1
|
Liu F, Ma Q, Zhang J, Wang J, Govindan D, Zhao M, Gao C, Li Y, Zhang W. Self-Cleaning Microwave-Responsive MXene-Coated Filtration System for Enhanced Airborne Virus Disinfection. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27167-27177. [PMID: 40273420 DOI: 10.1021/acsami.5c02969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
The COVID-19 pandemic has highlighted the urgent demand for advanced air disinfection technologies. Traditional air filters primarily capture large airborne particles but are ineffective against submicrometer aerosols. This study introduces a microwave-enabled catalytic air filtration system using Ti3C2Tx MXene-coated polypropylene filters to enhance air disinfection. With only 0.05 mg·cm-2 of MXene coating, the filter surface temperature rapidly reached 104 °C within 3 s under 125 W microwave irradiation. Such surface heating led to a significantly higher log removal value (LRV) (1.86 ± 0.47) of the MS2 bacteriophage in the synthetic bioaerosol with an initial concentration of 105 PFU·mL-1, compared to 0.24-0.38 achieved by the pristine filter or the MXene-coated filter without microwave irradiation. Additionally, the filter surface exhibited promising self-cleaning behavior, as indicated by the stable viral inactivation and removal efficiency even in high-humidity environments. This innovative air filtration technology shows promising potential for preventing airborne pathogen transmission and protecting public health across diverse environmental conditions.
Collapse
Affiliation(s)
- Fangzhou Liu
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, New Jersey 07102, United States
- Shandong Key Laboratory for Material Chemistry and Safety Testing Technology, Shandong Institute for Product Quality Inspection, Jinan 250102, People's Republic of China
| | - Qingquan Ma
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, New Jersey 07102, United States
| | - Jiahe Zhang
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, New Jersey 07102, United States
| | - Jian Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Dheeban Govindan
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, New Jersey 07102, United States
| | - Mengqiang Zhao
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, New Jersey 07102, United States
| | - Cuiling Gao
- Shandong Key Laboratory for Material Chemistry and Safety Testing Technology, Shandong Institute for Product Quality Inspection, Jinan 250102, People's Republic of China
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wen Zhang
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, New Jersey 07102, United States
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, New Jersey 07102, United States
| |
Collapse
|
2
|
Adepu S, Siju CR, Kaki S, Bagannagari S, Khandelwal M, Bharti VK. Review on need for designing sustainable and biodegradable face masks: Opportunities for nanofibrous cellulosic filters. Int J Biol Macromol 2024; 283:137627. [PMID: 39547626 DOI: 10.1016/j.ijbiomac.2024.137627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
The surge in microbial illnesses, notably seen during the COVID-19 pandemic, has led to the global use of face masks-cloth, surgical, medical, and respirator types-to curb respiratory pathogen spread. Widely used by the public, patients, and healthcare workers, masks play a key role in reducing airborne transmission. However, synthetic, non-biodegradable materials in these masks have sparked environmental concerns due to disposal issues. Moreover, challenges like limited microbial filtration, poor fit, breathing resistance, and low reusability raise further issues, as does the failure to neutralize trapped microbes. Addressing these issues calls for high-performance, biodegradable masks crafted from renewable nanofibrous materials using advanced technology. Antimicrobial nanomaterial coatings can further reduce contamination risks for users and the environment. Nanofibrous materials, with their high surface area, enhance filtration, allow customization, and improve capture efficiency. Research is progressing on sustainable, biodegradable filters, particularly with cellulose materials. This review outlines mask types and limitations, spotlighting nanofibrous filters for their filtration efficiency, breathability, and sustainability. It also delves into nanofiber manufacturing and assesses bacterial cellulose-a promising renewable nanofibrous material suited for air filtration.
Collapse
Affiliation(s)
- Shivakalyani Adepu
- Cellulose & Composites Laboratory, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - C R Siju
- Cellulose & Composites Laboratory, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Samuel Kaki
- Cellulose & Composites Laboratory, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Sharanya Bagannagari
- Cellulose & Composites Laboratory, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Mudrika Khandelwal
- Cellulose & Composites Laboratory, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India.
| | - Vikram Kishore Bharti
- Cellulose & Composites Laboratory, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India.
| |
Collapse
|
3
|
Sathasivam T, Sugiarto S, Yew MPY, Oh XY, Chan SY, Chan BQY, Tim MJ, Kai D. Transforming textile waste into nanocellulose for a circular future. NANOSCALE 2024; 16:14168-14194. [PMID: 39012322 DOI: 10.1039/d4nr01839g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The expansion of the textile industry and improvements in living standards have led to increased cotton textile production, resulting in a rise in textile waste, with cotton accounting for 24% of total textile waste. Effective waste management through recycling and reuse is crucial to reducing global waste production. Nanocellulose has diverse applications in environmental, geotechnical, food packaging, and biomedical engineering areas. As interest in nanocellulose's unique properties grows, cotton-based textile waste emerges as a promising source for nanocellulose development. However, there is a notable lack of comprehensive reviews on the extraction of nanocellulose from textile waste as a sustainable biomaterial. This paper aims to address this gap by exploring current extraction processes, properties, and recent applications of nanocellulose derived from textile waste. We discussed (1) the potential of nanocellulose resources from different textile wastes, (2) a comparison of the various extraction methods, (3) the functionalization technology and the potential application of such nanocellulose in the textile industry, and (4) the life cycle assessment (LCA) and potential gap of the current technology. It also emphasizes the potential reintegration of extracted nanocellulose into the textile industry to manufacture high-value products, thus completing the loop and strengthening the circular economy.
Collapse
Affiliation(s)
- Thenapakiam Sathasivam
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore, Singapore.
| | - Sigit Sugiarto
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore, Singapore.
| | - Michelle Pek Yin Yew
- Institute of Materials Research and Engineering (IMRE), The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore, Singapore
| | - Xin Yi Oh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore, Singapore.
| | - Siew Yin Chan
- Institute of Materials Research and Engineering (IMRE), The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore, Singapore
| | - Benjamin Qi Yu Chan
- Institute of Materials Research and Engineering (IMRE), The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore, Singapore
| | - Mao Jie Tim
- Chemical & Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Dan Kai
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore, Singapore.
- Institute of Materials Research and Engineering (IMRE), The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
4
|
Sepahvand S, Kargarzadeh H, Jonoobi M, Ashori A, Ismaeilimoghadam S, Varghese RT, Chirayl CJ, Azimi B, Danti S. Recent developments in nanocellulose-based aerogels as air filters: A review. Int J Biol Macromol 2023; 246:125721. [PMID: 37419257 DOI: 10.1016/j.ijbiomac.2023.125721] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Today, one of the world's critical environmental issues is air pollution, which is the most important parameter threatening human health and the environment. Synthetic polymers are widely used in industrial air filter production; however, they are incompatible with the environment due to their secondary pollution. Using renewable materials to manufacture air filters is not only environmentally friendly but also essential. Recently, a new generation of biopolymers called cellulose nanofiber (CNF)-based hydrogels have been proposed, with three dimensional (3D) nanofiber networks and unique physical and mechanical properties. CNFs have become a hot research topic for application as air filter materials because they can compete with synthetic nanofibers due to their advantages, such as abundant, renewable, nontoxic, high specific surface area, high reactivity, flexibility, low cost, low density, and network structure formation. The main focus of the current review is the recent progress in the preparation and employment of nanocellulose materials, especially CNF-based hydrogels, to absorb PM and CO2. This study summarizes the preparation methods, modification strategies, fabrications, and further applications of CNF-based aerogels as air filters. Lastly, challenges in the fabrication of CNFs, and trends for future developments are presented.
Collapse
Affiliation(s)
- Sima Sepahvand
- Department of Bio Systems, Faculty of New Technologies and Aerospace Engineering, Zirab Campus, Shahid Beheshti University, Tehran, Iran
| | - Hanieh Kargarzadeh
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Poland
| | - Mehdi Jonoobi
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| | - Alireza Ashori
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| | - Saeed Ismaeilimoghadam
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Rini Thresia Varghese
- Department of Chemistry, Newman College, Thodupuzha, Kerala 685584, India; School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | | | - Bahareh Azimi
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
| |
Collapse
|
5
|
Popescu M, Ungureanu C. Green Nanomaterials for Smart Textiles Dedicated to Environmental and Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4075. [PMID: 37297209 PMCID: PMC10254517 DOI: 10.3390/ma16114075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Smart textiles recently reaped significant attention owing to their potential applications in various fields, such as environmental and biomedical monitoring. Integrating green nanomaterials into smart textiles can enhance their functionality and sustainability. This review will outline recent advancements in smart textiles incorporating green nanomaterials for environmental and biomedical applications. The article highlights green nanomaterials' synthesis, characterization, and applications in smart textile development. We discuss the challenges and limitations of using green nanomaterials in smart textiles and future perspectives for developing environmentally friendly and biocompatible smart textiles.
Collapse
Affiliation(s)
- Melania Popescu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania;
| | - Camelia Ungureanu
- General Chemistry Department, University “Politehnica” of Bucharest, Gheorghe Polizu Street, 1-7, 011061 Bucharest, Romania
| |
Collapse
|
6
|
Wibowo YG, Ramadan BS, Taher T, Khairurrijal K. Advancements of Nanotechnology and Nanomaterials in Environmental and Human Protection for Combatting the COVID-19 During and Post-pandemic Era: A Comprehensive Scientific Review. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2023:1-24. [PMID: 37363141 PMCID: PMC10171735 DOI: 10.1007/s44174-023-00086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/27/2023] [Indexed: 06/28/2023]
Abstract
In December 2019, an outbreak of unknown pneumonia emerged in Wuhan City, Hubei Province, China. It was later identified as the SARS-CoV-2 virus and has since infected over 9 million people in more than 213 countries worldwide. Massive papers on the topic of SARS-CoV-2 that have already been published are necessary to be analyzed and discussed. This paper used the combination of systematic literature network analysis and content analysis to develop a comprehensive discussion related to the use of nanotechnology and materials in environmental and human protection. Its is shown that various efforts have been made to control the transmission of this pandemic. Nanotechnology plays a crucial role in modern vaccine design, as nanomaterials are essential tools for antigen delivery, adjuvants, and mimics of viral structures. In addition, nanomaterials and nanotechnology also reported a crucial role in environmental protection for defence and treating the pandemic. To eradicate pandemics now and in the future, successful treatments must enable rapid discovery, scalable manufacturing, and global distribution. In this review, we discuss the current approaches to COVID-19 development and highlight the critical role of nanotechnology and nanomaterials in combating the virus in the human body and the environment.
Collapse
Affiliation(s)
- Yudha Gusti Wibowo
- Department of Mining Engineering, Institut Teknologi Sumatrea, Lampung, 35365 Indonesia
| | | | - Tarmizi Taher
- Department of Environmental Engineering, Institut Teknologi Sumatera, Lampung, 35365 Indonesia
| | - Khairurrijal Khairurrijal
- Department of Physics, Institut Teknologi Sumatera, Lampung, 35365 Indonesia
- Department of Physics, Institut Teknologi Bandung, Bandung, 40132 Indonesia
| |
Collapse
|
7
|
Liu X, Jiang D, Qin Y, Zhang Z, Yuan M. ZnO-PLLA/PLLA Preparation and Application in Air Filtration by Electrospinning Technology. Polymers (Basel) 2023; 15:polym15081906. [PMID: 37112053 PMCID: PMC10146834 DOI: 10.3390/polym15081906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/09/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
With the increasing environmental pollution caused by disposable masks, it is crucial to develop new degradable filtration materials for medical masks. ZnO-PLLA/PLLA (L-lactide) copolymers prepared from nano ZnO and L-lactide were used to prepare fiber films for air filtration by electrospinning technology. Structural characterization of ZnO-PLLA by H-NMR, XPS, and XRD demonstrated that ZnO was successfully grafted onto PLLA. An L9(43) standard orthogonal array was employed to evaluate the effects of the ZnO-PLLA concentration, ZnO-PLLA/PLLA content, DCM(dichloromethane) to DMF(N,N-dimethylformamide) ratio, and spinning time on the air filtration capacity of ZnO-PLLA/PLLA nanofiber films. It is noteworthy that the introduction of ZnO is important for the enhancement of the quality factor (QF). The optimal group obtained was sample No. 7, where the QF was 0.1403 Pa-1, the particle filtration efficiency (PFE) was 98.3%, the bacteria filtration efficiency (BFE) was 98.42%, and the airflow resistance (Δp) was 29.2 Pa. Therefore, the as-prepared ZnO-PLLA/PLLA film has potential for the development of degradable masks.
Collapse
Affiliation(s)
- Xinxin Liu
- Green Preparation Technology of Biobased Materials National & Local Joint Engineering Research Center, Yunnan Minzu University, Kunming 650500, China
| | - Dengbang Jiang
- Green Preparation Technology of Biobased Materials National & Local Joint Engineering Research Center, Yunnan Minzu University, Kunming 650500, China
| | - Yuyue Qin
- Institute of Agriculture and Food Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Zhihong Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mingwei Yuan
- Green Preparation Technology of Biobased Materials National & Local Joint Engineering Research Center, Yunnan Minzu University, Kunming 650500, China
| |
Collapse
|
8
|
Shen R, Guo Y, Wang S, Tuerxun A, He J, Bian Y. Biodegradable Electrospun Nanofiber Membranes as Promising Candidates for the Development of Face Masks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1306. [PMID: 36674061 PMCID: PMC9858797 DOI: 10.3390/ijerph20021306] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Aerosol particles, such as the widespread COVID-19 recently, have posed a great threat to humans. Combat experience has proven that masks can protect against viruses; however, the epidemic in recent years has caused serious environmental pollution from plastic medical supplies, especially masks. Degradable filters are promising candidates to alleviate this problem. Degradable nanofiber filters, which are developed by the electrospinning technique, can achieve superior filtration performance. This review focuses on the basic introduction to air filtration, the general aspects of face masks, and nanofibers. Furthermore, the progress of the state of art degradable electrospun nanofiber filters have been summarized, such as silk fibroin (SF), polylactic acid (PLA), chitosan, cellulose, and zein. Finally, the challenges and future development are highlighted.
Collapse
Affiliation(s)
| | | | | | | | | | - Ye Bian
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| |
Collapse
|