley.com/journal/27680622). The Discovery aims to define the interaction between genes, proteins, and cells, and explore molecular mechanisms of intercommunication and inter‐regulation. More discoveries of technologies and equipment are expected to improve method sensitivity, specificity, stability, analysis, and clinical significance. The first priority of Clinical and Translational Discovery is to turn gene‐, protein‐, drug‐, cell‐, and interaction‐based discoveries into health advancements. Clinical and Translational Discovery highly focuses on the discoveries of biological therapies and precision medicine‐based therapy elicited from computational chemistry, DNA libraries, target‐dependent small molecular drugs, high‐throughput screening, vaccination, immune therapy, cell implantations, gene editing, and RNA‐ or protein‐based inhibitors. Thus, Clinical and Translational Discovery sincerely welcome you to join and share the rapid development and future successes to come.
Collapse
Affiliation(s)
- Diane C Wang
- Department of Emergency Medicine, Sunshine Coast University Hospital, Sunshine Coast, Australia
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Fudan University Zhongshan Hospital, Shanghai, P. R. China
| |
Collapse
|
13
|
Ahmad A, Munawar N, Khan Z, Qusmani AT, Khan SH, Jamil A, Ashraf S, Ghouri MZ, Aslam S, Mubarik MS, Munir A, Sultan Q, Abd-Elsalam KA, Qari SH. An Outlook on Global Regulatory Landscape for Genome-Edited Crops. Int J Mol Sci 2021. [DOI: https://doi.org/10.3390/ijms222111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The revolutionary technology of CRISPR/Cas systems and their extraordinary potential to address fundamental questions in every field of biological sciences has led to their developers being awarded the 2020 Nobel Prize for Chemistry. In agriculture, CRISPR/Cas systems have accelerated the development of new crop varieties with improved traits—without the need for transgenes. However, the future of this technology depends on a clear and truly global regulatory framework being developed for these crops. Some CRISPR-edited crops are already on the market, and yet countries and regions are still divided over their legal status. CRISPR editing does not require transgenes, making CRISPR crops more socially acceptable than genetically modified crops, but there is vigorous debate over how to regulate these crops and what precautionary measures are required before they appear on the market. This article reviews intended outcomes and risks arising from the site-directed nuclease CRISPR systems used to improve agricultural crop plant genomes. It examines how various CRISPR system components, and potential concerns associated with CRISPR/Cas, may trigger regulatory oversight of CRISPR-edited crops. The article highlights differences and similarities between GMOs and CRISPR-edited crops, and discusses social and ethical concerns. It outlines the regulatory framework for GMO crops, which many countries also apply to CRISPR-edited crops, and the global regulatory landscape for CRISPR-edited crops. The article concludes with future prospects for CRISPR-edited crops and their products.
Collapse
|
14
|
Abstract
The revolutionary technology of CRISPR/Cas systems and their extraordinary potential to address fundamental questions in every field of biological sciences has led to their developers being awarded the 2020 Nobel Prize for Chemistry. In agriculture, CRISPR/Cas systems have accelerated the development of new crop varieties with improved traits-without the need for transgenes. However, the future of this technology depends on a clear and truly global regulatory framework being developed for these crops. Some CRISPR-edited crops are already on the market, and yet countries and regions are still divided over their legal status. CRISPR editing does not require transgenes, making CRISPR crops more socially acceptable than genetically modified crops, but there is vigorous debate over how to regulate these crops and what precautionary measures are required before they appear on the market. This article reviews intended outcomes and risks arising from the site-directed nuclease CRISPR systems used to improve agricultural crop plant genomes. It examines how various CRISPR system components, and potential concerns associated with CRISPR/Cas, may trigger regulatory oversight of CRISPR-edited crops. The article highlights differences and similarities between GMOs and CRISPR-edited crops, and discusses social and ethical concerns. It outlines the regulatory framework for GMO crops, which many countries also apply to CRISPR-edited crops, and the global regulatory landscape for CRISPR-edited crops. The article concludes with future prospects for CRISPR-edited crops and their products.
Collapse
|
15
|
One-Step Generation of Multiple Gene-Edited Pigs by Electroporation of the CRISPR/Cas9 System into Zygotes to Reduce Xenoantigen Biosynthesis. Int J Mol Sci 2021; 22:ijms22052249. [PMID: 33668187 PMCID: PMC7956194 DOI: 10.3390/ijms22052249] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 02/08/2023] Open
Abstract
Xenoantigens cause hyperacute rejection and limit the success of interspecific xenografts. Therefore, genes involved in xenoantigen biosynthesis, such as GGTA1, CMAH, and B4GALNT2, are key targets to improve the outcomes of xenotransplantation. In this study, we introduced a CRISPR/Cas9 system simultaneously targeting GGTA1, CMAH, and B4GALNT2 into in vitro-fertilized zygotes using electroporation for the one-step generation of multiple gene-edited pigs without xenoantigens. First, we optimized the combination of guide RNAs (gRNAs) targeting GGTA1 and CMAH with respect to gene editing efficiency in zygotes, and transferred electroporated embryos with the optimized gRNAs and Cas9 into recipient gilts. Next, we optimized the Cas9 protein concentration with respect to the gene editing efficiency when GGTA1, CMAH, and B4GALNT2 were targeted simultaneously, and generated gene-edited pigs using the optimized conditions. We achieved the one-step generation of GGTA1/CMAH double-edited pigs and GGTA1/CMAH/B4GALNT2 triple-edited pigs. Immunohistological analyses demonstrated the downregulation of xenoantigens; however, these multiple gene-edited pigs were genetic mosaics that failed to knock out some xenoantigens. Although mosaicism should be resolved, the electroporation technique could become a primary method for the one-step generation of multiple gene modifications in pigs aimed at improving pig-to-human xenotransplantation.
Collapse
|
16
|
Perisse IV, Fan Z, Singina GN, White KL, Polejaeva IA. Improvements in Gene Editing Technology Boost Its Applications in Livestock. Front Genet 2021; 11:614688. [PMID: 33603767 PMCID: PMC7885404 DOI: 10.3389/fgene.2020.614688] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Accelerated development of novel CRISPR/Cas9-based genome editing techniques provides a feasible approach to introduce a variety of precise modifications in the mammalian genome, including introduction of multiple edits simultaneously, efficient insertion of long DNA sequences into specific targeted loci as well as performing nucleotide transitions and transversions. Thus, the CRISPR/Cas9 tool has become the method of choice for introducing genome alterations in livestock species. The list of new CRISPR/Cas9-based genome editing tools is constantly expanding. Here, we discuss the methods developed to improve efficiency and specificity of gene editing tools as well as approaches that can be employed for gene regulation, base editing, and epigenetic modifications. Additionally, advantages and disadvantages of two primary methods used for the production of gene-edited farm animals: somatic cell nuclear transfer (SCNT or cloning) and zygote manipulations will be discussed. Furthermore, we will review agricultural and biomedical applications of gene editing technology.
Collapse
Affiliation(s)
- Iuri Viotti Perisse
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Zhiqiang Fan
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Galina N. Singina
- L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, Russia
| | - Kenneth L. White
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Irina A. Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| |
Collapse
|
17
|
Höijer I, Johansson J, Gudmundsson S, Chin CS, Bunikis I, Häggqvist S, Emmanouilidou A, Wilbe M, den Hoed M, Bondeson ML, Feuk L, Gyllensten U, Ameur A. Amplification-free long-read sequencing reveals unforeseen CRISPR-Cas9 off-target activity. Genome Biol 2020; 21:290. [PMID: 33261648 PMCID: PMC7706270 DOI: 10.1186/s13059-020-02206-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND One ongoing concern about CRISPR-Cas9 genome editing is that unspecific guide RNA (gRNA) binding may induce off-target mutations. However, accurate prediction of CRISPR-Cas9 off-target activity is challenging. Here, we present SMRT-OTS and Nano-OTS, two novel, amplification-free, long-read sequencing protocols for detection of gRNA-driven digestion of genomic DNA by Cas9 in vitro. RESULTS The methods are assessed using the human cell line HEK293, re-sequenced at 18x coverage using highly accurate HiFi SMRT reads. SMRT-OTS and Nano-OTS are first applied to three different gRNAs targeting HEK293 genomic DNA, resulting in a set of 55 high-confidence gRNA cleavage sites identified by both methods. Twenty-five of these sites are not reported by off-target prediction software, either because they contain four or more single nucleotide mismatches or insertion/deletion mismatches, as compared with the human reference. Additional experiments reveal that 85% of Cas9 cleavage sites are also found by other in vitro-based methods and that on- and off-target sites are detectable in gene bodies where short-reads fail to uniquely align. Even though SMRT-OTS and Nano-OTS identify several sites with previously validated off-target editing activity in cells, our own CRISPR-Cas9 editing experiments in human fibroblasts do not give rise to detectable off-target mutations at the in vitro-predicted sites. However, indel and structural variation events are enriched at the on-target sites. CONCLUSIONS Amplification-free long-read sequencing reveals Cas9 cleavage sites in vitro that would have been difficult to predict using computational tools, including in dark genomic regions inaccessible by short-read sequencing.
Collapse
Affiliation(s)
- Ida Höijer
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Josefin Johansson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Sanna Gudmundsson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA USA
| | | | - Ignas Bunikis
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Susana Häggqvist
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anastasia Emmanouilidou
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- The Beijer laboratory and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maria Wilbe
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marcel den Hoed
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- The Beijer laboratory and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marie-Louise Bondeson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Lars Feuk
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ulf Gyllensten
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Adam Ameur
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
18
|
Koppes EA, Redel BK, Johnson MA, Skvorak KJ, Ghaloul-Gonzalez L, Yates ME, Lewis DW, Gollin SM, Wu YL, Christ SE, Yerle M, Leshinski A, Spate LD, Benne JA, Murphy SL, Samuel MS, Walters EM, Hansen SA, Wells KD, Lichter-Konecki U, Wagner RA, Newsome JT, Dobrowolski SF, Vockley J, Prather RS, Nicholls RD. A porcine model of phenylketonuria generated by CRISPR/Cas9 genome editing. JCI Insight 2020; 5:141523. [PMID: 33055427 PMCID: PMC7605535 DOI: 10.1172/jci.insight.141523] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
Phenylalanine hydroxylase-deficient (PAH-deficient) phenylketonuria (PKU) results in systemic hyperphenylalaninemia, leading to neurotoxicity with severe developmental disabilities. Dietary phenylalanine (Phe) restriction prevents the most deleterious effects of hyperphenylalaninemia, but adherence to diet is poor in adult and adolescent patients, resulting in characteristic neurobehavioral phenotypes. Thus, an urgent need exists for new treatments. Additionally, rodent models of PKU do not adequately reflect neurocognitive phenotypes, and thus there is a need for improved animal models. To this end, we have developed PAH-null pigs. After selection of optimal CRISPR/Cas9 genome-editing reagents by using an in vitro cell model, zygote injection of 2 sgRNAs and Cas9 mRNA demonstrated deletions in preimplantation embryos, with embryo transfer to a surrogate leading to 2 founder animals. One pig was heterozygous for a PAH exon 6 deletion allele, while the other was compound heterozygous for deletions of exon 6 and of exons 6-7. The affected pig exhibited hyperphenylalaninemia (2000-5000 μM) that was treatable by dietary Phe restriction, consistent with classical PKU, along with juvenile growth retardation, hypopigmentation, ventriculomegaly, and decreased brain gray matter volume. In conclusion, we have established a large-animal preclinical model of PKU to investigate pathophysiology and to assess new therapeutic interventions.
Collapse
Affiliation(s)
- Erik A. Koppes
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bethany K. Redel
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Marie A. Johnson
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kristen J. Skvorak
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lina Ghaloul-Gonzalez
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Megan E. Yates
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dale W. Lewis
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Susanne M. Gollin
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Yijen L. Wu
- Department of Developmental Biology, University of Pittsburgh, and UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shawn E. Christ
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Martine Yerle
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | - Angela Leshinski
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lee D. Spate
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Joshua A. Benne
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Stephanie L. Murphy
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Melissa S. Samuel
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Eric M. Walters
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Sarah A. Hansen
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Kevin D. Wells
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Uta Lichter-Konecki
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert A. Wagner
- Division of Laboratory Animal Resources, Office of Research, Health Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph T. Newsome
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Division of Laboratory Animal Resources, Office of Research, Health Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven F. Dobrowolski
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jerry Vockley
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Randall S. Prather
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Robert D. Nicholls
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
19
|
Mianné J, Bourguignon C, Nguyen Van C, Fieldès M, Nasri A, Assou S, De Vos J. Pipeline for the Generation and Characterization of Transgenic Human Pluripotent Stem Cells Using the CRISPR/Cas9 Technology. Cells 2020; 9:cells9051312. [PMID: 32466123 PMCID: PMC7290981 DOI: 10.3390/cells9051312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/15/2020] [Accepted: 05/23/2020] [Indexed: 12/11/2022] Open
Abstract
Recent advances in genome engineering based on the CRISPR/Cas9 technology have revolutionized our ability to manipulate genomic DNA. Its use in human pluripotent stem cells (hPSCs) has allowed a wide range of mutant cell lines to be obtained at an unprecedented rate. The combination of these two groundbreaking technologies has tremendous potential, from disease modeling to stem cell-based therapies. However, the generation, screening and molecular characterization of these cell lines remain a cumbersome and multi-step endeavor. Here, we propose a pipeline of strategies to efficiently generate, sub-clone, and characterize CRISPR/Cas9-edited hPSC lines in the function of the introduced mutation (indels, point mutations, insertion of large constructs, deletions).
Collapse
Affiliation(s)
- Joffrey Mianné
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, 34000 Montpellier, France; (J.M.); (C.B.); (C.N.V.); (M.F.); (A.N.)
| | - Chloé Bourguignon
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, 34000 Montpellier, France; (J.M.); (C.B.); (C.N.V.); (M.F.); (A.N.)
| | - Chloé Nguyen Van
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, 34000 Montpellier, France; (J.M.); (C.B.); (C.N.V.); (M.F.); (A.N.)
| | - Mathieu Fieldès
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, 34000 Montpellier, France; (J.M.); (C.B.); (C.N.V.); (M.F.); (A.N.)
| | - Amel Nasri
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, 34000 Montpellier, France; (J.M.); (C.B.); (C.N.V.); (M.F.); (A.N.)
| | - Said Assou
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, 34000 Montpellier, France; (J.M.); (C.B.); (C.N.V.); (M.F.); (A.N.)
- Correspondence: (S.A.); (J.D.V.)
| | - John De Vos
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, 34000 Montpellier, France; (J.M.); (C.B.); (C.N.V.); (M.F.); (A.N.)
- Department of Cell and Tissue Engineering, Univ Montpellier, CHU Montpellier, 34000 Montpellier, France
- Correspondence: (S.A.); (J.D.V.)
| |
Collapse
|
20
|
Pomella S, Rota R. The CRISP(Y) Future of Pediatric Soft Tissue Sarcomas. Front Chem 2020; 8:178. [PMID: 32232030 PMCID: PMC7083251 DOI: 10.3389/fchem.2020.00178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
The RNA-guided clustered regularly interspaced palindromic repeats (CRISPR)/associated nuclease 9 (Cas9)-based genome editing technology has increasingly become a recognized method for translational research. In oncology, the ease and versatility of CRISPR/Cas9 has made it possible to obtain many results in the identification of new target genes and in unravel mechanisms of resistance to therapy. The majority of the studies have been made on adult tumors so far. In this mini review we present an overview on the major aspects of CRISPR/Cas9 technology with a focus on a group of rare pediatric malignancies, soft tissue sarcomas, on which this approach is having promising results.
Collapse
Affiliation(s)
| | - Rossella Rota
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|