1
|
Gao Q, Su Z, Pang X, Chen J, Luo R, Li X, Zhang C, Zhao Y. Overexpression of Heme Oxygenase 1 Enhances the Neuroprotective Effects of Exosomes in Subarachnoid Hemorrhage by Suppressing Oxidative Stress and Endoplasmic Reticulum Stress. Mol Neurobiol 2025; 62:6088-6101. [PMID: 39710823 DOI: 10.1007/s12035-024-04651-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024]
Abstract
AIMS This study aims to elucidate the therapeutic effects and underlying mechanisms of exosomes derived from Heme oxygenase 1 (HO-1)-overexpressing human umbilical cord mesenchymal stem cells (ExoHO-1) in a subarachnoid hemorrhage (SAH) mouse model. METHODS In this study, exosomes were identified using Western blotting, particle analysis, and transmission electron microscopy. The effect of ExoHO-1 and ExoCtrl on the neurological function of SAH mice was assessed using the Garcia scoring system, Beam balance, Rotarod test, and Morris water maze test. Neuronal apoptosis and survival were evaluated through TUNEL and Nissl staining. Levels of oxidative and endoplasmic reticulum stress were measured via immunofluorescence, Western blotting, DHE staining, enzyme-linked immunosorbent assay, and commercial kits. RESULTS HO-1-overexpressing human umbilical cord mesenchymal stem cells encapsulated HO-1 into their exosomes. ExoHO-1 significantly enhanced both short-term and long-term neurological function protection. By reducing the activation of the PERK/CHOP/Caspase12 pathway and decreasing oxidative stress levels, ExoHO-1 effectively inhibited neuronal apoptosis in the ipsilateral temporal cortex. CONCLUSION ExoHO-1 enhances the therapeutic efficacy of exosomes in SAH mice by countering neuronal apoptosis, primarily through the suppression of oxidative and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Qiongqiong Gao
- Department of neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
- Central Laboratory, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Zhumin Su
- Department of neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Xiangxiong Pang
- Translational Medicine Research Center, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, China
| | - Jinshuo Chen
- Central Laboratory, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Ruixiang Luo
- Central Laboratory, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Xiaoyang Li
- Central Laboratory, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Chi Zhang
- Central Laboratory, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| | - Yun Zhao
- Department of neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
- Translational Medicine Research Center, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
2
|
Tian J, Niu Z, Yang H, Wang C, Guan L, Zhao L, Shi D, Zhang Z. PERK/Sestrin2 Signaling Pathway Mediated Autophagy Regulates Human Cardiomyocytes Apoptosis Induced by Traffic-Related PM 2.5 and Diverse Constituents. Int J Mol Sci 2025; 26:3784. [PMID: 40332408 PMCID: PMC12027522 DOI: 10.3390/ijms26083784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Although the strong causal association between PM2.5 and cardiovascular disease has been extensively studied, the latent molecular mechanisms have not been entirely explained. The objective of this research was to assess the cardiotoxicity of Traffic-related PM2.5 (TRPM2.5), water-soluble components (WSC), and water-insoluble components (WIC) in human cardiomyocytes (AC16) and to investigate the underlying molecular mechanisms. Endoplasmic reticulum stress (ERS), autophagy, and apoptosis were activated 24 h after exposure to total-TRPM2.5, WSC, or WIC. WIC was predominantly related to cardiotoxicity compared to WSC. Sestrin2 is an upstream molecule in several signaling pathways, including those involved in autophagy and apoptosis. In this study, we found that the knockdown of Protein Kinase RNA-like Endoplasmic Reticulum Kinase (PERK) suppressed the expression of PERK, Sestrin2, Caspase-12, Caspase-3, LC3, and p62 in TRPM2.5-treated AC16 cells. These results indicate that ERS participates in the activation of autophagy and apoptosis through the PERK/Sestrin2 pathway. We found that inhibiting autophagy with 3-methyladenine (3-MA) decreased the expression of autophagy-related factors and aggravated apoptosis. These observations suggest that protective autophagy was initiated. Finally, our findings provide valuable insights into the molecular mechanism by which ERS might regulate autophagy through the PERK/Sestrin2 signaling pathway, and protective autophagy may be activated to relieve TRPM2.5 and component-mediated apoptosis in AC16 cells.
Collapse
Affiliation(s)
- Jiayu Tian
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China; (J.T.); (Z.N.); (L.G.)
- Yellow River Basin Ecological Public Health Security Center, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Zeyu Niu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China; (J.T.); (Z.N.); (L.G.)
- Yellow River Basin Ecological Public Health Security Center, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Huan Yang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China; (J.T.); (Z.N.); (L.G.)
- Yellow River Basin Ecological Public Health Security Center, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Caihong Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China; (J.T.); (Z.N.); (L.G.)
- Yellow River Basin Ecological Public Health Security Center, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Linlin Guan
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China; (J.T.); (Z.N.); (L.G.)
- Yellow River Basin Ecological Public Health Security Center, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Lifang Zhao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China; (J.T.); (Z.N.); (L.G.)
- Yellow River Basin Ecological Public Health Security Center, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Dongxing Shi
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China; (J.T.); (Z.N.); (L.G.)
- Yellow River Basin Ecological Public Health Security Center, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China; (J.T.); (Z.N.); (L.G.)
- Yellow River Basin Ecological Public Health Security Center, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| |
Collapse
|
3
|
Zhao Y, Ying X, Pang X, Lin Y, Shen J, Zhao Y, Shen W, Yang Y, Hong Z, Wu W, Hu X, Xie Q. Exercise-induced Sesn2 mediates autophagic flux to alleviate neural damage after ischemic stroke in mice. Exp Neurol 2025; 386:115174. [PMID: 39904418 DOI: 10.1016/j.expneurol.2025.115174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/25/2025] [Accepted: 02/01/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND We previously demonstrated that exercise pretreatment can suppress oxidative stress and neuroinflammation following ischemic stroke. However, the specific mechanisms underlying these effects are uncertain. Sestrin2 (Sesn2), a stress-responsive protein, has been reported to reduce neuroinflammation and protect against ischemic cerebral injury. Hence, this study aimed to verify whether Sesn2 can mediate the antineuroinflammatory and antioxidative effects of exercise pretreatment and explore the potential downstream mechanisms involved. METHODS To assess infarction volume and neuronal morphology, we employed HE staining. Neurological functions following ischemic stroke were evaluated via modified neurological severity scores. Techniques such as immunofluorescence, TUNEL, Fluoro-Jade B, dihydroethidium staining, and Western blotting were utilized to investigate neuronal injury, oxidative stress, neuroinflammation, autophagic flux, and signaling pathway molecules. RESULTS Our findings revealed that in a middle cerebral artery occlusion (MCAO) mouse model, administration of Sesn2 shRNA abolished the neuroprotective effects induced by exercise pretreatment. These effects include improvements in neurological dysfunction and impaired autophagy, as well as a reduction in oxidative stress and neuroinflammation. Mechanistically, the administration of AICAR to activate the AMPK/TFEB signaling pathway significantly reversed the aforementioned effects. Moreover, the inhibition of autophagic flux by chloroquine (CQ) in MCAO mice pretreated with exercise led to increased neuroinflammation. CONCLUSIONS Sesn2 contributes to the positive outcomes of exercise pretreatment for ischemic stroke. Sesn2 exerts neuroprotection by inhibiting oxidative stress and neuroinflammation, potentially through AMPK/TFEB-mediated autophagic flux in MCAO. Sesn2 may hold promise as a novel exercise-mimetic molecule and a potential target for therapeutic interventions in ischemic stroke.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xinwang Ying
- Department of Rehabilitation Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China; The Orthopaedic Center, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People's Hospital of Wenling), Wenling 317500, China
| | - Xiangxiong Pang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yao Lin
- Department of Pediatrics, Taizhou First People's Hospital, Taizhou 318020, China
| | - Jiamen Shen
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Yanfang Zhao
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Weimin Shen
- Department of Respiratory Care, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Yuhan Yang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Zhongqiu Hong
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Wen Wu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Qingfeng Xie
- Department of Rehabilitation Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
4
|
Li X, Yu H, Liu R, Miao J, Lv J, Yang S, Zhu Y, Chen Y, Lu K, Huang C, Wang X. Activation of the Nrf2 Signaling Pathway by Tetrahydroberberine Suppresses Ferroptosis and Enhances Functional Recovery Following Spinal Cord Injury. Mol Neurobiol 2025:10.1007/s12035-025-04791-y. [PMID: 40011360 DOI: 10.1007/s12035-025-04791-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Recent research has identified ferroptosis, a newly recognized form of programmed cell death, is a crucial factor in spinal cord injury (SCI). Tetrahydroberberine (THB) is a tetrahydroisoquinoline alkaloid derived from the tuber of the poppy family plant, Corydalis, which is recognized for its antioxidant and neuroprotective properties. Despite these attributes, the potential protective effects of THB against SCI are yet to be thoroughly investigated. Therefore, the aim of this study was to elucidate the protective effects and underlying mechanisms of action of THB in SCI. A mouse model of SCI was used for the in vivo experiments. Functional recovery was evaluated using the Basso Mouse Scale (BMS), footprint analysis, and hematoxylin and eosin (HE), Masson's trichrome, and Nissl staining. Lipid peroxidation was quantified using malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD). The expression levels of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway and ferroptosis markers were analyzed using western blot (WB) and immunofluorescence (IF) staining. To further elucidate the mechanism through which THB inhibits ferroptosis, an in vitro ferroptosis model was established in PC12 cells using RSL3, a known ferroptosis activator. THB markedly improved tissue and motor function restoration in mice post-SCI, with the BMS score increasing by approximately 50% compared with that in the control group. Lipid peroxidation assays revealed that THB significantly reduced MDA levels and increased GSH and SOD levels. Both in vivo and in vitro experiments demonstrated that THB significantly activated the Nrf2 pathway and inhibited ferroptosis in mice and in PC12 cells. This protective effect was reversed by the Nrf2 inhibitor, ML385, as evidenced by suppression of the Nrf2 pathway, increased lipid peroxidation, and elevated ferroptosis levels. Our in vivo and in vitro experiments indicate that THB promotes functional recovery after SCI by activating the Nrf2 signaling pathway, which attenuates lipid peroxidation and suppresses ferroptosis, thereby contributing to neuronal survival. Our findings contribute to a more comprehensive understanding of how THB exerts its recovery effects in SCI and demonstrate the potential of THB as a novel therapeutic strategy for the clinical management of SCI.
Collapse
Affiliation(s)
- Xiang Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Heng Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Rongjie Liu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiansen Miao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Junlei Lv
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Shu Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuxuan Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yan Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Keyu Lu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Chongan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
5
|
Zhou Y, Yuan X, Guo M. Unlocking NAC's potential ATF4 and m6A dynamics in rescuing cognitive impairments in PTSD. Metab Brain Dis 2025; 40:129. [PMID: 39954094 DOI: 10.1007/s11011-024-01485-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 11/21/2024] [Indexed: 02/17/2025]
Abstract
In this study, we investigated the therapeutic potential of N-acetylcysteine (NAC) in a mouse model of post-traumatic stress disorder (PTSD) induced by a single prolonged stress (SPS) protocol. Our findings demonstrate that NAC treatment significantly improved cognitive function and mitigated hippocampal neuronal apoptosis in PTSD model mice. These positive effects were accompanied by a reduction in m6A methylation levels and activating transcription factor 4 (ATF4) expression. Silencing ATF4 further attenuated hippocampal neuronal apoptosis and cognitive dysfunction, while ATF4 overexpression partially reversed the beneficial effects of NAC. It suggests that NAC's efficacy in PTSD may be mediated by its regulation of ATF4 expression and m6A methylation levels. Overall, our study provides valuable insights into the potential mechanism of action for NAC in PTSD treatment, offering promising avenues for future therapeutic strategies.
Collapse
Affiliation(s)
- Yanling Zhou
- The Fourth People's Hospital of Haikou, Haikou, 570311, P. R. China
| | - Xiuhong Yuan
- Haikou People's Hospital, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, P. R. China
- Department of Clinical Psychology, The Third Xiangya Hospital of Central South University, Changsha, 410013, P. R. China
| | - Min Guo
- Hainan General Hospital, No.19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, P. R. China.
| |
Collapse
|
6
|
Lee HJ, Kim YJ, Park HW, Kim HI, Kim HT, Hong GL, Cho SP, Kim KH, Jung JY. Sestrin2 ameliorates age-related spontaneous benign prostatic hyperplasia via activation of AMPK/mTOR dependent autophagy. Biogerontology 2025; 26:48. [PMID: 39853471 DOI: 10.1007/s10522-025-10184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025]
Abstract
Benign prostatic hyperplasia (BPH), characterized as a chronic disease with unregulated enlargement of prostatic gland, is commonly observed in elderly men leading to lower urinary tract dysfunction. Sestrin2 plays a role in the maintenance of cellular homeostasis and protects organisms from various stimuli. The exact role of Sestrin2 in the etiology of BPH, a common age-related disease, remains unknown. Here, we explored the regulatory function of Sestrin2 in modulating autophagy and its therapeutic role in spontaneous BPH. In vivo study, the 3-month-old (3 M) and 24-month-old (24 M) mice were used, and the 24 M mice were additionally administered recombinant Sestrin2 protein (rp-Sestrin2) for consecutive 14 days. In vitro, BPH-1 cells were transfected with an empty or Sestrin2 overexpression vector. Sestrin2 expression in mice prostate was gradually declined with age. Administration of rp-Sestrin2 to these mice suppressed prostatic hyperplasia, restored the balance between proliferation and apoptosis, and reduced prostatic fibrosis. Moreover, rp-Sestrin2 treatment enhanced autophagy by activating AMP-activated protein kinase (AMPK)/ mammalian target of rapamycin (mTOR) signaling pathway, as evidenced by increased autophagosome and autolysosome formation, along with a decrease in degradation marker such as p62. Our findings were further supported by in vitro studies, where Sestrin2 overexpression induced autophagy via AMPK/mTOR signaling pathway. These results suggest that Sestrin2 plays a critical role in attenuating spontaneous BPH by regulating autophagy through AMPK/mTOR signaling pathway. This study provides novel insights into the therapeutic potential of Sestrin2 in age-related spontaneous BPH.
Collapse
Affiliation(s)
- Hui-Ju Lee
- Department of Veterinary Medicine, College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, 34134, Republic of Korea
| | - Yae-Ji Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, 34134, Republic of Korea
| | - Hwan-Woo Park
- Department of Cell Biology, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Hae-Il Kim
- Department of Cell Biology, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Hyun-Tae Kim
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, 61751, Republic of Korea
| | - Geum-Lan Hong
- Department of Veterinary Medicine, College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, 34134, Republic of Korea
| | - Sung-Pil Cho
- Department of Veterinary Medicine, College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, 34134, Republic of Korea
| | - Kyung-Hyun Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, 34134, Republic of Korea.
| | - Ju-Young Jung
- Department of Veterinary Medicine, College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
7
|
Zhang N, Hu J, Liu W, Cai W, Xu Y, Wang X, Li S, Ru B. Advances in Novel Biomaterial-Based Strategies for Spinal Cord Injury Treatment. Mol Pharm 2024; 21:4764-4785. [PMID: 39235393 DOI: 10.1021/acs.molpharmaceut.3c01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Spinal cord injury (SCI) is a highly disabling neurological disorder. Its pathological process comprises an initial acute injury phase (primary injury) and a secondary injury phase (subsequent chronic injury). Although surgical, drug, and cell therapies have made some progress in treating SCI, there is no exact therapeutic strategy for treating SCI and promoting nerve regeneration due to the complexity of the pathological SCI process. The development of novel drug delivery systems to treat SCI is expected to significantly impact the individualized treatment of SCI due to its unique and excellent properties, such as active targeting and controlled release. In this review, we first describe the pathological progression of the SCI response, including primary and secondary injuries. Next, we provide a concise overview of newly developed nanoplatforms and their potential application in regulating and treating different pathological processes of SCI. Then, we introduce the existing potential problems and future clinical application perspectives of biomedical engineering-based therapies for SCI.
Collapse
Affiliation(s)
- Nannan Zhang
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 330004, China
| | - Jiaqi Hu
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 330004, China
| | - Wenlong Liu
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 330004, China
| | - Wenjun Cai
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 330004, China
| | - Yun Xu
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 330004, China
| | - Xiaojuan Wang
- Department of Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Shun Li
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 330004, China
| | - Bin Ru
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 330004, China
| |
Collapse
|
8
|
Wang Y, Fang N, Wang Y, Geng Y, Li Y. Activating MC4R Promotes Functional Recovery by Repressing Oxidative Stress-Mediated AIM2 Activation Post-spinal Cord Injury. Mol Neurobiol 2024; 61:6101-6118. [PMID: 38277117 DOI: 10.1007/s12035-024-03936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
Spinal cord injury (SCI) is a destructive neurological trauma that induces permanent sensory and motor impairment as well as a deficit in autonomic physiological function. Melanocortin receptor 4 (MC4R) is a G protein-linked receptor that is extensively expressed in the neural system and contributes to inhibiting inflammation, regulating mitochondrial function, and inducing programmed cell death. However, the effect of MC4R in the modulation of oxidative stress and whether this mechanism is related to the role of absent in melanoma 2 (AIM2) in SCI are not confirmed yet. In the current study, we demonstrated that MC4R is significantly increased in the neurons of spinal cords after trauma and oxidative stimulation of cells. Further, activation of MC4R by RO27-3225 effectively improved functional recovery, inhibited AIM2 activation, maintained mitochondrial homeostasis, repressed oxidative stress, and prevented Drp1 translocation to the mitochondria. Meanwhile, treating Drp1 inhibitors would be beneficial in reducing AIM2 activation, and activating AIM2 could abolish the protective effect of MC4R on neuron homeostasis. In conclusion, we demonstrated that MC4R protects against neural injury through a novel process by inhibiting mitochondrial dysfunction, oxidative stress, as well as AIM2 activation, which may serve as an available candidate for SCI therapy.
Collapse
Affiliation(s)
- Yongli Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Orthopaedics, Huzhou Central Hospital, Huzhou Basic and Clinical Translation of Orthopaedics Key Laboratory, Huzhou, Zhejiang, China
| | - Nongtao Fang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yikang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
9
|
Zhou Y, Zhang Y, Botchway BOA, Huang M, Liu X. Sestrin2 can alleviate endoplasmic reticulum stress to improve traumatic brain injury by activating AMPK/mTORC1 signaling pathway. Metab Brain Dis 2024; 39:439-452. [PMID: 38047978 DOI: 10.1007/s11011-023-01323-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023]
Abstract
Traumatic brain injury (TBI), as a serious central nervous system disease, can result in severe neurological dysfunction or even disability and death of patients. The early and effective intervention of secondary brain injury can improve the prognosis of TBI. Endoplasmic reticulum (ER) stress is one of the main reasons to recover TBI. ER stress inhibition may be beneficial in treating TBI. Sestrin2 is a crucial regulator of ER stress, and its activation can significantly improve TBI. In this paper, we analyze the biological function of sestrin2, the latest findings on ER stress, and the relationship between ER stress and TBI. We elucidate the relationship of sestrin2 inhibiting ER stress via activating the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin complex 1 (MTORC1) signaling. Finally, we elaborate on the possible role of sestrin2 in TBI and explain how its activation potentially improves TBI.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, 312000, China
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, 312000, China
| | | | - Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, 312000, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, 312000, China.
| |
Collapse
|
10
|
Wang J, Li X, Guo X, Wang C, Liu Z, Liu X, Sun Y, Chen X, Zhang Y, Chen G. MicroRNA-34a-5p promotes the progression of osteoarthritis secondary to developmental dysplasia of the hip by restraining SESN2-induced autophagy. J Orthop Res 2024; 42:66-77. [PMID: 37291947 DOI: 10.1002/jor.25639] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/10/2023]
Abstract
Osteoarthritis (OA), a late-stage complication of developmental dysplasia of the hip (DDH), is a key factor leading to further degeneration of joint function. Studies have shown that Sestrin2 (SESN2) is a positive regulator in protecting articular cartilage from degradation. However, the regulatory effects of SESN2 on DDH-OA and its upstream regulators remain obscure. Here, we first identified that the expression of SESN2 significantly decreased in the cartilage of DDH-OA samples, with an expression trend negatively correlated with OA severity. Using RNA sequencing, we identified that the upregulation of miR-34a-5p may be an important factor for the decrease in SESN2 expression. Further exploring the regulation mechanism of miR-34a-5p/SESN2 is of great significance for understanding the mechanism of DDH occurrence and development. Mechanistically, we showed that miR-34a-5p could significantly inhibit the expression of SESN2, thereby promoting the activity of the mTOR signaling pathway. We also found that miR-34a-5p significantly inhibited SESN2-induced autophagy, thereby suppressing the proliferation and migration of chondrocytes. We further validated that knocking down miR-34a-5p in vivo resulted in a significant increase in SESN2 expression and autophagy activity in DDH-OA cartilage. Our study suggests that miR-34a-5p is a negative regulator of DDH-OA, and may provide a new target for the prevention of DDH-OA.
Collapse
Affiliation(s)
- Jun Wang
- Department of Orthopedics, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Xiaopeng Li
- Department of Orthopedics, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, China
| | - Xiang Guo
- Department of Orthopedics, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Congcong Wang
- Department of Orthopedics, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, China
| | - Zezhong Liu
- Department of Orthopedics, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, China
| | - Xiaoguang Liu
- Department of Orthopedics, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, China
| | - Yanshan Sun
- Department of Orthopedics, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, China
| | - Xiaohua Chen
- Department of Nuclear Medicine, the First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, China
| | - Yimin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, China
| | - Gaoyang Chen
- Department of Hand Surgery, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, China
| |
Collapse
|
11
|
Dong Z, Li T, Wang C, Zhou Y, Tong Z, Du X. Sestrin2 Regulates Endoplasmic Reticulum Stress-Dependent Ferroptosis to Engage Pulmonary Fibrosis by Nuclear Factor Erythroid 2-Related Factor 2/Activating Transcription Factor 4 (NRF2/ATF4). J Immunol Res 2023; 2023:9439536. [PMID: 38023615 PMCID: PMC10645490 DOI: 10.1155/2023/9439536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Pulmonary fibrosis (PF) can lead to chronic inflammation, the destruction of alveoli and irreversible lung damage. Sestrin2 is a highly protective stress-inducible protein that is involved in the cell response to various stress factors and the regulation of homeostasis and has a certain protective effect against PF. In this study, TGF-β1 was used to establish a PF cell model. Bleomycin was used to induce PF in mice, and the expression levels of related proteins were detected by western blotting. The levels of the inflammatory cytokine, TNF-α, IL-6, and IL-1β were detected by enzyme-linked immunosorbent assays. Immunoprecipitation was used to verify the interaction between ATF4 and NRF2 and between Sestrin2 and NRF2 to explore the specific mechanism by which Sestrin2 affects PF. The results showed that Sestrin2 inhibited fibroblast-to-myofibroblast transition (FMT), improved inflammation, promoted cell proliferation, and alleviated PF. Activating transcription factor 4/nuclear factor erythroid 2-related factor 2 (NRF2/ATF4) signaling pathway activation could alleviate endoplasmic reticulum stress, inhibit ferroptosis and FMT, and reduce reactive oxygen species levels, thereby alleviating PF. Overexpression of ATF4 and the addition of a ferroptosis inducer reversed Sestrin2-mediated alleviation of PF. In conclusion, Sestrin2 alleviates PF and endoplasmic reticulum stress-dependent ferroptosis through the NRF2/ATF4 pathway.
Collapse
Affiliation(s)
- Zhaoxing Dong
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315000, Zhejiang Province, China
| | - Ting Li
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315000, Zhejiang Province, China
| | - Cenli Wang
- Department of Respiratory and Critical Care Medicine, Xiangshan Red Cross Taiwan Compatriot Hospital Medical and Health Group, Ningbo 315000, Zhejiang, China
| | - Yong Zhou
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315000, Zhejiang Province, China
| | - Zhongkai Tong
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315000, Zhejiang Province, China
| | - Xuekui Du
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315000, Zhejiang Province, China
| |
Collapse
|
12
|
Zhang X, Luo Z, Li J, Lin Y, Li Y, Li W. Sestrin2 in diabetes and diabetic complications. Front Endocrinol (Lausanne) 2023; 14:1274686. [PMID: 37920252 PMCID: PMC10619741 DOI: 10.3389/fendo.2023.1274686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Diabetes is a global health problem which is accompanied with multi-systemic complications. It is of great significance to elucidate the pathogenesis and to identify novel therapies of diabetes and diabetic complications. Sestrin2, a stress-inducible protein, is primarily involved in cellular responses to various stresses. It plays critical roles in regulating a series of cellular events, such as oxidative stress, mitochondrial function and endoplasmic reticulum stress. Researches investigating the correlations between Sestrin2, diabetes and diabetic complications are increasing in recent years. This review incorporates recent findings, demonstrates the diverse functions and regulating mechanisms of Sestrin2, and discusses the potential roles of Sestrin2 in the pathogenesis of diabetes and diabetic complications, hoping to highlight a promising therapeutic direction.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zirui Luo
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Jiahong Li
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Yaxuan Lin
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Yu Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wangen Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Lu E, Tang Y, Chen J, Al Mamun A, Feng Z, Cao L, Zhang X, Zhu Y, Mo T, Chun C, Zhang H, Du J, Jiang C, Xiao J. Stub1 ameliorates ER stress-induced neural cell apoptosis and promotes locomotor recovery through restoring autophagy flux after spinal cord injury. Exp Neurol 2023; 368:114495. [PMID: 37495008 DOI: 10.1016/j.expneurol.2023.114495] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/04/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Endoplasmic reticulum (ER) stress-induced apoptosis and autophagy flux blockade significantly contribute to neuronal pathology of spinal cord injury (SCI). Yet, the molecular interplay between these two distinctive pathways in mediating the pathology of SCI remains largely unexplored. Currently, we aimed at exploring the crucial role of Stub1 in maintaining ER homeostasis and regulating autophagic flux after SCI. Our results demonstrate that Stub1 reduces ER stress induced neuronal apoptosis, promotes axonal regeneration, inhibits glial scar formation and fosters functional recovery by restoring autophagic flux following SCI. Stub1 enhances autophagic flux following SCI by alleviating the permeabilization of lysosomal membrane through activating TFEB. Importantly, we showed that Stub1 promotes the activation of TFEB by targeting HDAC2 for ubiquitination and degradation. Furthermore, the neuroprotective effect of Stub1 on SCI was abrogated by chloroquine administration, underscoring the essential role of Stub1-mediated enhancement of autophagic flux in its protective effects against SCI. Collectively, our data highlights the vital role of Stub1 in regulating ER stress and autophagy flux after SCI, and propose its potential as a promising target for neuroprotective interventions in SCI.
Collapse
Affiliation(s)
- Ermei Lu
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | - Yingdan Tang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiaojiao Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Abdullah Al Mamun
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhiyi Feng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lin Cao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xie Zhang
- Department of Pharmacy, Ningbo Medical Treatment Center Li Huili Hospital, Ningbo, Zhejiang 315040, China
| | - Yunsen Zhu
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China
| | - Tingting Mo
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China
| | - ChangJu Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | - Hongyu Zhang
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiqing Du
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Chang Jiang
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China.
| | - Jian Xiao
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
14
|
Wu T, Jiang Y, Shi W, Wang Y, Li T. Endoplasmic reticulum stress: a novel targeted approach to repair bone defects by regulating osteogenesis and angiogenesis. J Transl Med 2023; 21:480. [PMID: 37464413 PMCID: PMC10353205 DOI: 10.1186/s12967-023-04328-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Bone regeneration therapy is clinically important, and targeted regulation of endoplasmic reticulum (ER) stress is important in regenerative medicine. The processing of proteins in the ER controls cell fate. The accumulation of misfolded and unfolded proteins occurs in pathological states, triggering ER stress. ER stress restores homeostasis through three main mechanisms, including protein kinase-R-like ER kinase (PERK), inositol-requiring enzyme 1ɑ (IRE1ɑ) and activating transcription factor 6 (ATF6), collectively known as the unfolded protein response (UPR). However, the UPR has both adaptive and apoptotic effects. Modulation of ER stress has therapeutic potential for numerous diseases. Repair of bone defects involves both angiogenesis and bone regeneration. Here, we review the effects of ER stress on osteogenesis and angiogenesis, with emphasis on ER stress under high glucose (HG) and inflammatory conditions, and the use of ER stress inducers or inhibitors to regulate osteogenesis and angiogenesis. In addition, we highlight the ability for exosomes to regulate ER stress. Recent advances in the regulation of ER stress mediated osteogenesis and angiogenesis suggest novel therapeutic options for bone defects.
Collapse
Affiliation(s)
- Tingyu Wu
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China
| | - Yaping Jiang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Weipeng Shi
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China
| | - Yingzhen Wang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China
| | - Tao Li
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China.
| |
Collapse
|
15
|
Lu C, Jiang Y, Xu W, Bao X. Sestrin2: multifaceted functions, molecular basis, and its implications in liver diseases. Cell Death Dis 2023; 14:160. [PMID: 36841824 PMCID: PMC9968343 DOI: 10.1038/s41419-023-05669-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/26/2023]
Abstract
Sestrin2 (SESN2), a highly conserved stress-responsive protein, can be triggered by various noxious stimuli, such as hypoxia, DNA damage, oxidative stress, endoplasmic reticulum (ER) stress, and inflammation. Multiple transcription factors regulate SESN2 expression, including hypoxia-inducible factor 1 (HIF-1), p53, nuclear factor E2-related factor 2 (Nrf2), activating transcription factor 4 (ATF4), ATF6, etc. Upon induction, SESN2 generally leads to activation of adenosine monophosphate-activated protein kinase (AMPK) and inhibition of mechanistic target of rapamycin complex 1 (mTORC1). To maintain cellular homeostasis, SESN2 and its downstream molecules directly scavenge reactive oxygen species or indirectly influence the expression patterns of key genes associated with redox, macroautophagy, mitophagy, ER stress, apoptosis, protein synthesis, and inflammation. In liver diseases including acute liver injury, fatty liver diseases, hepatic fibrosis, and hepatocellular carcinoma (HCC), SESN2 is abnormally expressed and correlated with disease progression. In NAFLD, SESN2 helps with postponing disease progression through balancing glycolipid metabolism and macroautophagy (lipophagy), and rectifying oxidative damage and ER stress. During hepatic fibrosis, SESN2 represses HSCs activation and intrahepatic inflammation, hindering the occurrence and progress of fibrogenesis. However, the role of SESN2 in HCC is controversial due to its paradoxical pro-autophagic and anti-apoptotic effects. In conclusion, this review summarizes the biological functions of SESN2 in hypoxia, genotoxic stress, oxidative stress, ER stress, and inflammation, and specifically emphasizes the pathophysiological significance of SESN2 in liver diseases, aiming to providing a comprehensive understanding for SESN2 as a potential therapeutic target in liver diseases.
Collapse
Affiliation(s)
- Chunfeng Lu
- grid.260483.b0000 0000 9530 8833School of Pharmacy, Nantong University, 226001 Nantong, Jiangsu China
| | - Yiming Jiang
- grid.260483.b0000 0000 9530 8833School of Pharmacy, Nantong University, 226001 Nantong, Jiangsu China
| | - Wenxuan Xu
- School of Life Science and Technology, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
| | - Xiaofeng Bao
- School of Pharmacy, Nantong University, 226001, Nantong, Jiangsu, China.
| |
Collapse
|
16
|
Liu FS, Jiang C, Li Z, Wang XB, Li J, Wang B, Lv GH, Liu FB. Ca 2+ Regulates Autophagy Through CaMKKβ/AMPK/mTOR Signaling Pathway in Mechanical Spinal cord Injury: An in vitro Study. Neurochem Res 2023; 48:447-457. [PMID: 36315370 DOI: 10.1007/s11064-022-03768-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/22/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
Abstract
Spinal cord injury (SCI), resulting in damage of the normal structure and function of the spinal cord, would do great harm to patients, physically and psychologically. The mechanism of SCI is very complex. At present, lots of studies have reported that autophagy was involved in the secondary injury process of SCI, and several researchers also found that calcium ions (Ca2+) played an important role in SCI by regulating necrosis, autophagy, or apoptosis. However, to our best of knowledge, no studies have linked the spinal cord mechanical injury, intracellular Ca2+, and autophagy in series. In this study, we have established an in vitro model of SCI using neural cells from fetal rats to explore the relationship among them, and found that mechanical injury could promote the intracellular Ca2+ concentration, and the increased Ca2+ level activated autophagy through the CaMKKβ/AMPK/mTOR pathway. Additionally, we found that apoptosis was also involved in this pathway. Thus, our study provides new insights into the specific mechanisms of SCI and may open up new avenues for the treatment of SCI.
Collapse
Affiliation(s)
- Fu-Sheng Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Chang Jiang
- Zhongshan Hospital Affiliated to Fudan University, 200032, Shanghai, China
| | - Zheng Li
- The First Affiliated Hospital of University of Science and Technology of China, 230001, Anhui, China
| | - Xiao-Bin Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Guo-Hua Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Fu-Bing Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 410011, Changsha, China. .,Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, 411001, Changsha, Hunan, China.
| |
Collapse
|
17
|
Li RY, Hu Q, Shi X, Luo ZY, Shao DH. Crosstalk between exosomes and autophagy in spinal cord injury: fresh positive target for therapeutic application. Cell Tissue Res 2023; 391:1-17. [PMID: 36380098 PMCID: PMC9839811 DOI: 10.1007/s00441-022-03699-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022]
Abstract
Spinal cord injury (SCI) is a very serious clinical traumatic illness with a very high disability rate. It not only causes serious functional disorders below the injured segment, but also causes unimaginable economic burden to social development. Exosomes are nano-sized cellular communication carriers that exist stably in almost all organisms and cell types. Because of their capacity to transport proteins, lipids, and nucleic acids, they affect various physiological and pathological functions of recipient cells and parental cells. Autophagy is a process that relies on the lysosomal pathway to degrade cytoplasmic proteins and organelles and involves a variety of pathophysiological processes. Exosomes and autophagy play critical roles in cellular homeostasis following spinal cord injury. Presently, the coordination mechanism of exosomes and autophagy has attracted much attention in the early efficacy of spinal cord injury. In this review, we discussed the interaction of autophagy and exosomes from the perspective of molecular mechanisms, which might provide novel insights for the early therapeutic application of spinal cord injury.
Collapse
Affiliation(s)
- Rui-yu Li
- Anqing First People’s Hospital of Anhui Medical University, Anqing, 246000 Anhui Province, China
| | - Qi Hu
- Jiangsu University, Zhenjiang, 212001 Jiangsu Province, China
| | - Xu Shi
- Jiangsu University, Zhenjiang, 212001 Jiangsu Province, China
| | - Zhen-yu Luo
- Jiangsu University, Zhenjiang, 212001 Jiangsu Province, China
| | - Dong-hua Shao
- Jiangsu University, Zhenjiang, 212001 Jiangsu Province, China
| |
Collapse
|
18
|
Xu X, Talifu Z, Zhang CJ, Gao F, Ke H, Pan YZ, Gong H, Du HY, Yu Y, Jing YL, Du LJ, Li JJ, Yang DG. Mechanism of skeletal muscle atrophy after spinal cord injury: A narrative review. Front Nutr 2023; 10:1099143. [PMID: 36937344 PMCID: PMC10020380 DOI: 10.3389/fnut.2023.1099143] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Spinal cord injury leads to loss of innervation of skeletal muscle, decreased motor function, and significantly reduced load on skeletal muscle, resulting in atrophy. Factors such as braking, hormone level fluctuation, inflammation, and oxidative stress damage accelerate skeletal muscle atrophy. The atrophy process can result in skeletal muscle cell apoptosis, protein degradation, fat deposition, and other pathophysiological changes. Skeletal muscle atrophy not only hinders the recovery of motor function but is also closely related to many systemic dysfunctions, affecting the prognosis of patients with spinal cord injury. Extensive research on the mechanism of skeletal muscle atrophy and intervention at the molecular level has shown that inflammation and oxidative stress injury are the main mechanisms of skeletal muscle atrophy after spinal cord injury and that multiple pathways are involved. These may become targets of future clinical intervention. However, most of the experimental studies are still at the basic research stage and still have some limitations in clinical application, and most of the clinical treatments are focused on rehabilitation training, so how to develop more efficient interventions in clinical treatment still needs to be further explored. Therefore, this review focuses mainly on the mechanisms of skeletal muscle atrophy after spinal cord injury and summarizes the cytokines and signaling pathways associated with skeletal muscle atrophy in recent studies, hoping to provide new therapeutic ideas for future clinical work.
Collapse
Affiliation(s)
- Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Chun-Jia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Yun-Zhu Pan
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Han Gong
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Hua-Yong Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Ying-Li Jing
- School of Rehabilitation, Capital Medical University, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liang-Jie Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- *Correspondence: Jian-Jun Li
| | - De-Gang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- De-Gang Yang
| |
Collapse
|
19
|
The Proteostasis Network: A Global Therapeutic Target for Neuroprotection after Spinal Cord Injury. Cells 2022; 11:cells11213339. [PMID: 36359735 PMCID: PMC9658791 DOI: 10.3390/cells11213339] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 01/18/2023] Open
Abstract
Proteostasis (protein homeostasis) is critical for cellular as well as organismal survival. It is strictly regulated by multiple conserved pathways including the ubiquitin-proteasome system, autophagy, the heat shock response, the integrated stress response, and the unfolded protein response. These overlapping proteostasis maintenance modules respond to various forms of cellular stress as well as organismal injury. While proteostasis restoration and ultimately organism survival is the main evolutionary driver of such a regulation, unresolved disruption of proteostasis may engage pro-apoptotic mediators of those pathways to eliminate defective cells. In this review, we discuss proteostasis contributions to the pathogenesis of traumatic spinal cord injury (SCI). Most published reports focused on the role of proteostasis networks in acute/sub-acute tissue damage post-SCI. Those reports reveal a complex picture with cell type- and/or proteostasis mediator-specific effects on loss of neurons and/or glia that often translate into the corresponding modulation of functional recovery. Effects of proteostasis networks on such phenomena as neuro-repair, post-injury plasticity, as well as systemic manifestations of SCI including dysregulation of the immune system, metabolism or cardiovascular function are currently understudied. However, as potential interventions that target the proteostasis networks are expected to impact many cell types across multiple organ systems that are compromised after SCI, such therapies could produce beneficial effects across the wide spectrum of highly variable human SCI.
Collapse
|
20
|
Yang X, Xue P, Liu Z, Li W, Li C, Chen Z. SESN2 prevents the slow-to-fast myofiber shift in denervated atrophy via AMPK/PGC-1α pathway. Cell Mol Biol Lett 2022; 27:66. [PMID: 35945510 PMCID: PMC9361691 DOI: 10.1186/s11658-022-00367-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sestrin2 (SESN2), a stress-inducible protein, has been reported to protect against denervated muscle atrophy through unfolded protein response and mitophagy, while its role in myofiber type transition remains unknown. METHODS A mouse sciatic nerve transection model was created to evaluate denervated muscle atrophy. Myofiber type transition was confirmed by western blot, fluorescence staining, ATP quantification, and metabolic enzyme activity analysis. Adeno-associated virus (AAV) was adopted to achieve SESN2 knockdown and overexpression in gastrocnemius. AMPK/PGC-1α signal was detected by western blot and activated with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR). C2C12 myotubes with rotenone treatment were adopted for in vitro experiments. RESULTS SESN2 was found to be upregulated in denervated skeletal muscles and rotenone-treated C2C12 cells. Knockdown of SESN2 aggravated muscle atrophy and accelerated myofiber type transition from slow-twitch to fast-twitch. Moreover, AMPK/PGC-1α signaling was proven to be activated by SESN2 after denervation, which further induced the expression of hypoxia-inducible factor HIF2α. Exogenous activation of AMPK/PGC-1α signaling could counteract the addition of slow-to-fast myofiber shift caused by SESN2 knockdown and lead to the retainment of muscle mass after denervation. CONCLUSION Collectively, the present study indicates that SESN2 prevents myofiber type transition from slow-twitch to fast-twitch and preserves muscle mass in denervated atrophy via AMPK/PGC-1α signaling. These findings contribute to a better understanding of the pathogenesis of muscle atrophy and provide novel insights into the role of SESN2 in myofiber type transition.
Collapse
Affiliation(s)
- Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Pingping Xue
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhenyu Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenqing Li
- Department of Hand and Foot Surgery, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, 518052, China
| | - Chuyan Li
- Department of Hand and Foot Surgery, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, 518052, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
21
|
Abstract
AbstractSestrin2 is a conserved antioxidant, metabolism regulator, and downstream of P53. Sestrin2 can suppress oxidative stress and inflammation, thereby preventing the development and progression of cancer. However, Sestrin2 attenuates severe oxidative stress by activating nuclear factor erythroid 2-related factor 2 (Nrf2), thereby enhancing cancer cells survival and chemoresistance. Sestrin2 inhibits endoplasmic reticulum stress and activates autophagy and apoptosis in cancer cells. Attenuation of endoplasmic reticulum stress and augmentation of autophagy hinders cancer development but can either expedite or impede cancer progression under specific conditions. Furthermore, Sestrin2 can vigorously inhibit oncogenic signaling pathways through downregulation of mammalian target of rapamycin complex 1 (mTORC1) and hypoxia-inducible factor 1-alpha (HIF-1α). Conversely, Sestrin2 decreases the cytotoxic activity of T cells and natural killer cells which helps tumor cells immune evasion. Sestrin2 can enhance tumor cells viability in stress conditions such as glucose or glutamine deficiency. Cancer cells can also upregulate Sestrin2 during chemotherapy or radiotherapy to attenuate severe oxidative stress and ER stress, augment autophagy and resist the treatment. Recent studies unveiled that Sestrin2 is involved in the development and progression of several types of human cancer. The effect of Sestrin2 may differ depending on the type of tumor, for instance, several studies revealed that Sestrin2 protects against colorectal cancer, whereas results are controversial regarding lung cancer. Furthermore, Sestrin2 expression correlates with metastasis and survival in several types of human cancer such as colorectal cancer, lung cancer, and hepatocellular carcinoma. Targeted therapy for Sestrin2 or regulation of its expression by new techniques such as non-coding RNAs delivery and vector systems may improve cancer chemotherapy and overcome chemoresistance, metastasis and immune evasion that should be investigated by future trials.
Collapse
|
22
|
Chen Y, Huang T, Yu Z, Yu Q, Wang Y, Hu J, Shi J, Yang G. The functions and roles of sestrins in regulating human diseases. Cell Mol Biol Lett 2022; 27:2. [PMID: 34979914 PMCID: PMC8721191 DOI: 10.1186/s11658-021-00302-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Sestrins (Sesns), highly conserved stress-inducible metabolic proteins, are known to protect organisms against various noxious stimuli including DNA damage, oxidative stress, starvation, endoplasmic reticulum (ER) stress, and hypoxia. Sesns regulate metabolism mainly through activation of the key energy sensor AMP-dependent protein kinase (AMPK) and inhibition of mammalian target of rapamycin complex 1 (mTORC1). Sesns also play pivotal roles in autophagy activation and apoptosis inhibition in normal cells, while conversely promoting apoptosis in cancer cells. The functions of Sesns in diseases such as metabolic disorders, neurodegenerative diseases, cardiovascular diseases, and cancer have been broadly investigated in the past decades. However, there is a limited number of reviews that have summarized the functions of Sesns in the pathophysiological processes of human diseases, especially musculoskeletal system diseases. One aim of this review is to discuss the biological functions of Sesns in the pathophysiological process and phenotype of diseases. More significantly, we include some new evidence about the musculoskeletal system. Another purpose is to explore whether Sesns could be potential biomarkers or targets in the future diagnostic and therapeutic process.
Collapse
Affiliation(s)
- Yitong Chen
- Department of Orthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Tingben Huang
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Zhou Yu
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Qiong Yu
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Ying Wang
- Department of Oral Medicine, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Ji'an Hu
- Department of Oral Pathology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China.
| | - Jiejun Shi
- Department of Orthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China.
| | - Guoli Yang
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
23
|
Hu H, Luo Z, Liu X, Huang L, Lu X, Ding R, Duan C, He Y. Sestrin2 Overexpression Ameliorates Endoplasmic Reticulum Stress-Induced Apoptosis via Inhibiting mTOR Pathway in HepG2 Cells. Int J Endocrinol 2022; 2022:2009753. [PMID: 36536875 PMCID: PMC9759384 DOI: 10.1155/2022/2009753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/08/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Sestrin2 is a highly conserved stress-inducible protein, acting as a crucial part in regulating homeostasis in response to various stress conditions in the cell. However, the role of Sestrin2 in regulating cell apoptosis related to endoplasmic reticulum (ER) has not been fully investigated. Our study presented here aims to reveal the effect of Sestrin2 in tunicamycin (TM)-induced cell apoptosis related to ER stress and its underlying molecular mechanisms. The results demonstrated that Sestrin2 expression was significantly upregulated correlated with ER stress responses in TM treated HepG2 cells. Sestrin2 overexpression obviously alleviated ER stress with the determination of ER stress-related proteins expression. In addition, Sestrin2 overexpression inhibited cell apoptosis with the examination of apoptosis-related proteins and TUNEL assay. However, Sestrin2 knockdown further promoted the ER stress-mediated cell apoptosis. The further mechanistic study revealed that Sestrin2 overexpression inhibited TM-induced mTOR pathway activation. Taken together, our current study indicated that Sestrin2 overexpression ameliorates ER stress-induced apoptosis via inhibiting mTOR pathway in HepG2 cells.
Collapse
Affiliation(s)
- Huiling Hu
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhijun Luo
- Department of Emergency, The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong 528244, China
| | - Xiuli Liu
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lisi Huang
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoxia Lu
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Rui Ding
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chaohui Duan
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuqing He
- Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
24
|
Mao EW, Cheng XB, Li WC, Kan CX, Huang N, Wang HS, Hou NN, Sun XD. Association between serum Sestrin2 level and diabetic peripheral neuropathy in type 2 diabetic patients. World J Clin Cases 2021; 9:11156-11164. [PMID: 35071546 PMCID: PMC8717510 DOI: 10.12998/wjcc.v9.i36.11156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/06/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is a chronic and serious microvascular complication of diabetes linked to redox imbalance. Sestrin2, a novel inducible stress protein, participates in glucose metabolic regulation and redox homeostasis. However, the association between serum Sestrin2 and DPN is unknown. AIM To explore the association between serum Sestrin2 and DPN in patients with type 2 diabetes mellitus (T2DM). METHODS A total of 96 T2DM patients and 39 healthy volunteers, matched by age and sex, participated in this cross-sectional study. Clinical features and metabolic indices were identified. Serum Sestrin2 was measured by ELISA. The association between Sestrin2 and DPN was studied. Correlation and logistic regression analyses were used to evaluate the associations of different metabolic indices with Sestrin2 and DPN. RESULTS The 96 patients with T2DM were divided into DPN (n = 47) and patients without DPN (n = 49). Serum Sestrin2 was significantly lower in healthy volunteers than in all T2DM patients combined [9.10 (5.41-13.53) ng/mL vs 12.75 (7.44-23.80) ng/mL, P < 0.01]. T2DM patients without DPN also had significantly higher levels of Sestrin2 than healthy volunteers [14.58 (7.93-26.62) ng/mL vs 9.10 (5.41-13.53) ng/mL, P < 0.01]. However, T2DM patients with DPN had lower circulating Sestrin2 levels compared to T2DM patients without DPN [9.86 (6.72-21.71) ng/mL vs 14.58 (7.93-26.62) ng/mL, respectively, P < 0.01]. Bivariate correlation analysis revealed that serum Sestrin2 was positively correlated with body mass index (r = 0.672, P = 0.000), hemoglobin A1c (HbA1c) (r = 0.292, P = 0.000), serum creatinine (r = 0.206, P = 0.016), triglycerides (r = 0.731, P = 0.000), and fasting glucose (r = 0.202, P = 0.040), and negatively associated with estimated glomerular filtration rate (r = -0.230, P = 0.007). After adjustment for sex, age, HbA1c, and diabetes duration, multiple regression analysis revealed that Sestrin2 was independently correlated with body mass index and triglyceride levels (P = 0.000). Logistic regression analyses indicated that Sestrin2, diabetes duration, and high-density lipoprotein were strongly associated with DPN (odds ratio = 0.855, 1.411, and 0.041, respectively). CONCLUSION Our results show Sestrin2 is decreased in T2DM patients with DNP. As lower Sestrin2 is independently associated with DPN, Sestrin2 may contribute to progression of DPN in T2DM patients.
Collapse
Affiliation(s)
- En-Wen Mao
- Department of Endocrinology and Metabolism, Clinical Research Center, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Xue-Bing Cheng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Wen-Chao Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Cheng-Xia Kan
- Department of Endocrinology and Metabolism, Clinical Research Center, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Na Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Hong-Sheng Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Ning-Ning Hou
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Xiao-Dong Sun
- Department of Endocrinology and Metabolism, Clinical Research Center, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| |
Collapse
|
25
|
Ala M, Eftekhar SP. Target Sestrin2 to Rescue the Damaged Organ: Mechanistic Insight into Its Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8790369. [PMID: 34765085 PMCID: PMC8577929 DOI: 10.1155/2021/8790369] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Sestrin2 is a stress-inducible metabolic regulator and a conserved antioxidant protein which has been implicated in the pathogenesis of several diseases. Sestrin2 can protect against atherosclerosis, heart failure, hypertension, myocardial infarction, stroke, spinal cord injury neurodegeneration, nonalcoholic fatty liver disease (NAFLD), liver fibrosis, acute kidney injury (AKI), chronic kidney disease (CKD), and pulmonary inflammation. Oxidative stress and cellular damage signals can alter the expression of Sestrin2 to compensate for organ damage. Different stress signals such as those mediated by P53, Nrf2/ARE, HIF-1α, NF-κB, JNK/c-Jun, and TGF-β/Smad signaling pathways can induce Sestrin2 expression. Subsequently, Sestrin2 activates Nrf2 and AMPK. Furthermore, Sestrin2 is a major negative regulator of mTORC1. Sestrin2 indirectly regulates the expression of several genes and reprograms intracellular signaling pathways to attenuate oxidative stress and modulate a large number of cellular events such as protein synthesis, cell energy homeostasis, mitochondrial biogenesis, autophagy, mitophagy, endoplasmic reticulum (ER) stress, apoptosis, fibrogenesis, and lipogenesis. Sestrin2 vigorously enhances M2 macrophage polarization, attenuates inflammation, and prevents cell death. These alterations in molecular and cellular levels improve the clinical presentation of several diseases. This review will shed light on the beneficial effects of Sestrin2 on several diseases with an emphasis on underlying pathophysiological effects.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Seyed Parsa Eftekhar
- Student Research Committee, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
26
|
Che X, Chai J, Fang Y, Zhang X, Zu A, Li L, Sun S, Yang W. Sestrin2 in hypoxia and hypoxia-related diseases. Redox Rep 2021; 26:111-116. [PMID: 34225572 PMCID: PMC8259815 DOI: 10.1080/13510002.2021.1948774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Objectives: Sestrin2 is a stress-inducible protein and play an important role in adapting stress states of cells. This article reviewed the role of Sestrin2 in hypoxia and hypoxia-related diseases to provide new perspectives for future research and new therapeutic targets for hypoxia-related diseases. Methods: A review was conducted through an electronic search of PubMed and Medline databases. Keywords included Sestrin2, ROS, hypoxia, and hypoxia-related disease. Articles from 2008 to 2021 were mostly included and older ones were not excluded. Results: Sestrin2 is upregulated under various stress conditions, especially hypoxia. Under hypoxic condition, Sestrin2 plays a protective role by reducing the generation of ROS through various pathways, such as adenosine monophosphatea-ctivated protein kinase (AMPK) / mammalian target of rapamycin (mTOR) pathway and nuclear factor-E2-related factor2 (Nrf2) pathway. In addition, Sestrin2 is involved in various hypoxia-related diseases, such as cerebral hypoxic disease, myocardial hypoxic disease, hypoxia-related respiratory disease, and diabetes. Discussion: Sestrin2 is involved in various hypoxia-related diseases and maybe a therapeutic target. Furthermore, most studies focus on cerebral and myocardial ischemia reperfusion. More researches on hypoxia-related respiratory diseases, kidney injury, and diabetes are needed in future.
Collapse
Affiliation(s)
- Xiaojing Che
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People's Republic of China.,Innovation Class & Second Class, 2017 Clinical Medicine, Kunming Medical University, Kunming, People's Republic of China
| | - Jiagui Chai
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People's Republic of China.,Innovation Class & Second Class, 2017 Clinical Medicine, Kunming Medical University, Kunming, People's Republic of China
| | - Yan Fang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People's Republic of China
| | - Xifeng Zhang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People's Republic of China
| | - Anju Zu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People's Republic of China
| | - Lin Li
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People's Republic of China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People's Republic of China.,School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, People's Republic of China
| | - Weimin Yang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, People's Republic of China
| |
Collapse
|
27
|
Delivery of pOXR1 through an injectable liposomal nanoparticle enhances spinal cord injury regeneration by alleviating oxidative stress. Bioact Mater 2021; 6:3177-3191. [PMID: 33778197 PMCID: PMC7970014 DOI: 10.1016/j.bioactmat.2021.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/17/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidation resistance 1 (OXR1) is regarded as a critical regulator of cellular homeostasis in response to oxidative stress. However, the role of OXR1 in the neuronal response to spinal cord injury (SCI) remains undefined. On the other hand, gene therapy for SCI has shown limited success to date due in part to the poor utility of conventional gene vectors. In this study, we evaluated the function of OXR1 in SCI and developed an available carrier for delivering the OXR1 plasmid (pOXR1). We found that OXR1 expression is remarkably increased after SCI and that this regulation is protective after SCI. Meanwhile, we assembled cationic nanoparticles with vitamin E succinate-grafted ε-polylysine (VES-g-PLL) (Nps). The pOXR1 was precompressed with Nps and then encapsulated into cationic liposomes. The particle size of pOXR1 was compressed to 58 nm, which suggests that pOXR1 can be encapsulated inside liposomes with high encapsulation efficiency and stability to enhance the transfection efficiency. The agarose gel results indicated that Nps-pOXR1-Lip eliminated the degradation of DNA by DNase I and maintained its activity, and the cytotoxicity results indicated that pOXR1 was successfully transported into cells and exhibited lower cytotoxicity. Finally, Nps-pOXR1-Lip promoted functional recovery by alleviating neuronal apoptosis, attenuating oxidative stress and inhibiting inflammation. Therefore, our study provides considerable evidence that OXR1 is a beneficial factor in resistance to SCI and that Nps-Lip-pOXR1 exerts therapeutic effects in acute traumatic SCI. OXR1 is upregulated after SCI and may provide a protective effect in response to neural injury. OXR1 plasmid is condensed by VES-g-PLL micelles and then encapsulated into cationic liposomes. Liposome complexes significantly enhance the OXR1 protein expression in vivo and in vitro. Overexpressed OXR1 relieving oxidative stress after SCI through Nrf-2/HO-1 pathway.
Collapse
|
28
|
Ma X, Liu L. Knockdown of FAM225B inhibits the progression of the hypertrophic scar following glaucoma surgery by inhibiting autophagy. Mol Med Rep 2021; 23:204. [PMID: 33495826 PMCID: PMC7821338 DOI: 10.3892/mmr.2021.11843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
The formation of a hypertrophic scar (HS) may lead to failure of glaucoma surgery. Long non-coding RNAs (lncRNAs) are involved in the formation of HSs. Moreover, family with sequence similarity 225 member B (FAM225B) is upregulated in HS. However, the role of the lncRNA FAM225B in HS remains unknown. Thus, the present study aimed to investigate the function of FAM225B in HS. Scar fibroblasts were isolated from patients who had undergone glaucoma surgery. Western blotting was used to detect the expressions of Bax, Bcl-2, cleaved caspase 3, p62, ATG7 and Beclin 1, and reverse transcription-quantitative PCR (RT-qPCR) were conducted to determine the level of FAM225B in scar fibroblasts. Microtubule associated protein 1 light chain 3 α staining was performed to examine autophagosomes in scar fibroblasts. Furthermore, cell proliferation was evaluated via 5-ethynyl-2′-deoxyuridine staining. Flow cytometry was conducted to determine cell apoptosis and the levels of reactive oxygen species (ROS) in scar fibroblasts. The cell migratory ability was assessed using a Transwell assay. The results demonstrated that FAM225B knockdown significantly attenuated scar fibroblast proliferation and induced apoptosis. Additionally, transfection of scar fibroblasts with FAM225B small interfering RNA (siRNA) significantly increased the ROS levels and significantly decreased the migration of scar fibroblasts. The FAM225B overexpression-induced increase of scar fibroblast proliferation and migration was significantly reversed by 3-methyladenine administration. The results suggested that knockdown of FAM225B significantly inhibited the proliferation of scar fibroblasts by inhibiting autophagy. Therefore, knockdown of FAM225B could inhibit scar fibroblast proliferation after glaucoma surgery by inhibiting autophagy. These findings may provide a novel perspective of developing treatment strategy for the patients with HSs after glaucoma surgery.
Collapse
Affiliation(s)
- Xianpeng Ma
- Department of Dermatology, Affiliated Hospital of Beihua University, Jilin, Jilin 132001, P.R. China
| | - Lili Liu
- Department of Dermatology, Affiliated Hospital of Beihua University, Jilin, Jilin 132001, P.R. China
| |
Collapse
|
29
|
Wu X, Wang L, Cong M, Shen M, He Q, Ding F, Shi H. Extracellular vesicles from skin precursor-derived Schwann cells promote axonal outgrowth and regeneration of motoneurons via Akt/mTOR/p70S6K pathway. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1640. [PMID: 33490152 PMCID: PMC7812244 DOI: 10.21037/atm-20-5965] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Skin precursor-derived Schwann cells (SKP-SCs) have been shown to benefit the recovery of spinal cord injury (SCI) and peripheral nerve injury (PNI) with motor dysfunction. However, the effect of extracellular vesicles (EVs) from SKP-SCs responsible for neuroregeneration remains unknown. Methods Based on the obtainment and identification of rat SKP-SCs and their derived EVs, the primary rat injury model of motoneurons resulting from axotomy in vitro or nerve crush in vivo, as well as the secondary rat ischemic hypoxic injury model of motoneuron exposure to oxygen-glucose-deprivation (OGD) in vitro, were treated with EVs from skin precursor-derived Schwann cells (SKP-SC-EVs), respectively. Then, the axonal outgrowth and regrowth was observed and compared, and cell viability as well as the protein kinase B/mammalian target of rapamycin/p70 S6 kinase (Akt/mTOR/p70S6K) signaling pathway was detected, moreover, rapamycin (an mTOR inhibitor) was used to further reveal the underlying molecular mechanism. Results The internalization of SKP-SC-EVs by neuronal cells was identified in vitro and in vivo. Besides the pro-axonal outgrowth effect of SKP-SC-EVs, prospectively, the treatment of OGD-injured motoneurons with SKP-SC-EVs potentiated the restoration of neuronal viability and axonal regrowth. Furthermore, the axotomizing injury could be improved with SKP-SC-EVs treatment in vitro and in vivo. Finally, it was shown that the application of SKP-SC-EVs could activate the Akt/mTOR/p70S6K signaling pathway that can be abolished by rapamycin. Conclusions In summary, the addition of SKP-SC-EVs could regulate the cell growth and death signaling pathway mediated by Akt/mTOR/p70S6K, owing to the transmission of cargos in EVs to damaged motoneurons, which leads to axonal regrowth and neuronal resurrection. Thus, SKP-SC-EVs treatment could be a novel promising strategy for improving the axonal outgrowth and regeneration of motoneurons.
Collapse
Affiliation(s)
- Xia Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Liting Wang
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, China
| | - Meng Cong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qianru He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, China
| | - Haiyan Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Pathophysiology, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|