1
|
Rai M, Feitosa CM, Ingle AP, Golinska P. Harnessing bioactive nanocurcumin and curcumin nanocomposites to combat microbial pathogens: a comprehensive review. Crit Rev Biotechnol 2025:1-23. [PMID: 39978957 DOI: 10.1080/07388551.2025.2458006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/18/2024] [Accepted: 12/29/2024] [Indexed: 02/22/2025]
Abstract
The alarming rise in bacterial infections including those caused by multidrug-resistant pathogens has garnered the attention of the scientific community, compelling them to explore as novel and effective alternatives to combat these infections. Moreover, the emerging viruses such as Influenza A virus subtype H1N1 (A/H1N1), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), Ebolavirus, recent coronavirus (SARS-CoV-2), etc. also has a significant impact all over the world. Therefore, the management of all such infections without any side effects is one of the most important challenges for the scientific community. Hence, the development of novel and effective antimicrobial agents is a need of the hour. In this context, Curcuma longa, commonly known as turmeric, has been used as traditional medicine for centuries to manage and treat such infections. Its bioactive constituent, curcumin has garnered significant attention in medicine due to its multifunctional bioactivities. Apart from antimicrobial properties, it also possesses potent antioxidant and anti-inflammatory activities. However, available reports suggest that its low solubility, stability, and biocompatibility limit its use. Moreover, on the other hand, it has been reported that these limitations associated with the use of curcumin can be resolved by transforming it into its nano-form, specifically curcumin nanoparticles. Recent advancements have brought curcumin nanoparticles into the spotlight, showcasing superior properties and a broad spectrum of antimicrobial applications. In this review, we have mainly focused on antimicrobial potential of curcumin and nanocurcumin, mechanisms underpinning their antimicrobial actions. Moreover, other aspects of toxicity and safety guidelines for nano-based products have been also discussed.
Collapse
Affiliation(s)
- Mahendra Rai
- Department of Biotechnology, SGB Amravati University, Amravati, Maharashtra, India
- Department of Chemistry, Federal University of Piaui, Teresina, Brazil
| | | | - Avinash P Ingle
- Biotechnology Centre, Department of Agricultural Botany, Dr. PDKV, Akola, Maharashtra, India
| | - Patrycja Golinska
- Department of Microbiology, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
2
|
Sambyal S, Sharma R, Mandyal P, Chauhan V, Priye A, Kumar M, Shandilya P. Nanocellulose-Supported Dual S-Scheme SnWO 4/Cu 2O/Ag 2WO 4 Heterojunction for Enhanced Photodegradation of Amoxicillin. ACS OMEGA 2025; 10:2472-2487. [PMID: 39895770 PMCID: PMC11780444 DOI: 10.1021/acsomega.4c05403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/29/2024] [Accepted: 12/16/2024] [Indexed: 02/04/2025]
Abstract
A dual S-scheme nanocellulose-based SnWO4/Cu2O/Ag2WO4 (NC-SCA) heterojunction photocatalyst was synthesized via ultrasonication followed by a hydrothermal method for the efficient photodegradation of amoxicillin (AMX). Under UV-vis light irradiation, the NC-SCA photocatalyst exhibited an impressive 97.40% AMX degradation within 30 min, attributed to its improved optical absorption and superior charge migration. The characterization techniques, including XRD, FTIR, PL, and UV-vis spectroscopy, confirmed the successful integration of nanocellulose with SnWO4/Cu2O/Ag2WO4. XPS and ESR analyses provided insights into the S-scheme charge migration mechanism within the heterojunction. Further, the trapping experiments identified hydroxyl (•OH) and superoxide radicals as the primary reactive species. The photocatalyst displayed a specific surface area of 115.9 m2/g, offering a large active surface for photodegradation. Operational parameters such as the photocatalyst dosage, pH, and AMX concentration were systematically optimized. The NC-SCA photocatalyst exhibited high stability, retaining around 85% efficiency after seven cycles. This study presents an innovative strategy for designing high-performance photocatalysts addressing the limitations of conventional materials.
Collapse
Affiliation(s)
- Shabnam Sambyal
- School
of Advanced Chemical Sciences, Shoolini
University, Solan, HP 173229, India
| | - Rohit Sharma
- School
of Advanced Chemical Sciences, Shoolini
University, Solan, HP 173229, India
| | - Parteek Mandyal
- School
of Advanced Chemical Sciences, Shoolini
University, Solan, HP 173229, India
| | - Vinay Chauhan
- School
of Advanced Chemical Sciences, Shoolini
University, Solan, HP 173229, India
| | - Aashish Priye
- Department
of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Manish Kumar
- Department
of Chemistry and Chemical Sciences, Central
University of Himachal Pradesh, Dharamshala, Shahpur, Kangra, HP 176206, India
| | - Pooja Shandilya
- Department
of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
- Department
of Chemistry, MMEC, Maharishi Markandeshwar
(Deemed to be University), Mullana-Ambala, Haryana 133207, India
| |
Collapse
|
3
|
Han A, Baek Y, Lee HG. Impact of Encapsulation Position in Pickering Emulsions on Color Stability and Intensity Turmeric Oleoresin. Foods 2025; 14:385. [PMID: 39941977 PMCID: PMC11816578 DOI: 10.3390/foods14030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
The emulsification of natural pigment is a widely utilized strategy to enhance its stability in the food industry. However, high turbidity in emulsions often causes color fading, limiting their application. Here, we developed a comprehensive Pickering emulsion (PE) system to improve the color intensity and stability of turmeric oleoresin (Tur) under various food processing conditions. Specifically, the effects of two encapsulation positions within the PE were compared: the inner oil phase (Tur-IPE) and the outer solid particle layer (Tur-OPE). Lysozyme and carboxymethyl cellulose nanoparticles (NPs) were used as natural solid particle surfactants, with their successful formation confirmed through physical property analysis and FTIR spectroscopy. The optimal oil fraction (φ) for suitable physical properties of PE was determined to be 0.2. Interestingly, Tur-OPE significantly exceeded Tur-conventional emulsions (Tur-CE) and Tur-IPE in terms of color vividness, exhibiting higher redness and lower lightness (p < 0.05). During thermal processing at 70 and 90 °C, all emulsions demonstrated significantly enhanced heat resistance, retaining 1.3 to 1.6 times more Tur, respectively, compared to unencapsulated Tur (free Tur) (p < 0.05). Furthermore, Tur's pH instability was significantly overcome by encapsulation in all emulsion systems (p < 0.05). During 4 weeks of storage period, Tur-OPE demonstrated the highest retention rates, with the half-life of Tur increasing in the following order: free Tur < Tur-CE < Tur-IPE < Tur-OPE. Thus, we highlighted the important role of encapsulation position in PEs in improving and maintaining the color stability and vividness of natural pigments under various food processing conditions.
Collapse
Affiliation(s)
| | | | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; (A.H.); (Y.B.)
| |
Collapse
|
4
|
Delavar F, Mohseni M, Jahandideh A, Khajehmohammadi M, Najmoddin N. Piezoelectric bilayer fibrous conduit with gellan/curcumin encapsulated alginate infilling for promotion of sciatic nerve regeneration in the rat models. Int J Biol Macromol 2025; 286:137833. [PMID: 39566755 DOI: 10.1016/j.ijbiomac.2024.137833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
The peripheral nerve regeneration has a limited innate capacity for self-repair and thus it urgently necessitates designing a smart nerve guidance conduit. Considering the electrophysiological features of nerve tissues, a piezoelectric bilayer fibrous conduit filled with drug-encapsulated gellan was developed in this study and its ability to promote neural growth was assessed in vivo. To fabricate such conduit, bilayer fibrous mats were prepared from poly ε-caprolactone/BaTiO3 and poly-L-lactic acid -chitosan-gelatin-polyaniline/graphene via an electrospinning process. After rolling the fibrous mat, the inside of the hollow conduit was filled with gellan containing Curcumin-loaded alginate (Alg) particles. All intermediate and final products were characterized using various analytical techniques. Encapsulation of Curcumin into the Alg particles and loaded in the gellan could effectively enhance sustained release of drug during the healing process, following Higuchi model. Four weeks post-surgery, such an engineered conduit revealed much better nerve regeneration results than the control group and showed desirable outcomes in terms of sciatic function indices and formation of the perineurium as well as axon number. Such developed conduit has a high potency to repair the injured nerve tissue due to their capacity to sustain the release of drugs over a long period and transfer self-stimulated electrical signals between cells. The in vivo assay revealed the feasibility of exploiting such conduit in nerve tissue engineering.
Collapse
Affiliation(s)
- Farhan Delavar
- School of Life Sciences, Neuroscience Department, University of Warwick, Coventry, UK; Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Biomedical Engineering, Medical Engineering and Biology Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mojdeh Mohseni
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Alireza Jahandideh
- Department of Clinical Sciences, Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehran Khajehmohammadi
- Department of Mechanical Engineering, Faculty of Engineering, Yazd University, Yazd, Iran; Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Najmeh Najmoddin
- Department of Biomedical Engineering, Medical Engineering and Biology Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Yusuf J, Sapuan SM, Rashid U, Ilyas RA, Hassan MR. Thermal, mechanical, and morphological properties of oil palm cellulose nanofibril reinforced green epoxy nanocomposites. Int J Biol Macromol 2024; 278:134421. [PMID: 39227276 DOI: 10.1016/j.ijbiomac.2024.134421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024]
Abstract
In this study, significant improvements in mechanical properties have been seen through the efficient inclusion of Oil Palm Cellulose Nanofibrils (CNF) as nano-fillers into green polymer matrices produced from biomass with a 28 % carbon content. The goal of the research was to make green epoxy nanocomposites utilizing solution blending process with acetone as the solvent with the different CNF loadings (0.1, 0.25, and 0.5 wt%). An ultrasonic bath was used in conjunction with mechanical stirring to guarantee that CNF was effectively dispersed throughout the green epoxy. The resultant nanocomposites underwent thorough evaluation, comparing them to unfilled green epoxy and evaluating their morphological, mechanical, and thermal behavior using a variety of instruments. Field-emission scanning electron microscopy (FE-SEM) was used to validate findings, which showed that the CNF were dispersed optimally inside the nanocomposites. The thermal degradation temperature (Td) of the nanocomposites showed a marginal decrement of 0.8 % in temperatures (from 348 °C to 345 °C), between unfilled green epoxy (neat) and 0.1 wt% of CNF loading. The mechanical test results, which showed a 13.3 % improvement in hardness and a 6.45 % rise in tensile strength when compared to unfilled green epoxy, were in line with previously published research. Overall, the outcomes showed that green nanocomposites have significantly improved in performance.
Collapse
Affiliation(s)
- J Yusuf
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - S M Sapuan
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Malaysia.
| | - Umer Rashid
- Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - R A Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - M R Hassan
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Asadzadeh F, Ghorbanzadeh S, Poursattar Marjani A, Gholami R, Asadzadeh F, Lotfollahi L. Assessing polylactic acid nanofibers with cellulose and chitosan nanocapsules loaded with chamomile extract for treating gram-negative infections. Sci Rep 2024; 14:22336. [PMID: 39333220 PMCID: PMC11437081 DOI: 10.1038/s41598-024-72398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
This study presents the development and characterization of a novel nanocomposite wound dressing material based on polylactic acid (PLA) nanofibers incorporating chitosan nanocapsules loaded with chamomile extract and cellulose nanoparticles. The nanofibers were fabricated using a three-step synthesis and electrospinning techniques, resulting in uniform, bead-free fibers with an average diameter of 186 ± 56 nm. Fourier-transform infrared spectroscopy confirmed the successful incorporation of all components, while tensile strength tests demonstrated improved mechanical properties by adding nanoparticles. Water contact angle measurements revealed enhanced surface wettability of the PLA-Cellulose-Chitosan complex compared to pure PLA nanofibers. In vitro biocompatibility assessments using MTT assays showed excellent cell viability and proliferation, with the optimized composite exhibiting the best performance. Scanning electron microscopy imaging confirmed robust cell adhesion and interaction with the nanofibers. The nanocomposite demonstrated significant antimicrobial activity against Escherichia coli, with a 20 mm inhibition zone observed for chamomile extract-loaded samples. Additionally, the material showed superior hemostatic ability compared to commercial gauze and high hemocompatibility. These comprehensive results indicate that the developed nanocomposite is a promising candidate for advanced wound management applications, offering a multifunctional approach to wound healing by combining antimicrobial activity, cell compatibility, and hemostatic properties.
Collapse
Affiliation(s)
- Fatemeh Asadzadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Sadegh Ghorbanzadeh
- School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | | | - Reza Gholami
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, IUST, Tehran, Iran
| | - Faezeh Asadzadeh
- Haj Muhammad Talaaie Scientific Research Institute, Nanotechnology Research Institute, Salmas, Iran
| | - Lida Lotfollahi
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
7
|
Tamo AK. Nanocellulose-based hydrogels as versatile materials with interesting functional properties for tissue engineering applications. J Mater Chem B 2024; 12:7692-7759. [PMID: 38805188 DOI: 10.1039/d4tb00397g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tissue engineering has emerged as a remarkable field aiming to restore or replace damaged tissues through the use of biomimetic constructs. Among the diverse materials investigated for this purpose, nanocellulose-based hydrogels have garnered attention due to their intriguing biocompatibility, tunable mechanical properties, and sustainability. Over the past few years, numerous research works have been published focusing on the successful use of nanocellulose-based hydrogels as artificial extracellular matrices for regenerating various types of tissues. The review emphasizes the importance of tissue engineering, highlighting hydrogels as biomimetic scaffolds, and specifically focuses on the role of nanocellulose in composites that mimic the structures, properties, and functions of the native extracellular matrix for regenerating damaged tissues. It also summarizes the types of nanocellulose, as well as their structural, mechanical, and biological properties, and their contributions to enhancing the properties and characteristics of functional hydrogels for tissue engineering of skin, bone, cartilage, heart, nerves and blood vessels. Additionally, recent advancements in the application of nanocellulose-based hydrogels for tissue engineering have been evaluated and documented. The review also addresses the challenges encountered in their fabrication while exploring the potential future prospects of these hydrogel matrices for biomedical applications.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France
| |
Collapse
|
8
|
Soleimani F, Pellerin C, Omidfar K, Bagheri R. Engineered Robust Hydrophobic/Hydrophilic Nanofibrous Scaffolds with Drug-Eluting, Antioxidant, and Antimicrobial Capacity. ACS APPLIED BIO MATERIALS 2024; 7:3687-3700. [PMID: 38776103 DOI: 10.1021/acsabm.4c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Multifunctional nanofibrous architectures have attracted extensive attention for biomedical applications due to their adjustable and versatile properties. Electrospun fabrics stand out as key building blocks for these structures, yet improving their mechanobiological and physicochemical performance is a challenge. Here, we introduce biodegradable engineered hydrophobic/hydrophilic scaffolds consisting of electrospun polylactide nanofibers coated with drug-eluting synthetic (poly(vinyl alcohol)) and natural (starch) polymers. The microstructure of these composite scaffolds was tailored for an increased hydrophilicity, optimized permeability, water retention capacity of up to 5.1 g/g, and enhanced mechanical properties under both dry and wet conditions. Regarding the latter, normalized tensile strengths of up to 32.4 MPa were achieved thanks to the improved fiber interactions and fiber-coating stress transfer. Curcumin was employed as a model drug, and its sustained release in a pure aqueous medium was investigated for 35 days. An in-depth study of the release kinetics revealed the outstanding water solubility and bioavailability of curcumin, owing to its complexation with the hydrophilic polymers and further delineated the role of the hydrophobic nanofibrous network in regulating its release rate. The modified curcumin endowed the composites with antioxidant activities up to 5.7 times higher than that of free curcumin as well as promising anti-inflammatory and bacteriostatic activities. The cytocompatibility and cell proliferation capability on human dermal fibroblasts also evidenced the safe use of the constructs. Finally, the fabrics present pH-responsive color-changing behavior easily distinguishable within the pH range of 5-9. Thus, these designs offer a facile and cost-effective roadmap for the fabrication of smart multifunctional biomaterials, especially for chronic wound healing.
Collapse
Affiliation(s)
- Foad Soleimani
- Polymeric Materials Research Group (PMRG), Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran 14588, Iran
| | - Christian Pellerin
- Département de chimie, Institut Courtois, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran 14117, Iran
| | - Reza Bagheri
- Polymeric Materials Research Group (PMRG), Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran 14588, Iran
| |
Collapse
|
9
|
Azarkar S, Abedi M, Lavasani ASO, Ammameh AH, Goharipanah F, Baloochi K, Bakhshi H, Jafari A. Curcumin as a natural potential drug candidate against important zoonotic viruses and prions: A narrative review. Phytother Res 2024; 38:3080-3121. [PMID: 38613154 DOI: 10.1002/ptr.8119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 04/14/2024]
Abstract
Zoonotic diseases are major public health concerns and undeniable threats to human health. Among Zoonotic diseases, zoonotic viruses and prions are much more difficult to eradicate, as they result in higher infections and mortality rates. Several investigations have shown curcumin, the active ingredient of turmeric, to have wide spectrum properties such as anti-microbial, anti-vascular, anti-inflammatory, anti-tumor, anti-neoplastic, anti-oxidant, and immune system modulator properties. In the present study, we performed a comprehensive review of existing in silico, in vitro, and in vivo evidence on the antiviral (54 important zoonotic viruses) and anti-prion properties of curcumin and curcuminoids in PubMed, Google Scholar, Science Direct, Scopus, and Web of Science databases. Database searches yielded 13,380 results, out of which 216 studies were eligible according to inclusion criteria. Of 216 studies, 135 (62.5%), 24 (11.1%), and 19 (8.8%) were conducted on the effect of curcumin and curcuminoids against SARS-CoV-2, Influenza A virus, and dengue virus, respectively. This review suggests curcumin and curcuminoids as promising therapeutic agents against a wide range of viral zoonoses by targeting different proteins and signaling pathways.
Collapse
Affiliation(s)
- Setareh Azarkar
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Masoud Abedi
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | | | - Fatemeh Goharipanah
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Kimiya Baloochi
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hasan Bakhshi
- Vector-Borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirsajad Jafari
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Katiyar S, Singh D, Tripathi AD, Chaurasia AK, Singh RK, Srivastava PK, Mishra A. In vitro and in vivo assessment of curcumin-quercetin loaded multi-layered 3D-nanofibroporous matrix prepared by solution blow-spinning for full-thickness burn wound healing. Int J Biol Macromol 2024; 270:132269. [PMID: 38744363 DOI: 10.1016/j.ijbiomac.2024.132269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/19/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Burn wounds (BWs) cause impairment of native skin tissue and may cause significant microbial infections that demand immediate care. Curcumin (Cur) and quercetin (Que) exhibit antimicrobial, hemocompatibility, ROS-scavenging, and anti-inflammatory properties. However, its instability, water insolubility, and low biological fluid absorption render it challenging to sustain local Cur and Que doses at the wound site. Therefore, to combat these limitations, we employed blow-spinning and freeze-drying to develop a multi-layered, Cur/Que-loaded gelatin/chitosan/PCL (GCP-Q/C) nanofibroporous (NFP) matrix. Morphological analysis of the NFP-matrix using SEM revealed a well-formed multi-layered structure. The FTIR and XRD plots demonstrated dual-bioactive incorporation and scaffold polymer interaction. Additionally, the GCP-Q/C matrix displayed high porosity (82.7 ± 2.07 %), adequate pore size (∼121 μm), enhanced water-uptake ability (∼675 % within 24 h), and satisfactory biodegradation. The scaffolds with bioactives had a long-term release, increased antioxidant activity, and were more effective against gram-positive (S. aureus) and gram-negative (E. coli) bacteria than the unloaded scaffolds. The in vitro findings of GCP-Q/C scaffolds showed promoted L929 cell growth and hemocompatibility. Additionally, an in vivo full-thickness BW investigation found that an implanted GCP-Q/C matrix stimulates rapid recuperation and tissue regeneration. In accordance with the findings, the Gel/Ch/PCL-Que/Cur NFP-matrix could represent an effective wound-healing dressing for BWs.
Collapse
Affiliation(s)
- Soumya Katiyar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Divakar Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Abhay Dev Tripathi
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Avinash Kumar Chaurasia
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ritika K Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pradeep K Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
11
|
Rastegar-Pouyani N, Dongsar TS, Ataei M, Hassani S, Gumpricht E, Kesharwani P, Sahebkar A. An overview of the efficacy of inhaled curcumin: a new mode of administration for an old molecule. Expert Opin Drug Deliv 2024. [PMID: 38771504 DOI: 10.1080/17425247.2024.2358880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/23/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Curcumin is a polyphenol with a variety of pharmacological actions. Despite its therapeutic effects and well-known safety profile, the utility of curcumin has been limited due to its deprived physical, chemical, and pharmacokinetic profile resulting from limited solubility, durability, prompt deterioration and pitiable systemic availability. Employment of an amalgamated framework integrating the potential advantages of a nanoscaffold alongside the beneficial traits of inhalational drug delivery system beautifully bringing down the restricting attributes of intended curative interventions and further assures its clinical success. AREAS COVERED Current review discussed different application of inhalable nanocurcumin in different medical conditions. Lung diseases have been the prime field in which inhalable nanocurcumin had resulted in significant beneficial effects. Apart from this several lung protective potentials of the inhaled nanocurcumin have been discussed against severe pulmonary disorders such as pulmonary fibrosis, radiation pneumonitis and IUGR induced bronchopulmonary dysplasia. Also, application of the disclosed intervention in the clinical management of COVID-19 and Alzheimer's Disease has been discussed. EXPERT OPINION In this portion, the potential of inhalable nanocurcumin in addressing various medical conditions along with ongoing advancements in nanoencapsulation techniques and the existing challenges in transitioning from pre-clinical models to clinical practice has been summarized.
Collapse
Affiliation(s)
- Nima Rastegar-Pouyani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Tenzin Sonam Dongsar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mahshid Ataei
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Eric Gumpricht
- Department of Pharmacology, Isagenix International, LLC, Gilbert, Arizona, AZ, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Saharkhiz S, Zarepour A, Nasri N, Cordani M, Zarrabi A. A comparison study between doxorubicin and curcumin co-administration and co-loading in a smart niosomal formulation for MCF-7 breast cancer therapy. Eur J Pharm Sci 2023; 191:106600. [PMID: 37802230 DOI: 10.1016/j.ejps.2023.106600] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/04/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
Chemotherapy agents often exhibit limited effectiveness due to their fast elimination from the body and non-targeted delivery. Emerging nanomaterials as drug delivery carriers open new expectancy to overcome these limitations in current chemotherapeutic treatments. In this study, we introduce and evaluate a smart pH-responsive niosomal formulation capable of delivering Doxorubicin (DOX) and Curcumin (CUR) in both individually and co-loaded forms. In particular, drug-loaded niosomes were prepared using thin-film hydration method and then characterized via different physicochemical analyses. The pH responsivity of the carrier was assessed by performing a drug release study in three different pH conditions (4, 6.5, and 7.4). Finally, the anticancer efficacy of the therapeutic compounds was evaluated through the MTT assay. Our results showed spherical particles with a size of about 200 nm and -2 mV surface charge. Encapsulation efficiency (EE%) of the nanocarrier was about 77.06 % and 79.08 % for DOX and CUR, respectively. The release study confirmed the pH responsivity of the carrier. The MTT assay results revealed about 39 % and 43 % of cell deaths after treatment with cur-loaded and dox-loaded niosomes, which increased to 74 % and 79 % after co-administration and co-loading forms of drugs, respectively, exhibiting increased anticancer efficacy by selectively delivering DOX and CUR individually or in combination. Overall, these findings suggest that our nanoformulation holds the potential as a targeted and highly effective approach for cancer management and therapy, overcoming the limitations of conventional chemotherapy drugs.
Collapse
Affiliation(s)
- Shaghayegh Saharkhiz
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye
| | - Negar Nasri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid 28040, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid 28040, Spain.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye.
| |
Collapse
|
13
|
Wang Z, Song XQ, Xu W, Lei S, Zhang H, Yang L. Stand Up to Stand Out: Natural Dietary Polyphenols Curcumin, Resveratrol, and Gossypol as Potential Therapeutic Candidates against Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Nutrients 2023; 15:3885. [PMID: 37764669 PMCID: PMC10535599 DOI: 10.3390/nu15183885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The COVID-19 pandemic has stimulated collaborative drug discovery efforts in academia and the industry with the aim of developing therapies and vaccines that target SARS-CoV-2. Several novel therapies have been approved and deployed in the last three years. However, their clinical application has revealed limitations due to the rapid emergence of viral variants. Therefore, the development of next-generation SARS-CoV-2 therapeutic agents with a high potency and safety profile remains a high priority for global health. Increasing awareness of the "back to nature" approach for improving human health has prompted renewed interest in natural products, especially dietary polyphenols, as an additional therapeutic strategy to treat SARS-CoV-2 patients, owing to its good safety profile, exceptional nutritional value, health-promoting benefits (including potential antiviral properties), affordability, and availability. Herein, we describe the biological properties and pleiotropic molecular mechanisms of dietary polyphenols curcumin, resveratrol, and gossypol as inhibitors against SARS-CoV-2 and its variants as observed in in vitro and in vivo studies. Based on the advantages and disadvantages of dietary polyphenols and to obtain maximal benefits, several strategies such as nanotechnology (e.g., curcumin-incorporated nanofibrous membranes with antibacterial-antiviral ability), lead optimization (e.g., a methylated analog of curcumin), combination therapies (e.g., a specific combination of plant extracts and micronutrients), and broad-spectrum activities (e.g., gossypol broadly inhibits coronaviruses) have also been emphasized as positive factors in the facilitation of anti-SARS-CoV-2 drug development to support effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (W.X.); (S.L.); (H.Z.)
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus, Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Xian-qing Song
- General Surgery Department, Baoan Central Hospital, Affiliated Baoan Central Hospital of Guangdong Medical University, Shenzhen 518000, China
| | - Wenjing Xu
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (W.X.); (S.L.); (H.Z.)
| | - Shizeng Lei
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (W.X.); (S.L.); (H.Z.)
| | - Hao Zhang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (W.X.); (S.L.); (H.Z.)
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
14
|
Mariano A, Bigioni I, Marchetti M, Scotto d'Abusco A, Superti F. Repositioned Natural Compounds and Nanoformulations: A Promising Combination to Counteract Cell Damage and Inflammation in Respiratory Viral Infections. Molecules 2023; 28:molecules28104045. [PMID: 37241786 DOI: 10.3390/molecules28104045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Respiratory viral diseases are among the most important causes of disability, morbidity, and death worldwide. Due to the limited efficacy or side effects of many current therapies and the increase in antiviral-resistant viral strains, the need to find new compounds to counteract these infections is growing. Since the development of new drugs is a time-consuming and expensive process, numerous studies have focused on the reuse of commercially available compounds, such as natural molecules with therapeutic properties. This phenomenon is generally called drug repurposing or repositioning and represents a valid emerging strategy in the drug discovery field. Unfortunately, the use of natural compounds in therapy has some limitations, due to their poor kinetic performance and consequently reduced therapeutic effect. The advent of nanotechnology in biomedicine has allowed this limitation to be overcome, showing that natural compounds in nanoform may represent a promising strategy against respiratory viral infections. In this narrative review, the beneficial effects of some promising natural molecules, curcumin, resveratrol, quercetin, and vitamin C, which have been already studied both in native form and in nanoform, against respiratory viral infections are presented and discussed. The review focuses on the ability of these natural compounds, analyzed in in vitro and in vivo studies, to counteract inflammation and cellular damage induced by viral infection and provide scientific evidence of the benefits of nanoformulations in increasing the therapeutic potential of these molecules.
Collapse
Affiliation(s)
- Alessia Mariano
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Irene Bigioni
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Magda Marchetti
- National Centre for Innovative Technologies in Public Health, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Anna Scotto d'Abusco
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Fabiana Superti
- National Centre for Innovative Technologies in Public Health, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
15
|
Mai X, Zhang X, Wang W, Zheng Y, Wang D, Xu W, Liu F, Sun Z. Novel PVA/carboxylated cellulose antimicrobial hydrogel grafted with curcumin and ε-polylysine for chilled chicken preservation. Food Chem 2023; 424:136345. [PMID: 37224635 DOI: 10.1016/j.foodchem.2023.136345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/14/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023]
Abstract
PVA/CC/CUR/PL composite films containing curcumin (CUR) and ε-polylysine (PL) were prepared by casting and chemical grafting methods to address the threat to food spoilage. Morphological analysis showed that the grafting of CUR and PL resulted in a rough cross-section of the polymer matrix. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis confirmed the grafting of CUR and PL into the polymer matrix via esterification and amidation reactions, respectively. Thermal weight loss analysis showed that grafting process positively improved the thermal stability. The PVA/CC/CUR/PL films exhibited strong bactericidal activity, reaching 99.0% and 99.8% for Pseudomonas lundensis and Shewanella putrefaciens, respectively. After 8 days of storage, the total number of colonies and the TVB-N content in the PVA/CC/CUR/PL group decreased by 1.51 lg CFU/g and 13.77 mg/100 g, respectively. Therefore, PVA/CC/CUR/PL films are considered as a promising bactericidal material with good mechanical properties, functionality, and other excellent characteristics.
Collapse
Affiliation(s)
- Xutao Mai
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210097, China
| | - Xinxiao Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Wenzhuo Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Yuhang Zheng
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Daoying Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Weimin Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210097, China
| | - Fang Liu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Zhilan Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.
| |
Collapse
|
16
|
de Souza Silva FK, Orlandi CBC, Fernandes MA, Sant'Ana Pegorin Brasil G, Mussagy CU, Scontri M, Sasaki JC, de Sousa Abreu AP, Guerra NB, Floriano JF, de Mendonça RJ, Caetano GF, Farhadi N, Gómez A, Huang S, Farias AM, Primo FL, Li B, Almeida AMF, Dokmeci MR, Jucaud V, Giannini MJSM, Cardoso MR, Herculano RD. Biocompatible anti-aging face mask prepared with curcumin and natural rubber with antioxidant properties. Int J Biol Macromol 2023; 242:124778. [PMID: 37172704 DOI: 10.1016/j.ijbiomac.2023.124778] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Natural rubber latex (NRL) is a biopolymer widely used in biomedical applications. In this work, we propose an innovative cosmetic face mask, combining the NRL's biological properties with curcumin (CURC), which has a high level of antioxidant activity (AA) to provide anti-aging benefits. Chemical, mechanical and morphological characterizations were performed. The CURC released by the NRL was evaluated by permeation in Franz cells. Cytotoxicity and hemolytic activity assays were performed to assess safety. The findings showed that the biological properties of CURC were preserved after loading in the NRL. About 44.2 % of CURC was released within the first six hours, and in vitro permeation showed that 9.36 % ± 0.65 was permeated over 24h. CURC-NRL was associated with a metabolic activity higher than 70 % in 3 T3 fibroblasts, cell viability ≥95 % in human dermal fibroblasts, and a hemolytic rate ≤ 2.24 % after 24 h. Furthermore, CURC-NRL maintained the mechanical characteristics (range suitable) for human skin application. We observed that CURC-NRL preserved ~20 % antioxidant activity from curcumin-free after loading in the NRL. Our results suggest that CURC-NRL has the potential to be used in the cosmetics industry, and the experimental methodology utilized in this study can be applied to different kinds of face masks.
Collapse
Affiliation(s)
- Flávio Kunert de Souza Silva
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 01 Araraquara-Jaú Road, Araraquara, São Paulo, Brazil; Department of Clinical Analysis, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 01 Araraquara-Jaú Road, Araraquara, São Paulo, Brazil
| | - Caroline Barcelos Costa Orlandi
- Department of Clinical Analysis, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 01 Araraquara-Jaú Road, Araraquara, São Paulo, Brazil
| | - Mariza Aires Fernandes
- Bionanomaterials and Bioengineering Group, Department of Biotechnology and Bioprocesses Engineering, São Paulo State University (UNESP), Faculty of Pharmaceutical Sciences, Araraquara, 14800-903, São Paulo, Brazil
| | - Giovana Sant'Ana Pegorin Brasil
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 01 Araraquara-Jaú Road, Araraquara, São Paulo, Brazil
| | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile
| | - Mateus Scontri
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 01 Araraquara-Jaú Road, Araraquara, São Paulo, Brazil
| | - Josana Carla Sasaki
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 01 Araraquara-Jaú Road, Araraquara, São Paulo, Brazil
| | - Ana Paula de Sousa Abreu
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 01 Araraquara-Jaú Road, Araraquara, São Paulo, Brazil
| | | | - Juliana Ferreira Floriano
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil; National Heart and Lung Institute, Imperial College London, London, UK
| | - Ricardo José de Mendonça
- Department of Biochemistry, Pharmacology and Physiology, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Guilherme Ferreira Caetano
- University Center of Hermínio Ometto Foundation (FHO), Araras, São Paulo, Brazil; Division of Dermatology, Department of Internal Medicine, São Paulo University (USP), Ribeirão Preto Medical School, Ribeirão Preto, SP, Brazil
| | - Neda Farhadi
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 West Olympic Blvd, Los Angeles, CA, USA
| | - Alejandro Gómez
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 West Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Shuyi Huang
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 West Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Andressa Machado Farias
- São Paulo State University (UNESP), School of Sciences and Languages of Assis, Department of Biotechnology, Assis, São Paulo 19806-900, Brazil
| | - Fernando Lucas Primo
- Bionanomaterials and Bioengineering Group, Department of Biotechnology and Bioprocesses Engineering, São Paulo State University (UNESP), Faculty of Pharmaceutical Sciences, Araraquara, 14800-903, São Paulo, Brazil
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 West Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Ana Marisa Fusco Almeida
- Department of Clinical Analysis, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 01 Araraquara-Jaú Road, Araraquara, São Paulo, Brazil
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 West Olympic Blvd, Los Angeles, CA, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 West Olympic Blvd, Los Angeles, CA, USA
| | - Maria José Soares Mendes Giannini
- Department of Clinical Analysis, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 01 Araraquara-Jaú Road, Araraquara, São Paulo, Brazil
| | - Marcos Roberto Cardoso
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13561-970 São Carlos, SP, Brazil
| | - Rondinelli Donizetti Herculano
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 01 Araraquara-Jaú Road, Araraquara, São Paulo, Brazil; Terasaki Institute for Biomedical Innovation (TIBI), 11507 West Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA.
| |
Collapse
|
17
|
Carvajal-Barriga EJ, Fitzgerald W, Dimitriadis EK, Margolis L, Fields RD. Sulfated endospermic nanocellulose crystals prevent the transmission of SARS-CoV-2 and HIV-1. Sci Rep 2023; 13:6959. [PMID: 37117231 PMCID: PMC10141831 DOI: 10.1038/s41598-023-33686-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/17/2023] [Indexed: 04/30/2023] Open
Abstract
Biomaterials with antimicrobial activity are gaining attention due to their biodegradability and efficacy in interacting with a wide range of microorganisms. A new cellulose nano-biomaterial, endospermic nanocellulose crystals (ENC) obtained from parenchymal tissue of ivory nut endosperm, has a natural capacity as a universal binder. This feature is enhanced when it is chemically functionalized, and can be exploited in the fight against microbes. We tested the ability of sulfated ENC in aqueous suspension to encapsulate viruses through a crosslinking reaction mediated by cations. 0.25% w/v ENC suspensions efficiently encapsulated spike (S) protein, preventing its interaction with ACE2 receptor. ENC was further able to encapsulate SARS-CoV-2 pseudoviruses and prevent infection of 293T-hsACE2 cells. ENC also suppressed infection of MT-4 cells with HIV-1LAI.04. This antiviral activity of sulfated ENC is due to the irreversible interaction of ENC with viral particles mediated by crosslinking, as antiviral activity was less effective in the absence of cations. Additionally, ENC was used as a matrix to immobilize recombinant ACE2 receptors and anti-S IgG, creating molecular lures that efficiently inhibited SARS-CoV-2 infections in vitro. These results show that sulfated ENC from ivory nuts can be used as an efficient antiviral material.
Collapse
Affiliation(s)
- Enrique Javier Carvajal-Barriga
- Nervous System Development and Plasticity Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Neotropical Center for the Biomass Research, Pontificia Universidad Católica del Ecuador, Quito, Pichincha, Ecuador
| | - Wendy Fitzgerald
- Section On Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Emilios K Dimitriadis
- Biomedical Engineering and Physical Science Shared Resource Program, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Leonid Margolis
- Section On Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - R Douglas Fields
- Nervous System Development and Plasticity Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
18
|
Pacheco K, Aldea-Nunzi G, Pawlicka A, Nunzi JM. The Formation of Volume Transmission Gratings in Acrylamide-Based Photopolymers Using Curcumin as a Long-Wavelength Photosensitizer. Polymers (Basel) 2023; 15:polym15071782. [PMID: 37050396 PMCID: PMC10096970 DOI: 10.3390/polym15071782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Curcumin, a natural dye found in the Curcuma longa rhizome, commonly called turmeric, is used as a photosensitizer in acrylamide-based photopolymers for holographic data storage. We studied the absorbance of photopolymer films that show two absorption bands due to curcumin, acrylamide monomer (AA), and the crosslinking agent N,N'-methylenebisacrylamide (MBA). Analysis of the real-time diffraction efficiency of these films shows a maximum of 16% for the sample with the highest curcumin concentration. Moreover, increasing the curcumin load enhanced the refractive index contrast from 7.8 × 10-4 for the photopolymer with the lowest curcumin load to 1.1 × 10-3 for the photopolymer with the largest load. The sensitivity and diffraction efficiency of the recorded gratings also increased from 7.0 to 9.8 cm·J-1 and from 7.9 to 16% with the increase in curcumin load, respectively. Finally, the influence of NaOH on the photopolymerization of the AA-curcumin-based sample shows a diffraction efficiency increase with the NaOH content, revealing that the curcumin enol form is more efficient as a photosensitizer.
Collapse
Affiliation(s)
| | | | - Agnieszka Pawlicka
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador Sãocarlense 400, São Carlos 13566-590, SP, Brazil
| | - Jean-Michel Nunzi
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
19
|
Suresh MV, Francis S, Aktay S, Kralovich G, Raghavendran K. Therapeutic potential of curcumin in ARDS and COVID-19. Clin Exp Pharmacol Physiol 2023; 50:267-276. [PMID: 36480131 PMCID: PMC9877870 DOI: 10.1111/1440-1681.13744] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/13/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Curcumin is a safe, non-toxic, readily available and naturally occurring compound, an active constituent of Curcuma longa (turmeric). Curcumin could potentially treat diseases, but faces poor physicochemical and pharmacological characteristics. To overcome these limitations, we developed a stable, water-soluble formulation of curcumin called cyclodextrin-complexed curcumin (CDC). We have previously shown that direct delivery of CDC to the lung following lipopolysaccharides exposure reduces acute lung injury (ALI) and effectively reduces lung injury, inflammation and mortality in mice following Klebsiella pneumoniae. Recently, we found that administration of CDC led to a significant reduction in angiotensin-converting enzyme 2 and signal transducer and activator of transcription 3 expression in gene and protein levels following pneumonia, indicating its potential in treating coronavirus disease 2019 (COVID-19). In this review, we consider the clinical features of ALI and acute respiratory distress syndrome (ARDS) and the role of curcumin in modulating the pathogenesis of bacterial/viral-induced ARDS and COVID-19.
Collapse
Affiliation(s)
| | - Sairah Francis
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Sinan Aktay
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Georgia Kralovich
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
20
|
Synthesis of Cationic Quaternized Nanolevan Derivative for Small Molecule and Nucleic Acid Delivery. Gels 2023; 9:gels9030188. [PMID: 36975637 PMCID: PMC10048328 DOI: 10.3390/gels9030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
Levan is a biopolymer composed of fructose chains covalently linked by β−2,6 glycosidic linkages. This polymer self−assembles into a nanoparticle of uniform size, making it useful for a wide range of applications. Also, levan exhibits various biological activities such as antioxidants, anti-inflammatory, and anti-tumor, that make this polymer very attractive for biomedical application. In this study, levan synthesized from Erwinia tasmaniensis was chemically modified by glycidyl trimethylammonium chloride (GTMAC) to produce cationized nanolevan (QA-levan). The structure of the obtained GTMAC−modified levan was determined by FT-IR, 1H-NMR and elemental (CHN) analyzer. The size of the nanoparticle was calculated using the dynamic light scattering method (DLS). The formation of DNA/QA-levan polyplex was then investigated by gel electrophoresis. The modified levan was able to increase the solubility of quercetin and curcumin by 11-folds and 205-folds, respectively, compared to free compounds. Cytotoxicity of levan and QA−levan was also investigated in HEK293 cells. This finding suggests that GTMAC−modified levan should have a potential application for drug and nucleic acid delivery.
Collapse
|
21
|
Ong XR, Chen AX, Li N, Yang YY, Luo HK. Nanocellulose: Recent Advances Toward Biomedical Applications. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xuan-Ran Ong
- Agency for Science, Technology and Research Institute of Sustainability for Chemicals, Energy and Environment 1 Pesek Road, Jurong Island Singapore 627833 Singapore
| | - Adrielle Xianwen Chen
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - Ning Li
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - Yi Yan Yang
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - He-Kuan Luo
- Agency for Science, Technology and Research Institute of Sustainability for Chemicals, Energy and Environment 1 Pesek Road, Jurong Island Singapore 627833 Singapore
| |
Collapse
|
22
|
Zhao J, Zhu J, Huang C, Zhu X, Zhu Z, Wu Q, Yuan R. Uncovering the information immunology journals transmitted for COVID-19: A bibliometric and visualization analysis. Front Immunol 2022; 13:1035151. [PMID: 36405695 PMCID: PMC9670819 DOI: 10.3389/fimmu.2022.1035151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/17/2022] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Since the global epidemic of the coronavirus disease 2019 (COVID-19), a large number of immunological studies related to COVID-19 have been published in various immunology journals. However, the results from these studies were discrete, and no study summarized the important immunological information about COVID-19 released by these immunology journals. This study aimed to comprehensively summarize the knowledge structure and research hotspots of COVID-19 published in major immunology journals through bibliometrics. METHODS Publications on COVID-19 in major immunology journals were obtained from the Web of Science Core Collection. CiteSpace, VOSviewer, and R-bibliometrix were comprehensively used for bibliometric and visual analysis. RESULTS 1,331 and 5,000 publications of 10 journals with high impact factors and 10 journals with the most papers were included, respectively. The USA, China, England, and Italy made the most significant contributions to these papers. University College London, National Institute of Allergy and Infectious Diseases, Harvard Medical School, University California San Diego, and University of Pennsylvania played a central role in international cooperation in the immunology research field of COVID-19. Yuen Kwok Yung was the most important author in terms of the number of publications and citations, and the H-index. CLINICAL INFECTIOUS DISEASES and FRONTIERS IN IMMUNOLOGY were the most essential immunology journals. These immunology journals mostly focused on the following topics: "Delta/Omicron variants", "cytokine storm", "neutralization/neutralizing antibody", "T cell", "BNT162b2", "mRNA vaccine", "vaccine effectiveness/safety", and "long COVID". CONCLUSION This study systematically uncovered a holistic picture of the current research on COVID-19 published in major immunology journals from the perspective of bibliometrics, which will provide a reference for future research in this field.
Collapse
Affiliation(s)
- Jiefeng Zhao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jinfeng Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chao Huang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaojian Zhu
- Center for Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhengming Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qinrong Wu
- Department of General Surgery, Yingtan City People’s Hospital, Yingtan, Jiangxi, China
| | - Rongfa Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
23
|
Barriga EJC, Fitzgerald W, Dimitriadis EK, Margolis L, Fields RD. Sulfated endospermic nanocellulose crystals prevent the transmission of SARS-CoV-2 and HIV-1. RESEARCH SQUARE 2022. [PMID: 36324803 PMCID: PMC9628189 DOI: 10.21203/rs.3.rs-2163527/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Biomaterials with antimicrobial activity are gaining attention due to their biodegradability and efficacy in interacting with a wide range of microorganisms. A new cellulose nano-biomaterial, endospermic nanocellulose crystals (ENC) obtained from parenchymal tissue of ivory nut endosperm, has a natural capacity as a universal binder. This feature is enhanced when it is chemically functionalized, and can be exploited in the fight against microbes.
We tested the ability of sulfated ENC in aqueous suspension to encapsulate viruses through a crosslinking reaction mediated by cations. 0.25% w/v ENC suspensions efficiently encapsulated spike (S) protein, preventing its interaction with ACE2 receptor. ENC was further able to encapsulate SARS-CoV-2 pseudoviruses and prevent infection of 293T-ACE2 cells. ENC also suppressed infection of MT-4 cells with HIV-1
LAI.04
. This antiviral activity of sulfated ENC is due to the irreversible interaction of ENC with viral particles mediated by crosslinking, as antiviral activity was less effective in the absence of cations. Additionally, ENC was used as a matrix to immobilize recombinant ACE2 receptors and anti-S IgG, creating molecular lures that efficiently inhibited SARS-CoV-2 infections
in vitro
. These results show that sulfated ENC from ivory nuts can be used as an efficient antiviral material.
Collapse
|
24
|
Nanocellulose-based hydrogels as versatile drug delivery vehicles: A review. Int J Biol Macromol 2022; 222:830-843. [PMID: 36179866 DOI: 10.1016/j.ijbiomac.2022.09.214] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/19/2022] [Accepted: 09/24/2022] [Indexed: 11/22/2022]
Abstract
Hydrogels designed with nanocellulose (i.e. cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), and bacterial cellulose (BC)) have significant advantages as drug carriers due to their environmentally-benign features and excellent properties. Nanocellulose hydrogels have been demonstrated to sustainably deliver various kinds of drugs via different routes of administration, in which nanocellulose significantly improves the hydrogel properties and tunes the drug releasing profile. This article comprehensively summarizes the recent research progress on nanocellulose hydrogels in drug delivery. We carefully assessed the gelation methods for nanocellulose hydrogel design and highlighted the influence of nanocellulose on hydrogel properties and drug release behaviors. In particular, it is the first time to summarize the research on nanocellulose hydrogel-based drug carriers regarding specific routes of administration. This work provides a critical review of nanocellulose-based hydrogels as drug delivery vehicles, and also underlines the outlook in this field, with the objective to inspire/prompt future work, especially the practical applications of nanocellulose hydrogels in designing controlled drug delivery systems.
Collapse
|
25
|
Phyto-Therapeutic and Nanomedicinal Approaches: A New Hope for Management of Alzheimer's Disease. Int J Pharm 2022; 627:122213. [PMID: 36179926 DOI: 10.1016/j.ijpharm.2022.122213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/08/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022]
|
26
|
Iraci N, Corsaro C, Giofrè SV, Neri G, Mezzasalma AM, Vacalebre M, Speciale A, Saija A, Cimino F, Fazio E. Nanoscale Technologies in the Fight against COVID-19: From Innovative Nanomaterials to Computer-Aided Discovery of Potential Antiviral Plant-Derived Drugs. Biomolecules 2022; 12:1060. [PMID: 36008954 PMCID: PMC9405735 DOI: 10.3390/biom12081060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
The last few years have increasingly emphasized the need to develop new active antiviral products obtained from artificial synthesis processes using nanomaterials, but also derived from natural matrices. At the same time, advanced computational approaches have found themselves fundamental in the repurposing of active therapeutics or for reducing the very long developing phases of new drugs discovery, which represents a real limitation, especially in the case of pandemics. The first part of the review is focused on the most innovative nanomaterials promising both in the field of therapeutic agents, as well as measures to control virus spread (i.e., innovative antiviral textiles). The second part of the review aims to show how computer-aided technologies can allow us to identify, in a rapid and therefore constantly updated way, plant-derived molecules (i.e., those included in terpenoids) potentially able to efficiently interact with SARS-CoV-2 cell penetration pathways.
Collapse
Affiliation(s)
- Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Carmelo Corsaro
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Salvatore V. Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Angela Maria Mezzasalma
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Martina Vacalebre
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Antonina Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Enza Fazio
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| |
Collapse
|
27
|
Mallakpour S, Tabesh F, Hussain CM. A new trend of using poly(vinyl alcohol) in 3D and 4D printing technologies: Process and applications. Adv Colloid Interface Sci 2022; 301:102605. [PMID: 35144173 DOI: 10.1016/j.cis.2022.102605] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
Recently, 3D/4D printing technologies have been the researchers' interest, and they are getting improved more important. They are applicable in various fields like medical fields, pharmaceutics, construction, tissue engineering, dentistry, water treatment, etc. These technologies overcame the difficulty of the conventional methods in producing complicated structures. They can be fed by different materials such as nanomaterials, smart polymers, responsive polymers, metamaterials, synthetic polymers, natural polymers, and so forth. One of the smart and stimuli-responsive polymers is poly(vinyl alcohol) (PVA). In addition to numerous applications of PVA like medicine, environmental fields, etc., researchers are showing a tendency to use PVA in 3D/4D printing technologies. The main reasons for PVA's increased interest in 3D/4D printing technologies are suitable flowability, stimuli-responsivity, extrudability, biocompatibility, biodegradability, cost-effectiveness, and other features. This review aims to introduce the 3D/4D printing technologies' knowledge and then the applications of PVA as a feed in these novel technologies.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Farbod Tabesh
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark N J 07102, USA
| |
Collapse
|