1
|
Ventriglia S, Kalcheim C. From neural tube to spinal cord: The dynamic journey of the dorsal neuroepithelium. Dev Biol 2024; 511:26-38. [PMID: 38580174 DOI: 10.1016/j.ydbio.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
In a developing embryo, formation of tissues and organs is remarkably precise in both time and space. Through cell-cell interactions, neighboring progenitors coordinate their activities, sequentially generating distinct types of cells. At present, we only have limited knowledge, rather than a systematic understanding, of the underlying logic and mechanisms responsible for cell fate transitions. The formation of the dorsal aspect of the spinal cord is an outstanding model to tackle these dynamics, as it first generates the peripheral nervous system and is later responsible for transmitting sensory information from the periphery to the brain and for coordinating local reflexes. This is reflected first by the ontogeny of neural crest cells, progenitors of the peripheral nervous system, followed by formation of the definitive roof plate of the central nervous system and specification of adjacent interneurons, then a transformation of roof plate into dorsal radial glia and ependyma lining the forming central canal. How do these peripheral and central neural branches segregate from common progenitors? How are dorsal radial glia established concomitant with transformation of the neural tube lumen into a central canal? How do the dorsal radial glia influence neighboring cells? This is only a partial list of questions whose clarification requires the implementation of experimental paradigms in which precise control of timing is crucial. Here, we outline some available answers and still open issues, while highlighting the contributions of avian models and their potential to address mechanisms of neural patterning and function.
Collapse
Affiliation(s)
- Susanna Ventriglia
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, 9112102, P.O.Box 12272, Israel.
| | - Chaya Kalcheim
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, 9112102, P.O.Box 12272, Israel.
| |
Collapse
|
2
|
Torrillas de la Cal A, Paniagua-Torija B, Arevalo-Martin A, Faulkes CG, Jiménez AJ, Ferrer I, Molina-Holgado E, Garcia-Ovejero D. The Structure of the Spinal Cord Ependymal Region in Adult Humans Is a Distinctive Trait among Mammals. Cells 2021; 10:2235. [PMID: 34571884 PMCID: PMC8469235 DOI: 10.3390/cells10092235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
In species that regenerate the injured spinal cord, the ependymal region is a source of new cells and a prominent coordinator of regeneration. In mammals, cells at the ependymal region proliferate in normal conditions and react after injury, but in humans, the central canal is lost in the majority of individuals from early childhood. It is replaced by a structure that does not proliferate after damage and is formed by large accumulations of ependymal cells, strong astrogliosis and perivascular pseudo-rosettes. We inform here of two additional mammals that lose the central canal during their lifetime: the Naked Mole-Rat (NMR, Heterocephalus glaber) and the mutant hyh (hydrocephalus with hop gait) mice. The morphological study of their spinal cords shows that the tissue substituting the central canal is not similar to that found in humans. In both NMR and hyh mice, the central canal is replaced by tissue reminiscent of normal lamina X and may include small groups of ependymal cells in the midline, partially resembling specific domains of the former canal. However, no features of the adult human ependymal remnant are found, suggesting that this structure is a specific human trait. In order to shed some more light on the mechanism of human central canal closure, we provide new data suggesting that canal patency is lost by delamination of the ependymal epithelium, in a process that includes apical polarity loss and the expression of signaling mediators involved in epithelial to mesenchymal transitions.
Collapse
Affiliation(s)
- Alejandro Torrillas de la Cal
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, 45071 Toledo, Spain; (A.T.d.l.C.); (B.P.-T.); (A.A.-M.); (E.M.-H.)
| | - Beatriz Paniagua-Torija
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, 45071 Toledo, Spain; (A.T.d.l.C.); (B.P.-T.); (A.A.-M.); (E.M.-H.)
| | - Angel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, 45071 Toledo, Spain; (A.T.d.l.C.); (B.P.-T.); (A.A.-M.); (E.M.-H.)
| | - Christopher Guy Faulkes
- School of Biological & Chemical Sciences, Queen Mary University of London, London E1 4NS, UK;
| | - Antonio Jesús Jiménez
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus de Teatinos, 29071 Malaga, Spain;
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
| | - Isidre Ferrer
- Institut de Neuropatologia, Servei d’Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, 08908 L’Hospitalet de Llobregat, Spain;
| | - Eduardo Molina-Holgado
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, 45071 Toledo, Spain; (A.T.d.l.C.); (B.P.-T.); (A.A.-M.); (E.M.-H.)
| | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, 45071 Toledo, Spain; (A.T.d.l.C.); (B.P.-T.); (A.A.-M.); (E.M.-H.)
| |
Collapse
|
3
|
Shinozuka T, Takada S. Morphological and Functional Changes of Roof Plate Cells in Spinal Cord Development. J Dev Biol 2021; 9:jdb9030030. [PMID: 34449633 PMCID: PMC8395932 DOI: 10.3390/jdb9030030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/09/2023] Open
Abstract
The most dorsal region, or roof plate, is the dorsal organizing center of developing spinal cord. This region is also involved in development of neural crest cells, which are the source of migratory neural crest cells. During early development of the spinal cord, roof plate cells secrete signaling molecules, such as Wnt and BMP family proteins, which regulate development of neural crest cells and dorsal spinal cord. After the dorso-ventral pattern is established, spinal cord dynamically changes its morphology. With this morphological transformation, the lumen of the spinal cord gradually shrinks to form the central canal, a cavity filled with cerebrospinal fluid that is connected to the ventricular system of the brain. The dorsal half of the spinal cord is separated by a glial structure called the dorsal (or posterior) median septum. However, underlying mechanisms of such morphological transformation are just beginning to be understood. Recent studies reveal that roof plate cells dramatically stretch along the dorso-ventral axis, accompanied by reduction of the spinal cord lumen. During this stretching process, the tips of roof plate cells maintain contact with cells surrounding the shrinking lumen, eventually exposed to the inner surface of the central canal. Interestingly, Wnt expression remains in stretched roof plate cells and activates Wnt/β-catenin signaling in ependymal cells surrounding the central canal. Wnt/β-catenin signaling in ependymal cells promotes proliferation of neural progenitor and stem cells in embryonic and adult spinal cord. In this review, we focus on the role of the roof plate, especially that of Wnt ligands secreted by roof plate cells, in morphological changes occurring in the spinal cord.
Collapse
Affiliation(s)
- Takuma Shinozuka
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Aichi, Okazaki 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Aichi, Okazaki 444-8787, Japan
- Correspondence: (T.S.); (S.T.)
| | - Shinji Takada
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Aichi, Okazaki 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Aichi, Okazaki 444-8787, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Aichi, Okazaki 444-8787, Japan
- Correspondence: (T.S.); (S.T.)
| |
Collapse
|
4
|
Tait CM, Chinnaiya K, Manning E, Murtaza M, Ashton JP, Furley N, Hill CJ, Alves CH, Wijnholds J, Erdmann KS, Furley A, Rashbass P, Das RM, Storey KG, Placzek M. Crumbs2 mediates ventricular layer remodelling to form the spinal cord central canal. PLoS Biol 2020; 18:e3000470. [PMID: 32150534 PMCID: PMC7108746 DOI: 10.1371/journal.pbio.3000470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/31/2020] [Accepted: 02/18/2020] [Indexed: 11/27/2022] Open
Abstract
In the spinal cord, the central canal forms through a poorly understood process termed dorsal collapse that involves attrition and remodelling of pseudostratified ventricular layer (VL) cells. Here, we use mouse and chick models to show that dorsal ventricular layer (dVL) cells adjacent to dorsal midline Nestin(+) radial glia (dmNes+RG) down-regulate apical polarity proteins, including Crumbs2 (CRB2) and delaminate in a stepwise manner; live imaging shows that as one cell delaminates, the next cell ratchets up, the dmNes+RG endfoot ratchets down, and the process repeats. We show that dmNes+RG secrete a factor that promotes loss of cell polarity and delamination. This activity is mimicked by a secreted variant of Crumbs2 (CRB2S) which is specifically expressed by dmNes+RG. In cultured MDCK cells, CRB2S associates with apical membranes and decreases cell cohesion. Analysis of Crb2F/F/Nestin-Cre+/- mice, and targeted reduction of Crb2/CRB2S in slice cultures reveal essential roles for transmembrane CRB2 (CRB2TM) and CRB2S on VL cells and dmNes+RG, respectively. We propose a model in which a CRB2S-CRB2TM interaction promotes the progressive attrition of the dVL without loss of overall VL integrity. This novel mechanism may operate more widely to promote orderly progenitor delamination.
Collapse
Affiliation(s)
- Christine M Tait
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Kavitha Chinnaiya
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Elizabeth Manning
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Mariyam Murtaza
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - John-Paul Ashton
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Nicholas Furley
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Chris J Hill
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - C Henrique Alves
- Department of Ophthalmology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Kai S Erdmann
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Andrew Furley
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Penny Rashbass
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Raman M Das
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Kate G Storey
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Marysia Placzek
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
5
|
Thouvenin O, Keiser L, Cantaut-Belarif Y, Carbo-Tano M, Verweij F, Jurisch-Yaksi N, Bardet PL, van Niel G, Gallaire F, Wyart C. Origin and role of the cerebrospinal fluid bidirectional flow in the central canal. eLife 2020; 9:e47699. [PMID: 31916933 PMCID: PMC6989091 DOI: 10.7554/elife.47699] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
Circulation of the cerebrospinal fluid (CSF) contributes to body axis formation and brain development. Here, we investigated the unexplained origins of the CSF flow bidirectionality in the central canal of the spinal cord of 30 hpf zebrafish embryos and its impact on development. Experiments combined with modeling and simulations demonstrate that the CSF flow is generated locally by caudally-polarized motile cilia along the ventral wall of the central canal. The closed geometry of the canal imposes the average flow rate to be null, explaining the reported bidirectionality. We also demonstrate that at this early stage, motile cilia ensure the proper formation of the central canal. Furthermore, we demonstrate that the bidirectional flow accelerates the transport of particles in the CSF via a coupled convective-diffusive transport process. Our study demonstrates that cilia activity combined with muscle contractions sustain the long-range transport of extracellular lipidic particles, enabling embryonic growth.
Collapse
Affiliation(s)
- Olivier Thouvenin
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
- ESPCI Paris, PSL University, CNRS, Institut LangevinParisFrance
| | - Ludovic Keiser
- Laboratory of Fluid Mechanics and InstabilitiesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Yasmine Cantaut-Belarif
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
| | - Martin Carbo-Tano
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
| | - Frederik Verweij
- Institute of Psychiatry and Neuroscience of Paris, Hôpital Saint-Anne, Université Descartes, INSERM U1266ParisFrance
| | - Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Faculty of MedicineNorwegian University of Science and TechnologyTrondheimNorway
- Department of Clinical and Molecular Medicine, The Faculty of MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Pierre-Luc Bardet
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
| | - Guillaume van Niel
- Institute of Psychiatry and Neuroscience of Paris, Hôpital Saint-Anne, Université Descartes, INSERM U1266ParisFrance
| | - Francois Gallaire
- Laboratory of Fluid Mechanics and InstabilitiesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Claire Wyart
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
| |
Collapse
|
6
|
Selection of Reliable Reference Genes for Analysis of Gene Expression in Spinal Cord during Rat Postnatal Development and after Injury. Brain Sci 2019; 10:brainsci10010006. [PMID: 31861889 PMCID: PMC7017034 DOI: 10.3390/brainsci10010006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022] Open
Abstract
In order to obtain unbiased results of target gene expression, selection of the most appropriate reference gene (RG) remains a key precondition. However, an experimental study focused on the validation of stably expressed RGs in the rat spinal cord (SC) during development or after spinal cord injury (SCI) is missing. In our study, we tested the stability of the expression of nine selected RGs in rat SC tissue during normal development (postnatal days 1-43, adulthood) and after minimal (mSCI) and contusion (cSCI) spinal cord injury. The following RGs were tested: common housekeeping genes of basal cell metabolism (Gapdh, Hprt1, Mapk6) and protein translation (Rpl29, Eef1a1, Eif2b2), as well as newly designed RGs (Gpatch1, Gorasp1, Cds2) selected according to the RefGenes tool of GeneVestigator. The stability of RGs was assessed by geNorm, NormFinder, and BestKeeper. All three applets favored Gapdh and Eef1a1 as the most stable genes in SC during development. In both models of SCI, Eif2b2 displayed the highest stability of expression, followed by Gapdh and Gorasp1/Hprt1 in cSCI, and Gapdh and Eef1a1 in the mSCI experiments. To verify our results, selected RGs were employed for normalization of the expression of genes with a clear biological context in the SC-Gfap and Slc1a3/Glast during postnatal development and Aif1/Iba1 and Cd68/Ed1 after SCI.
Collapse
|
7
|
Cañizares MA, Albors AR, Singer G, Suttie N, Gorkic M, Felts P, Storey KG. Multiple steps characterise ventricular layer attrition to form the ependymal cell lining of the adult mouse spinal cord central canal. J Anat 2019; 236:334-350. [PMID: 31670387 PMCID: PMC6956438 DOI: 10.1111/joa.13094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2019] [Indexed: 12/22/2022] Open
Abstract
The ventricular layer of the spinal cord is remodelled during embryonic development and ultimately forms the ependymal cell lining of the adult central canal, which retains neural stem cell potential. This anatomical transformation involves the process of dorsal collapse; however, accompanying changes in tissue organisation and cell behaviour as well as the precise origin of cells contributing to the central canal are not well understood. Here, we describe sequential localised cell rearrangements which accompany the gradual attrition of the spinal cord ventricular layer during development. This includes local breakdown of the pseudostratified organisation of the dorsal ventricular layer prefiguring dorsal collapse and evidence for a new phenomenon, ventral dissociation, during which the ventral‐most floor plate cells separate from a subset that are retained around the central canal. Using cell proliferation markers and cell‐cycle reporter mice, we further show that following dorsal collapse, ventricular layer attrition involves an overall reduction in cell proliferation, characterised by an intriguing increase in the percentage of cells in G1/S. In contrast, programmed cell death does not contribute to ventricular layer remodelling. By analysing transcript and protein expression patterns associated with key signalling pathways, we provide evidence for a gradual decline in ventral sonic hedgehog activity and an accompanying ventral expansion of initial dorsal bone morphogenetic protein signalling, which comes to dominate the forming the central canal lining. This study identifies multiple steps that may contribute to spinal cord ventricular layer attrition and adds to increasing evidence for the heterogeneous origin of the spinal cord ependymal cell population, which includes cells from the floor plate and the roof plate as well as ventral progenitor domains.
Collapse
Affiliation(s)
- Marco A Cañizares
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Aida Rodrigo Albors
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Gail Singer
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Nicolle Suttie
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Metka Gorkic
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Paul Felts
- Centre for Anatomy & Human Identification, University of Dundee, Dundee, UK
| | - Kate G Storey
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
8
|
Shinozuka T, Takada R, Yoshida S, Yonemura S, Takada S. Wnt produced by stretched roof-plate cells is required for the promotion of cell proliferation around the central canal of the spinal cord. Development 2019; 146:146/2/dev159343. [PMID: 30651295 DOI: 10.1242/dev.159343] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/14/2018] [Indexed: 01/23/2023]
Abstract
Cell morphology changes dynamically during embryogenesis, and these changes create new interactions with surrounding cells, some of which are presumably mediated by intercellular signaling. However, the effects of morphological changes on intercellular signaling remain to be fully elucidated. In this study, we examined the effect of morphological changes in Wnt-producing cells on intercellular signaling in the spinal cord. After mid-gestation, roof-plate cells stretched along the dorsoventral axis in the mouse spinal cord, resulting in new contact at their tips with the ependymal cells that surround the central canal. Wnt1 and Wnt3a were produced by the stretched roof-plate cells and delivered to the cell process tip. Whereas Wnt signaling was activated in developing ependymal cells, Wnt activation in dorsal ependymal cells, which were close to the stretched roof plate, was significantly suppressed in embryos with roof plate-specific conditional knockout of Wls, which encodes a factor that is essential for Wnt secretion. Furthermore, proliferation of these cells was impaired in Wls conditional knockout mice during development and after induced spinal cord injury in adults. Therefore, morphological changes in Wnt-producing cells appear to generate new Wnt signal targets.
Collapse
Affiliation(s)
- Takuma Shinozuka
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.,National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology in the School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Ritsuko Takada
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.,National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Shosei Yoshida
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology in the School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Shigenobu Yonemura
- RIKEN Center for Life Science Technologies, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Department of Cell Biology, Tokushima University Graduate School of Medical Science, 3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Shinji Takada
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan .,National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology in the School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
9
|
Becker CG, Becker T, Hugnot JP. The spinal ependymal zone as a source of endogenous repair cells across vertebrates. Prog Neurobiol 2018; 170:67-80. [DOI: 10.1016/j.pneurobio.2018.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/30/2018] [Accepted: 04/05/2018] [Indexed: 02/07/2023]
|
10
|
Abstract
In the adult mouse spinal cord, the ependymal cell population that surrounds the central canal is thought to be a promising source of quiescent stem cells to treat spinal cord injury. Relatively little is known about the cellular origin of ependymal cells during spinal cord development, or the molecular mechanisms that regulate ependymal cells during adult homeostasis. Using genetic lineage tracing based on the Wnt target gene Axin2, we have characterized Wnt-responsive cells during spinal cord development. Our results revealed that Wnt-responsive progenitor cells are restricted to the dorsal midline throughout spinal cord development, which gives rise to dorsal ependymal cells in a spatially restricted pattern. This is contrary to previous reports that suggested an exclusively ventral origin of ependymal cells, suggesting that ependymal cells may retain positional identities in relation to their neural progenitors. Our results further demonstrated that in the postnatal and adult spinal cord, all ependymal cells express the Wnt/β-catenin signaling target gene Axin2, as well as Wnt ligands. Genetic elimination of β-catenin or inhibition of Wnt secretion in Axin2-expressing ependymal cells in vivo both resulted in impaired proliferation, indicating that Wnt/β-catenin signaling promotes ependymal cell proliferation. These results demonstrate the continued importance of Wnt/β-catenin signaling for both ependymal cell formation and regulation. By uncovering the molecular signals underlying the formation and regulation of spinal cord ependymal cells, our findings thus enable further targeting and manipulation of this promising source of quiescent stem cells for therapeutic interventions.
Collapse
|
11
|
Katori S, Noguchi-Katori Y, Itohara S, Iwasato T. Spinal RacGAP α-Chimaerin Is Required to Establish the Midline Barrier for Proper Corticospinal Axon Guidance. J Neurosci 2017; 37:7682-7699. [PMID: 28747385 PMCID: PMC6596649 DOI: 10.1523/jneurosci.3123-16.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 05/11/2017] [Accepted: 06/27/2017] [Indexed: 12/17/2022] Open
Abstract
In the developing CNS, the midline barrier, which comprises guidance molecule-expressing midline glial somata and processes, plays a pivotal role in midline axon guidance. Accumulating evidence has revealed the molecular mechanisms by which the midline barrier ensures proper midline guidance for axons. In contrast, the mechanisms for establishing the midline barrier remain obscure. Here, we report that Rac-specific GTPase-activating protein (RacGAP) α-chimaerin is required for both axonal repulsion at and establishment of the midline barrier in the spinal cord. We generated cortex-specific and spinal-cord-specific α-chimaerin gene (Chn1) knock-out mice (Cx-Chn1KO and Sp-Chn1KO mice, respectively) and found that both showed aberrant corticospinal tract (CST) axon midline crossing in the spinal cord. Strikingly, Sp-Chn1KO mice had breaks (holes) in the ephrinB3(+) spinal midline barrier and EphA4(+) CST axons aberrantly crossed the midline through these holes. During normal embryonic development, EphA4(+) spinal cells are located in juxta-midline areas but are excluded from the midline. In contrast, in Chn1KO embryos, several EphA4(+) cells were aberrantly relocated into the midline and the midline barrier was broken around these cells. Similarly, the spinal cord midline of Epha4KO mice was invaded by juxta-midline EphA4 cells (i.e., Epha4 promoter-active cells) during the embryonic stage and holes were formed in the midline barrier. Juxta-midline EphA4 cells in the spinal cord expressed α-chimaerin. We propose that spinal α-chimaerin aids in establishing an intact spinal midline barrier by mediating juxta-midline EphA4(+) cell repulsion, thus preventing these cells from breaking into the ephrinB3(+) midline barrier.SIGNIFICANCE STATEMENT The midline barrier plays a critical role in midline axon guidance, which is fundamental to the formation of neural circuits that are responsible for proper left-right coordination of the body. Studies have revealed some of the mechanisms underlying how the midline barrier navigates axons. In contrast, the establishment of the midline barrier during embryonic development remains unclear. In this study, we determined that α-chimaerin is required for the formation of an intact midline barrier. Spinal-cord-specific α-chimaerin knock-out mice had spinal midline barriers with numerous breaks (holes), through which corticospinal axons aberrantly crossed the midline. We propose that α-chimaerin protects the midline barrier by mediating cell-repulsive signaling in juxta-midline cells, which prevents these cells from invading the midline.
Collapse
Affiliation(s)
- Shota Katori
- Division of Neurogenetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yukiko Noguchi-Katori
- Division of Neurogenetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan, and
| | - Takuji Iwasato
- Division of Neurogenetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan,
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
12
|
Duan H, Song W, Zhao W, Gao Y, Yang Z, Li X. Endogenous neurogenesis in adult mammals after spinal cord injury. SCIENCE CHINA-LIFE SCIENCES 2016; 59:1313-1318. [PMID: 27796638 DOI: 10.1007/s11427-016-0205-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/19/2016] [Indexed: 01/19/2023]
Abstract
During the whole life cycle of mammals, new neurons are constantly regenerated in the subgranular zone of the dentate gyrus and in the subventricular zone of the lateral ventricles. Thanks to emerging methodologies, great progress has been made in the characterization of spinal cord endogenous neural stem cells (ependymal cells) and identification of their role in adult spinal cord development. As recently evidenced, both the intrinsic and extrinsic molecular mechanisms of ependymal cells control the sequential steps of the adult spinal cord neurogenesis. This review introduces the concept of adult endogenous neurogenesis, the reaction of ependymal cells after adult spinal cord injury (SCI), the heterogeneity and markers of ependymal cells, the factors that regulate ependymal cells, and the niches that impact the activation or differentiation of ependymal cells.
Collapse
Affiliation(s)
- Hongmei Duan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wei Song
- School of Rehabilitation Medinice, China Rehabilitation Research Centre, Capital Medical University, Beijing, 100069, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yudan Gao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Xiaoguang Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
13
|
Comer JD, Pan FC, Willet SG, Haldipur P, Millen KJ, Wright CVE, Kaltschmidt JA. Sensory and spinal inhibitory dorsal midline crossing is independent of Robo3. Front Neural Circuits 2015; 9:36. [PMID: 26257608 PMCID: PMC4511845 DOI: 10.3389/fncir.2015.00036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/02/2015] [Indexed: 11/25/2022] Open
Abstract
Commissural neurons project across the midline at all levels of the central nervous system (CNS), providing bilateral communication critical for the coordination of motor activity and sensory perception. Midline crossing at the spinal ventral midline has been extensively studied and has revealed that multiple developmental lineages contribute to this commissural neuron population. Ventral midline crossing occurs in a manner dependent on Robo3 regulation of Robo/Slit signaling and the ventral commissure is absent in the spinal cord and hindbrain of Robo3 mutants. Midline crossing in the spinal cord is not limited to the ventral midline, however. While prior anatomical studies provide evidence that commissural axons also cross the midline dorsally, little is known of the genetic and molecular properties of dorsally-crossing neurons or of the mechanisms that regulate dorsal midline crossing. In this study, we describe a commissural neuron population that crosses the spinal dorsal midline during the last quarter of embryogenesis in discrete fiber bundles present throughout the rostrocaudal extent of the spinal cord. Using immunohistochemistry, neurotracing, and mouse genetics, we show that this commissural neuron population includes spinal inhibitory neurons and sensory nociceptors. While the floor plate and roof plate are dispensable for dorsal midline crossing, we show that this population depends on Robo/Slit signaling yet crosses the dorsal midline in a Robo3-independent manner. The dorsally-crossing commissural neuron population we describe suggests a substrate circuitry for pain processing in the dorsal spinal cord.
Collapse
Affiliation(s)
- John D Comer
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences New York, NY, USA ; Developmental Biology Program, Sloan-Kettering Institute New York, NY, USA ; Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program New York, NY, USA
| | - Fong Cheng Pan
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Spencer G Willet
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Parthiv Haldipur
- Seattle Children's Research Institute, Center for Integrative Brain Research Seattle, WA, USA
| | - Kathleen J Millen
- Seattle Children's Research Institute, Center for Integrative Brain Research Seattle, WA, USA ; Department of Pediatrics, Genetics Division, University of Washington Seattle, WA, USA
| | - Christopher V E Wright
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Julia A Kaltschmidt
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences New York, NY, USA ; Developmental Biology Program, Sloan-Kettering Institute New York, NY, USA
| |
Collapse
|
14
|
Wang B, Jedlicka S, Cheng X. Maintenance and neuronal cell differentiation of neural stem cells C17.2 correlated to medium availability sets design criteria in microfluidic systems. PLoS One 2014; 9:e109815. [PMID: 25310508 PMCID: PMC4195690 DOI: 10.1371/journal.pone.0109815] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/12/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Neural stem cells (NSCs) play an important role in developing potential cell-based therapeutics for neurodegenerative disease. Microfluidics has proven a powerful tool in mechanistic studies of NSC differentiation. However, NSCs are prone to differentiate when the nutrients are limited, which occurs unfavorable by fast medium consumption in miniaturized culture environment. For mechanistic studies of NSCs in microfluidics, it is vital that neuronal cell differentiation is triggered by controlled factors only. Thus, we studied the correlation between available cell medium and spontaneous neuronal cell differentiation of C17.2 NSCs in standard culture medium, and proposed the necessary microfluidic design criteria to prevent undesirable cell phenotype changes. METHODOLOGY/PRINCIPAL FINDINGS A series of microchannels with specific geometric parameters were designed to provide different amount of medium to the cells over time. A medium factor (MF, defined as the volume of stem cell culture medium divided by total number of cells at seeding and number of hours between medium replacement) successfully correlated the amount of medium available to each cell averaged over time to neuronal cell differentiation. MF smaller than 8.3×10(4) µm3/cell⋅hour produced significant neuronal cell differentiation marked by cell morphological change and significantly more cells with positive β-tubulin-III and MAP2 staining than the control. When MF was equal or greater than 8.3×10(4) µm3/cell⋅hour, minimal spontaneous neuronal cell differentiation happened relative to the control. MF had minimal relation with the average neurite length. SIGNIFICANCE MFs can be controlled easily to maintain the stem cell status of C17.2 NSCs or to induce spontaneous neuronal cell differentiation in standard stem cell culture medium. This finding is useful in designing microfluidic culture platforms for controllable NSC maintenance and differentiation. This study also offers insight about consumption rate of serum molecules involved in maintaining the stemness of NSCs.
Collapse
Affiliation(s)
- Bu Wang
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Sabrina Jedlicka
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
- BioEngineering Program, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Xuanhong Cheng
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
- BioEngineering Program, Lehigh University, Bethlehem, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
15
|
Qin Y, Zhang W, Yang P. Current states of endogenous stem cells in adult spinal cord. J Neurosci Res 2014; 93:391-8. [DOI: 10.1002/jnr.23480] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/21/2014] [Accepted: 08/14/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Yu Qin
- Cadet Brigade, Third Military Medical University; Chongqing People's Republic of China
| | - Wen Zhang
- Cadet Brigade, Third Military Medical University; Chongqing People's Republic of China
| | - Ping Yang
- Department of Neurobiology; Chongqing Key Laboratory of Neurobiology; Third Military Medical University; Chongqing People's Republic of China
| |
Collapse
|
16
|
Salta E, Lau P, Sala Frigerio C, Coolen M, Bally-Cuif L, De Strooper B. A self-organizing miR-132/Ctbp2 circuit regulates bimodal notch signals and glial progenitor fate choice during spinal cord maturation. Dev Cell 2014; 30:423-36. [PMID: 25132384 DOI: 10.1016/j.devcel.2014.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 06/25/2014] [Accepted: 07/10/2014] [Indexed: 12/31/2022]
Abstract
Radial glial progenitors play pivotal roles in the development and patterning of the spinal cord, and their fate is controlled by Notch signaling. How Notch is shaped to regulate their crucial transition from expansion toward differentiation remains, however, unknown. miR-132 in the developing zebrafish dampens Notch signaling via a cascade involving the transcriptional corepressor Ctbp2 and the Notch suppressor Sirt1. At early embryonic stages, high Ctbp2 levels sustain Notch signaling and radial glial expansion and concomitantly induce miR-132 expression via a double-negative feedback loop involving Rest inhibition. The changing balance in miR-132 and Ctbp2 interaction gradually drives the switch in Notch output and radial glial progenitor fate as part of the larger developmental program involved in the transition from embryonic to larval spinal cord.
Collapse
Affiliation(s)
- Evgenia Salta
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium; Center for Human Genetics and Leuven Institute for Neurodegenerative Disorders, KU Leuven, 3000 Leuven, Belgium
| | - Pierre Lau
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium; Center for Human Genetics and Leuven Institute for Neurodegenerative Disorders, KU Leuven, 3000 Leuven, Belgium
| | - Carlo Sala Frigerio
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium; Center for Human Genetics and Leuven Institute for Neurodegenerative Disorders, KU Leuven, 3000 Leuven, Belgium
| | - Marion Coolen
- Zebrafish Neurogenetics Group, Laboratory of Neurobiology and Development, CNRS UPR 3294, Institute of Neurobiology Alfred Fessard, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cédex, France
| | - Laure Bally-Cuif
- Zebrafish Neurogenetics Group, Laboratory of Neurobiology and Development, CNRS UPR 3294, Institute of Neurobiology Alfred Fessard, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cédex, France
| | - Bart De Strooper
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium; Center for Human Genetics and Leuven Institute for Neurodegenerative Disorders, KU Leuven, 3000 Leuven, Belgium; Institute of Neurology, University College London, Queen Square, WC1N 3BG London, UK.
| |
Collapse
|
17
|
Korzh V. Neurulation continues: The parade commander is… apical constriction. Russ J Dev Biol 2014. [DOI: 10.1134/s1062360414040055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Korzh V. Stretching cell morphogenesis during late neurulation and mild neural tube defects. Dev Growth Differ 2014; 56:425-33. [DOI: 10.1111/dgd.12143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Vladimir Korzh
- Institute of Molecular and Cell Biology; Singapore
- Department of Biological Sciences; National University of Singapore; Singapore
| |
Collapse
|
19
|
Sevc J, Matiašová A, Kútna V, Daxnerová Z. Evidence that the central canal lining of the spinal cord contributes to oligodendrogenesis during postnatal development and adulthood in intact rats. J Comp Neurol 2014; 522:3194-207. [PMID: 24659141 DOI: 10.1002/cne.23590] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/19/2013] [Accepted: 03/14/2014] [Indexed: 12/31/2022]
Abstract
Two waves of oligodendrogenesis in the ventricular zone of the spinal cord (SC-VZ) during rat development, which take place between embryonic days 14 and 18 (E14-E18) and E20-E21, have been described. In the VZ of the brain, unlike the SC-VZ, a third wave of oligodendrogenesis occurs during the first weeks of postnatal development. Using immunofluorescence staining of intact rat SC tissue, we noticed the presence of small numbers of Olig2(+) /Sox-10(+) cells inside the lining of the central canal (CC) during postnatal development and adulthood. Olig2(+) /Sox-10(+) cells appeared inside the lining of the CC shortly after birth, and their number reached a maximum of approximately 0.65 ± 0.14 cell/40-μm section during the second postnatal week. After the latter development, the number of Olig2(+) /Sox-10(+) cells decreased to 0.21 ± 0.07 (P36) and 0.18 ± 0.1 cell/section (P120). At P21, Olig2(+) /Sox-10(+) cells inside the CC lining started to express other oligodendroglial markers such as CNPase, RIP, and APC. Olig2(+) /Sox-10(+) cells usually did not proliferate inside the CC lining and were only rarely found to be immunoreactive against oligodendrocyte progenitor markers such as NG2 or PDGFRα. Using 5-bromo-2-deoxyuridine administration at P2, P11, P22, or P120-P125, we revealed that these cells arose in the CC lining during postnatal development and adulthood. Our findings confirmed that the CC lining is the source of a small number of cells with an oligodendroglial phenotype during postnatal development and adulthood in the SC of intact rats.
Collapse
Affiliation(s)
- Juraj Sevc
- Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, 04167, Košice, Slovak Republic
| | | | | | | |
Collapse
|
20
|
Kútna V, Ševc J, Gombalová Z, Matiašová A, Daxnerová Z. Enigmatic cerebrospinal fluid-contacting neurons arise even after the termination of neurogenesis in the rat spinal cord during embryonic development and retain their immature-like characteristics until adulthood. Acta Histochem 2014; 116:278-85. [PMID: 24063862 DOI: 10.1016/j.acthis.2013.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 11/29/2022]
Abstract
Despite the abundance of cerebrospinal fluid-contacting neurons (CSF-cNs) lining the central canal of the spinal cord of mammals, little information is known regarding the phenotype and fate of these cells during development and in adulthood. Using immunofluorescence of spinal cord tissue of rats from the first postnatal day (P1) until the end of the 5th postnatal week (P36), we observed that these neurons show both immature (doublecortin+, β-III-tubulin+, neurofilament 200 kDa-) and more mature (weak NeuN+, P2X2+, GAD65+) characteristics during the first postnatal weeks. Because of the gradually decreasing number of CSF-cNs in the central canal lining during development, we were also interested in the migration potential of these cells. However, the assessment of the number of CSF-cNs in the lining of the central canal during postnatal development revealed that this decline is most likely associated with the growth of the spinal cord. Lastly, to reveal the birth date of CSF-cNs, we performed 5-bromo-2-deoxyuridine administration and colocalization analyses. We found that production of these cells appears from day 12 of embryonic development (E12) until E22. The vast majority of CSF-contacting neurons arise on E14 and E15. In contrast with other types of spinal neurons, the production of CSF-cNs is not restricted to a particular neuroepithelial region and occurs even after what is thought to be the termination of neurogenesis.
Collapse
Affiliation(s)
- Viera Kútna
- Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University, Košice, Slovak Republic
| | - Juraj Ševc
- Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University, Košice, Slovak Republic.
| | - Zuzana Gombalová
- Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University, Košice, Slovak Republic
| | - Anna Matiašová
- Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University, Košice, Slovak Republic
| | - Zuzana Daxnerová
- Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University, Košice, Slovak Republic
| |
Collapse
|
21
|
Hudish LI, Blasky AJ, Appel B. miR-219 regulates neural precursor differentiation by direct inhibition of apical par polarity proteins. Dev Cell 2013; 27:387-98. [PMID: 24239515 DOI: 10.1016/j.devcel.2013.10.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/06/2013] [Accepted: 10/17/2013] [Indexed: 10/26/2022]
Abstract
Asymmetric self-renewing division of neural precursors is essential for brain development. Partitioning-defective (Par) proteins promote self-renewal, and their asymmetric distribution provides a mechanism for asymmetric division. Near the end of neural development, most asymmetric division ends and precursors differentiate. This correlates with Par protein disappearance, but mechanisms that cause downregulation are unknown. MicroRNAs can promote precursor differentiation but have not been linked to Par protein regulation. We tested a hypothesis that microRNA miR-219 promotes precursor differentiation by inhibiting Par proteins. Neural precursors in zebrafish larvae lacking miR-219 function retained apical proteins, remained in the cell cycle, and failed to differentiate. miR-219 inhibited expression via target sites within the 3' untranslated sequence of pard3 and prkci mRNAs, which encode Par proteins, and blocking miR-219 access to these sites phenocopied loss of miR-219 function. We propose that negative regulation of Par protein expression by miR-219 promotes cell-cycle exit and differentiation.
Collapse
Affiliation(s)
- Laura I Hudish
- Departments of Pediatrics and Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | |
Collapse
|
22
|
Kondrychyn I, Teh C, Sin M, Korzh V. Stretching morphogenesis of the roof plate and formation of the central canal. PLoS One 2013; 8:e56219. [PMID: 23409159 PMCID: PMC3567028 DOI: 10.1371/journal.pone.0056219] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/07/2013] [Indexed: 12/20/2022] Open
Abstract
Background Neurulation is driven by apical constriction of actomyosin cytoskeleton resulting in conversion of the primitive lumen into the central canal in a mechanism driven by F-actin constriction, cell overcrowding and buildup of axonal tracts. The roof plate of the neural tube acts as the dorsal morphogenetic center and boundary preventing midline crossing by neural cells and axons. Methodology/Principal Findings The roof plate zebrafish transgenics expressing cytosolic GFP were used to study and describe development of this structure in vivo for a first time ever. The conversion of the primitive lumen into the central canal causes significant morphogenetic changes of neuroepithelial cells in the dorsal neural tube. We demonstrated that the roof plate cells stretch along the D–V axis in parallel with conversion of the primitive lumen into central canal and its ventral displacement. Importantly, the stretching of the roof plate is well-coordinated along the whole spinal cord and the roof plate cells extend 3× in length to cover 2/3 of the neural tube diameter. This process involves the visco-elastic extension of the roof place cytoskeleton and depends on activity of Zic6 and the Rho-associated kinase (Rock). In contrast, stretching of the floor plate is much less extensive. Conclusions/Significance The extension of the roof plate requires its attachment to the apical complex of proteins at the surface of the central canal, which depends on activity of Zic6 and Rock. The D–V extension of the roof plate may change a range and distribution of morphogens it produces. The resistance of the roof plate cytoskeleton attenuates ventral displacement of the central canal in illustration of the novel mechanical role of the roof plate during development of the body axis.
Collapse
Affiliation(s)
- Igor Kondrychyn
- Institute of Molecular and Cell Biology, A-STAR, Singapore, Singapore
| | - Cathleen Teh
- Institute of Molecular and Cell Biology, A-STAR, Singapore, Singapore
| | - Melvin Sin
- Institute of Molecular and Cell Biology, A-STAR, Singapore, Singapore
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, A-STAR, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
23
|
Garcia-Ovejero D, Arevalo-Martin A, Paniagua-Torija B, Sierra-Palomares Y, Molina-Holgado E. A cell population that strongly expresses the CB1 cannabinoid receptor in the ependyma of the rat spinal cord. J Comp Neurol 2012; 521:233-51. [DOI: 10.1002/cne.23184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/22/2012] [Accepted: 07/06/2012] [Indexed: 01/23/2023]
|
24
|
Ševc J, Daxnerová Z, Haňová V, Koval’ J. Novel observations on the origin of ependymal cells in the ventricular zone of the rat spinal cord. Acta Histochem 2011; 113:156-62. [PMID: 20079525 DOI: 10.1016/j.acthis.2009.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/17/2009] [Accepted: 09/21/2009] [Indexed: 10/19/2022]
Abstract
Despite extensive investigations of gliogenesis, the time of origin of ependymal cells in the spinal cord has not yet been fully elucidated. Using a single dose of 5-bromo-2-deoxyuridine combined with various survival times we monitored: mitotic activity (short survival time), the presence of newly formed cells in the ventricular zone (intermediate survival time) and the formation of ependymal cells (long survival time) during the late embryonic and early postnatal development in the ventricular zone of the spinal cord of rats. In the period of study it was found that the ependymal cells populated this region in two waves. Most of the ependymal cells originated around embryonic day 18 and then between postnatal days 8 and 15. In addition, it was observed that in the ventricular zone of the spinal cord, proliferation and production of ependymal cells continues at the slower rate at least until day 36 of postnatal development. Elucidation of the relationship between progenitors in the embryonic ventricular zone and the relative quiescent ependymal lining of the central canal in adulthood could be important in the search for the adult neural stem cell niche.
Collapse
|