1
|
Sakakima H, Nojima N, Tani A, Nakanishi K, Matsuoka T, Matsuzaki R, Kakimoto S, Kato Y, Tachibe Y, Inadome M, Kawatani T, Otsuka S, Mizuno K, Maruyama I. Effects of Ninjin'yoeito and physical exercise on serum corticosterone and hippocampal BDNF/proBDNF and neuroinflammation in post-stroke depression in rats. BMC Complement Med Ther 2025; 25:171. [PMID: 40361157 PMCID: PMC12070628 DOI: 10.1186/s12906-025-04915-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 05/08/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Ninjin'yoeito (NYT), a traditional Japanese Kampo medicine, improves the depression and anxiety in humans and animals, rendering it a novel therapeutic option for post-stroke depression (PSD). Furthermore, physical exercise is an important nonpharmacological therapy for major depressive disorder. The components of NYT or exercise exert antidepressant effects through the increased expression of neurotrophic factors and reduced neuroinflammation in the brain. However, the mechanisms underlying the antidepressant effects of NYT and exercise in PSD remain unclear. Therefore, we examined the effects of NYT and physical exercise in a rat model of PSD. METHODS Rats were divided into five groups: PSD, PSD with NYT, PSD with exercise (Ex), PSD with NYT and exercise (NYT + Ex), and control (sham). PSD was induced by the microinjection of endothelin-1 into the left medial prefrontal cortex and chronic unpredictable mild stress 3 days per week. A diet containing 3% NYT was administered to rats one day after stroke induction. Exercise was conducted using a motorized treadmill for three days per week, starting three days after the stroke. The therapeutic interventions lasted for four weeks. Serum corticosterone levels, depression-like behavior, and hippocampal pathophysiology, including the expression of brain-derived neurotrophic factor (BDNF), precursor BDNF (proBDNF), doublecortin (DCX), NeuN, glial cell activation, and tumor necrosis factor-α (TNF-α), were examined. RESULTS Serum corticosterone levels were lower in the treatment group than those in the PSD group. Notably, serum corticosterone levels were significantly lower in the NYT group than those in the PSD group. BDNF expression in the CA1 region was significantly higher in the Ex group than that in the PSD group. The NYT + Ex group showed a significantly higher hippocampal BDNF/proBDNF ratio than the other groups. DCX and NeuN expression levels were significantly higher in the NYT + Ex group than those in the NYT and PSD groups. Hippocampal glial cell activation and TNF-α expression increased in the PSD group and decreased in the intervention groups. CONCLUSIONS NYT ameliorates serum corticosterone levels and hippocampal neuroinflammation in PSD. Additionally, this study suggested that NYT, together with exercise therapy, may improve neurogenesis, the BDNF/proBDNF ratio, and neuroinflammation in the hippocampus in PSD. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Harutoshi Sakakima
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Nao Nojima
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Akira Tani
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kazuki Nakanishi
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Teruki Matsuoka
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Ryoma Matsuzaki
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Shogo Kakimoto
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Yuki Kato
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Yuta Tachibe
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Masaki Inadome
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takuya Kawatani
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Shotaro Otsuka
- Faculty of Welfare and Health Science, Oita University, Oita, Japan
| | - Keita Mizuno
- Kampo Research and Development Division, Tsumura Kampo Research Laboratories, Tsumura and Co., Ibaraki, Japan
| | - Ikuro Maruyama
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
2
|
Shiotani M, Hyohdoh Y, Hatakeyama Y, Kazui H, Okuhara Y. Identifying suppressive factors of Alzheimer's disease through comprehensive analysis of real-world data: a single-center retrospective study. BMC Geriatr 2025; 25:321. [PMID: 40346511 PMCID: PMC12063382 DOI: 10.1186/s12877-025-05982-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 04/24/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND In addition to conventional symptomatic treatment drugs, anti-amyloid beta antibody drugs are expected to benefit patients with Alzheimer's disease (AD). However, issues such as side effects and high costs persist, and new preventive and therapeutic drugs are desired. Meanwhile, information on the diagnosis and symptomatic treatment of AD accumulated during daily clinical practice is stored as real-world data and is considered a powerful means of discovering unknown factors that could provide clues for new prevention and treatment approaches for AD through comprehensive exploration. METHODS We used anonymized hospital information system data from a tertiary care and academic hospital in Japan, spanning from 1981 to 2016, to search for potential suppressive factors for AD onset and to verify the validity of the discovered factors. We initially conducted a comprehensive search for candidate suppressive factors for AD and verified them using the inverse probability weighting (IPW) method with propensity scores. RESULTS From the comprehensive search, we identified glycyrrhizic acid (GA), a component of licorice, a traditional medicine with anti-inflammatory, antioxidant, antibacterial, and antiaging properties, as a candidate suppressing factor for AD. The IPW method showed that the odds ratio of developing AD in the GA group was 0.642 (95% confidence interval: 0.566-0.727) compared with the non-GA group after adjustment. CONCLUSIONS This is the first human study to suggest that GA may be a factor that can suppress the onset of AD. Additionally, our method could be a promising tool for drug repositioning that applies existing drugs already used in clinical settings with well-known side effects to diseases different from their original use.
Collapse
Affiliation(s)
- Mana Shiotani
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku-Shi, Kochi, 783-8505, Japan
- Japanese Red Cross Kochi Hospital, 1-4-63-11 Hadaminamimachi, Kochi-Shi, Kochi, 780-8562, Japan
| | - Yuki Hyohdoh
- Center of Medical Information Science, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku-Shi, Kochi, 783-8505, Japan
| | - Yutaka Hatakeyama
- Center of Medical Information Science, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku-Shi, Kochi, 783-8505, Japan
| | - Hiroaki Kazui
- Department of Neuropsychiatry, Kochi Medical School, Kochi University, Kohasu,Oko-Cho, Nankoku-Shi, Kochi, 783-8505, Japan
| | - Yoshiyasu Okuhara
- Center of Medical Information Science, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku-Shi, Kochi, 783-8505, Japan.
| |
Collapse
|
3
|
Lou J, Ding B, Fang M, Xie W, Wang X, Wang X, Guo X, Zhu J. Glycyrrhizin Attenuates White Matter Injury by Inhibiting Neuroinflammation through the HMGB1/TLR4 Pathway. Mol Neurobiol 2025; 62:6070-6087. [PMID: 39707121 DOI: 10.1007/s12035-024-04657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
White matter injury (WMI) is a common complication of preterm birth, potentially resulting in long-term behavioral and motor abnormalities. The objective of this study is to investigate the neuroprotective effects of glycyrrhizin (GLY) on WMI, and try to elucidate the potential mechanisms. In vivo chronic hypoxia-induced WMI mouse model and in vitro oxygen-glucose deprivation (OGD) induced WMI cell model were established, and the effects of GLY on WMI were explored through multiple assays, such as western blotting, immunofluorescence, immunohistochemistry, behavioral experiments, real-time quantitative polymerase chain reaction (RT-qPCR), transmission electron microscope (TEM), molecular docking, and bioinformatics analysis. The results showed that GLY facilitated the maturation and differentiation of oligodendrocytes and enhanced the thickness as well as density of myelin sheaths. GLY also reduced inflammatory response, improved memory, learning, and locomotor performances, and alleviated anxiety in WMI mice. The neuroprotective effects of GLY may be involved in the down-regulation of HMGB1 and its associated proteins such as TLR4 and NF-κB. In conclusion, GLY could mitigate chronic hypoxia-induced WMI and OGD-induced oligodendrocyte injury through its anti-inflammatory effects by inhibiting the HMGB1/TLR4 pathway, suggesting a potential therapeutic avenue for WMI.
Collapse
Affiliation(s)
- Jia Lou
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bingqing Ding
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mingchu Fang
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiwei Xie
- Department of Pediatrics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xinyi Wang
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xingyun Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Guo
- Scientific research department, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China.
| | - Jianghu Zhu
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
| |
Collapse
|
4
|
Tian CY, Yang QR, Fan LX, Yang YM, Gao BW, Yang JB. Online identification of chemical constituents in Mongolian medicine Zhachong-13 pills by UHPLC-Q-exactive Orbitrap MS. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025; 27:47-61. [PMID: 39037411 DOI: 10.1080/10286020.2024.2379981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Zhachong-13 pills (ZC-13), as a traditional prescription of Mongolian medicine, are often used in the clinical practice of Mongolian hospitals for the treatment of stroke and rheumatic arthritis. In this experiment, UHPLC-Q-Exactive Orbitrap MS was used to explore the chemical composition of ZC-13. The results showed that 315 compounds were identified or inferred, including 56 alkaloids, 77 2-(2-phenylethyl)chromones, 61 flavonoids, 31 tannins, 8 coumarins, 16 lignans, 21 terpenoids, 5 amino acids, 19 organic acids, and 21 other components. In addition, the pharmacological activities related to anti-cerebral ischemia of these components were summarized. This result laid a foundation for further study on the pharmacodynamic material basis of ZC-13 and provided a scientific basis for the formulation of ZC-13 quality specifications.
Collapse
Affiliation(s)
- Cai-Yun Tian
- School of Basic Medicine and Forensic Medicine, Baotou Medical College, Baotou 014040, China
| | - Qing-Rui Yang
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Ling-Xuan Fan
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Yu-Mei Yang
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Bo-Wen Gao
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Jian-Bo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| |
Collapse
|
5
|
Liang JF, Qin XD, Huang XH, Fan ZP, Zhi YY, Xu JW, Chen F, Pan ZL, Chen YF, Zheng CB, Lu J. Glycyrrhetinic acid triggers a protective autophagy by inhibiting the JAK2/STAT3 pathway in cerebral ischemia/reperfusion injury. Neuroscience 2024; 554:96-106. [PMID: 38964451 DOI: 10.1016/j.neuroscience.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/03/2024] [Accepted: 06/23/2024] [Indexed: 07/06/2024]
Abstract
Cerebral ischemia/reperfusion injury (CIRI) is a common feature of ischemic stroke leading to a poor prognosis. Effective treatments targeting I/R injury are still insufficient. The study aimed to investigate the mechanisms, by which glycyrrhizic acid (18β-GA) in ameliorates CIRI. Our results showed that 18β-GA significantly decreased the infarct volume, neurological deficit scores, and pathological changes in the brain tissue of rats after middle cerebral artery occlusion. Western blotting showed that 18β-GA inhibited the expression levels of phosphorylated JAK2 and phosphorylated STAT3. Meanwhile, 18β-GA increased LC3-II protein levels in a reperfusion duration-dependent manner, which was accompanied by an increase in the Bcl-2/Bax ratio. Inhibition of 18β-GA-induced autophagy by 3-methyladenine (3-MA) enhanced apoptotic cell death. In addition, 18β-GA inhibited the JAK2/STAT3 pathway, which was largely activated in response to oxygen-glucose deprivation/reoxygenation. However, the JAK2/STAT3 activator colivelin TFA abolished the inhibitory effect of 18β-GA, suppressed autophagy, and significantly decreased the Bcl-2/Bax ratio. Taken together, these findings suggested that 18β-GA pretreatment ameliorated CIRI partly by triggering a protective autophagy via the JAK2/STAT3 pathway. Therefore might be a potential drug candidate for treating ischemic stroke.
Collapse
Affiliation(s)
- Jian-Feng Liang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Lushan Rehabilitation and Recuperation Center, Jiujiang 332000, China
| | - Xiao-Dan Qin
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; The First Affiliated Hospital of Traditional Chinese Medicine of Guangzhou University, Ghuangzhou 510405, China
| | - Xue-Hong Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Zi-Ping Fan
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yong-Ying Zhi
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Jia-Wei Xu
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Fangmei Chen
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Zhi-Li Pan
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yi-Fei Chen
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Chang-Bo Zheng
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Jun Lu
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
6
|
Nguyen NN, Lin CY, Tsai WL, Huang HY, Chen CM, Tung YT, Chen YC. Natural sweetener glycyrrhizin protects against precocious puberty by modulating the gut microbiome. Life Sci 2024; 350:122789. [PMID: 38848942 DOI: 10.1016/j.lfs.2024.122789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/07/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
AIMS Precocious puberty (PP) may lead to many adverse outcomes. Recent evidence suggests that PP is a gut-brain disease. On the other hand, the use of glycyrrhizin, a natural sweetener, has become popular in the past decade. Glycyrrhizin possesses various health benefits, but its impact on PP has yet to be investigated. We aimed to explore the protective effects of glycyrrhizin against PP in both humans (observational) and animals (interventional). MATERIALS AND METHODS In the human cohort, we investigated the association between glycyrrhizin consumption and risk of PP. In the animal experiment, we observed puberty onset after feeding danazol-induced PP rats with glycyrrizin. Blood, fecal, and hypothalamic samples were harvested to evaluate potential mechanistic pathways. We also performed a fecal microbiota transplantation to confirm to causal relationship between glycyrrhizin and PP risk. KEY FINDINGS Glycyrrhizin exhibited a protective effect against PP in children (OR 0.60, 95%CI: 0.39-0.89, p = 0.013), primarily driven by its significance in girls, while no significant effect was observed in boys. This effect was consistent with findings in rodents. These benefits were achieved through the modulation of the gut microbiome, which functionally suppressed the hypothalamic-pituitary-gonadal axis and prevented PP progression. A fecal microbiota transplantation indicated that the causal correlation between glycyrrhizin intake and PP is mediated by the gut microbiome alterations. SIGNIFICANCE Our findings suggest that glycyrrhizin can protect against PP by altering the gut microbiome. Long term use of glycyrrhizin is safe and tolerable. Therefore, glycyrrhizin can serve as a safe and affordable complementary therapy for PP.
Collapse
Affiliation(s)
- Nam Nhat Nguyen
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Chia-Yuan Lin
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Wan-Ling Tsai
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Health Promotion and Gerontological Care, College of LOHAS, Taipei University of Marine Technology, New Taipei City 251, Taiwan
| | - Hui-Yu Huang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan
| | - Chung-Ming Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Pediatrics, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Yang-Ching Chen
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan; Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan.
| |
Collapse
|
7
|
Zhang L, Zhang N, Pang C. The mechanistic interaction, aggregation and neurotoxicity of α-synuclein after interaction with glycyrrhizic acid: Modulation of synucleinopathies. Int J Biol Macromol 2024; 267:131423. [PMID: 38583832 DOI: 10.1016/j.ijbiomac.2024.131423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
This article reveals the binding mechanism between glycyrrhizic acid (GA) and α-synuclein to may provide further information for the modulation of synucleinopathies using bioactive compounds. Therefore, the inhibitory activities of GA against α-synuclein aggregation and induced neurotoxicity were evaluated using different assays. Results showed that α-synuclein-GA binding was mediated by intermolecular hydrogen bonds leading to the formation of a slightly folded complex. Theoretical studies revealed that GA binds to the N-terminal domain of α-synuclein and triggers a compact structure around a major part of the N-terminal and the NAC regions along with fluctuations in the C-terminal domain, which are prerequisites for the inhibition of α-synuclein aggregation. Then, the cellular assays showed that GA as a potential small molecule can inhibit the oligomerization of α-synuclein and relevant neurotoxicity through modulation of neural viability, membrane leakage, and ROS formation in a concentration-dependent manner. As a result, the primary mechanism of GA's anti-aggregation and neuroprotective activities is the reorganized α-synuclein structure and fluctuating C-terminal domain, which promotes long-range transient intramolecular contacts between the N-terminal and the C-terminal domain.
Collapse
Affiliation(s)
- Luyang Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110000, China
| | - Na Zhang
- Medical Education Research Center, Shenyang Medical College, Shenyang 110000, China
| | - Chao Pang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110000, China.
| |
Collapse
|
8
|
Bhattacharjee M, Manoharan S, Sathisaran U, Tamatam A, Perumal E. MAO inhibiting phytochemicals from the roots of Glycyrrhiza glabra L. J Biomol Struct Dyn 2024; 42:3887-3905. [PMID: 37243713 DOI: 10.1080/07391102.2023.2216298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
Glycyrrhizin, a natural compound that is substantially present in Glycyrrhiza glabra L. (Gg) root. Monoamine oxidase B (MAOB) inhibitor is used for the treatment of several important neuropsychological diseases like Parkinson's disease. Gg is known to possess psychoactive properties which relates to its MAO inhibitory potential. This study sought to determine the MAO inhibition property of glycyrrhizin from Gg root extract. The Aqueous extract containing glycyrrhizin was isolated from the root of Gg and characterized using TLC, HPLC, and LC-MS techniques. In silico docking was conducted using Extra precision Glide 2018, Schrödinger docking suite. In addition, the pharmacokinetic properties of the compounds were predicted using SwissADME. The binding energies of the glycyrrhizin correlated well with their in vitro MAO inhibitory potential. Glycyrrhizin exhibited potent inhibitory activity towards MAOB whereas, an aqueous extract of Gg root inhibits both A and B forms of MAO enzyme. Further, molecular docking and molecular dynamics simulation showed that liquiritigenin and methoxyglabridin showed higher stability than other inhibitor compounds from the Gg root extract. These observations suggest that the phytochemicals from the Gg root extract have potent MAO inhibition properties, which can be exploited for the treatment of neurodegenerative disorders.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Monojit Bhattacharjee
- Defence Research and Development Organisation, Bharathiar University Center for Life Sciences (DRDO-BU CLS), Bharathiar University Campus, Coimbatore, Tamil Nadu, India
| | - Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Umamaheswari Sathisaran
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, India
| | - Anand Tamatam
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory (DRDO-DFRL), Mysore, India
| | - Ekambaram Perumal
- Defence Research and Development Organisation, Bharathiar University Center for Life Sciences (DRDO-BU CLS), Bharathiar University Campus, Coimbatore, Tamil Nadu, India
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
9
|
Morioka N, Nakamura Y, Hisaoka-Nakashima K, Nakata Y. High mobility group box-1: A therapeutic target for analgesia and associated symptoms in chronic pain. Biochem Pharmacol 2024; 222:116058. [PMID: 38367818 DOI: 10.1016/j.bcp.2024.116058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
The number of patients with chronic pain continues to increase against the background of an ageing society and a high incidence of various epidemics and disasters. One factor contributing to this situation is the absence of truly effective analgesics. Chronic pain is a persistent stress for the organism and can trigger a variety of neuropsychiatric symptoms. Hence, the search for useful analgesic targets is currently being intensified worldwide, and it is anticipated that the key to success may be molecules involved in emotional as well as sensory systems. High mobility group box-1 (HMGB1) has attracted attention as a therapeutic target for a variety of diseases. It is a very unique molecule having a dual role as a nuclear protein while also functioning as an inflammatory agent outside the cell. In recent years, numerous studies have shown that HMGB1 acts as a pain inducer in primary sensory nerves and the spinal dorsal horn. In addition, HMGB1 can function in the brain, and is involved in the symptoms of depression, anxiety and cognitive dysfunction that accompany chronic pain. In this review, we will summarize recent research and discuss the potential of HMGB1 as a useful drug target for chronic pain.
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
10
|
González-May CA, Barradas-Castillo MDR, Perera-Rios JH, Gallegos-Tintoré S, Pérez-Izquierdo O, Aranda-González II. Dietary flavonoids may have a protective and therapeutic effect in Parkinson disease: A systematic review. Nutr Res 2024; 121:39-50. [PMID: 38039600 DOI: 10.1016/j.nutres.2023.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 12/03/2023]
Abstract
Parkinson disease (PD) is characterized by the loss of dopaminergic neurons because of oxidative stress and neuroinflammation. Polyphenols in vegetables, known for their high antioxidant capacity, may prevent the onset, or delay the progression of the disease; among these, flavonoids are the most abundant class of polyphenols in foods. Clinical and cohort studies have evaluated the effect of polyphenol consumption on the risk of developing PD or of attenuating the symptoms after diagnosis; therefore, it is necessary to integrate the scientific evidence into making dietary recommendations. The objective of this study was to perform a systematic review of randomized controlled trials and cohort studies that have investigated the use of polyphenols in PD. The studies were identified through the PubMed, Science Direct, Scielo, and Web of Science databases. A total of 1100 studies were found; these were analyzed and filtered by 2 independent reviewers. After completion, 5 studies were included (3 randomized controlled trials and 2 cohort studies). The consumption of flavonoids, anthocyanins, or 2-5 servings/week of specific foods (apples, red wine, blueberries, and strawberries) reduces the risk of PD and associated mortality. Treatment with licorice, curcumin, or cocoa, which are rich in flavonoids and other polyphenols, improves motor function in PD patients. No statistically significant differences were found in quality of life, disease progression or nonmotor symptoms such as cognitive ability and mood. Although cohort studies suggest a neuroprotective effect, further clinical studies are urgently needed to evaluate the effect of specific flavonoids and other polyphenols in PD.
Collapse
Affiliation(s)
| | | | | | - Santiago Gallegos-Tintoré
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Colonia Chuburná Hidalgo Inn, 97203, Mérida, Yucatán, México
| | - Odette Pérez-Izquierdo
- Facultad de Medicina, Universidad Autónoma de Yucatán, Centro, 97000, Mérida, Yucatán, México
| | | |
Collapse
|
11
|
Zhang ZW, Han P, Fu J, Yu H, Xu H, Hu JC, Lu JY, Yang XY, Zhang HJ, Bu MM, Jiang JD, Wang Y. Gut microbiota-based metabolites of Xiaoyao Pills (a typical Traditional Chinese medicine) ameliorate depression by inhibiting fatty acid amide hydrolase levels in brain. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116555. [PMID: 37100263 DOI: 10.1016/j.jep.2023.116555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicines (TCMs) are often prepared in oral dosage forms, making TCMs interact with gut microbiota after oral administration, which could affect the therapeutic effect of TCM. Xiaoyao Pills (XYPs) are a commonly used TCM in China to treat depression. The biological underpinnings, however, are still in its infancy due to its complex chemical composition. AIM OF THE STUDY The study aims to explore XYPs' underlying antidepressant mechanism from both in vivo and in vitro. MATERIALS AND METHODS XYPs were composed of 8 herbs, including the root of Bupleurum chinense DC., the root of Angelica sinensis (Oliv.) Diels, the root of Paeonia lactiflora Pall., the sclerotia of Poria cocos (Schw.) Wolf, the rhizome of Glycyrrhiza uralensis Fisch., the leaves of Mentha haplocalyx Briq., the rhizome of Atractylis lancea var. chinensis (Bunge) Kitam., and the rhizome of Zingiber officinale Roscoe, in a ratio of 5:5:5:5:4:1:5:5. The chronic unpredictable mild stress (CUMS) rat models were established. After that, the sucrose preference test (SPT) was carried out to evaluate if the rats were depressed. After 28 days of treatment, the forced swimming test and SPT were carried out to evaluate the antidepressant efficacy of XYPs. The feces, brain and plasma were taken out for 16SrRNA gene sequencing analysis, untargeted metabolomics and gut microbiota transformation analysis. RESULTS The results revealed multiple pathways affected by XYPs. Among them, the hydrolysis of fatty acids amide in brain decreased most significant via XYPs treatment. Moreover, the XYPs' metabolites which mainly derived from gut microbiota (benzoic acid, liquiritigenin, glycyrrhetinic acid and saikogenin D) were found in plasma and brain of CUMS rats and could inhibit the levels of FAAH in brain, which contributed to XYPs' antidepressant effect. CONCLUSIONS The potential antidepressant mechanism of XYPs by untargeted metabolomics combined with gut microbiota-transformation analysis was revealed, which further support the theory of gut-brain axis and provide valuable evidence of the drug discovery.
Collapse
Affiliation(s)
- Zheng-Wei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Pei Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Jia-Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Jin-Yue Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Xin-Yu Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Hao-Jian Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Meng-Meng Bu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
12
|
Yang SY, Lin ZX, Xian YF, Zhang HM, Xu HX. Traditional uses, chemical compounds, pharmacological activities and clinical studies on the traditional Chinese prescription Yi-Gan San. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115859. [PMID: 36280017 DOI: 10.1016/j.jep.2022.115859] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A widely used traditional prescription, Yi-Gan San (YGS) is a remedy for neurodegenerative disorders. The formulation consists of seven Chinese medicinal materials in specific proportions, namely Uncariae Ramulus cum Uncis (Uncaria rhynchophylla (Miq.) Miq. ex Havil.), Bupleuri Radix (Bupleurum chinense DC.), Angelicae Sinensis Radix (Angelica sinensis (Oliv.) Diels), Chuanxiong Rhizoma (Ligusticum wallichii Franch.), Poria (Poria cocos (Schw.) Wolf), Atractylodis Macrocephalae Rhizoma (Atractylodes macrocephala Koidz.) and Glycyrrhizae Radix et Rhizoma (Glycyrrhiza uralensis Fisch.). Using YGS has been shown to alleviate various behavioural and psychological symptoms of dementia (BPSD). AIM OF THIS REVIEW The goal of this review is to give up-to-date information about the traditional uses, chemistry, pharmacology and clinical efficacy of YGS based on the scientific literature and to learn the current focus and provide references in the next step. MATERIALS AND METHODS The database search room was accessed using the search terms "Yi-Gan San" and "Yokukansan" to obtain results from resources such as Web of Science, PubMed, Google Scholar and Sci Finder Scholar. We not only consulted the literature of fellow authors for this review but also explored classical medical books. RESULTS YGS has been used to cure neurosis, sleeplessness, night weeping and restlessness in infants. Its chemical components primarily consist of triterpenes, flavonoids, phenolics, lactones, alkaloids and other types of compounds. These active ingredients displayed diverse pharmacological activities to ameliorate BPSD by regulating serotonergic, glutamatergic, cholinergic, dopaminergic, adrenergic, and GABAergic neurotransmission. In addition, YGS showed neuroprotective, antistress, and anti-inflammatory effects. The majority of cases of neurodegenerative disorders are treated with YGS, including Alzheimer's disease and dementia with Lewy bodies. CONCLUSIONS Based on previous studies, YGS has been used as a traditional prescription in East Asia, such as Japan, Korea and China, and it has diverse chemical compounds and multiple pharmacological activities. Nevertheless, few experimental studies have focused on chemical and quantitative YGS studies, suggesting that further comprehensive research on its chemicals and quality assessments is critical for future evaluations of drug efficacy.
Collapse
Affiliation(s)
- Si-Yu Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, China; Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Hong-Mei Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hong-Xi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
13
|
Tani A, Sakakima H, Otsuka S, Mizuno K, Nakanishi K, Norimatsu K, Takada S, Matsuoka T, Matsuzaki R, Nakakogawa T, Maruyama I. Stimulation of functional recovery via neurorepair mechanisms by the traditional Japanese Kampo medicine, Ninjin'yoeito, and physical exercise in a rat ischemic stroke model. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115927. [PMID: 36402237 DOI: 10.1016/j.jep.2022.115927] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/22/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ninjin'yoeito (NYT), a traditional Japanese Kampo medicine consisting of 12 herbs, has been reported to improve cognitive dysfunction, depression, and neurological recovery in patients with neurovascular diseases such as Alzheimer's disease and stroke. Several studies have reported that the NYT components exert neurotrophic, neurogenic, and neuroprotective effects. In addition, exercise enhances neuroprotection and functional recovery after stroke. Rehabilitative exercises and pharmacological agents induce neurophysiological plasticity, leading to functional recovery in stroke patients. These reports indicate that NYT treatment and exercise may promote functional recovery following stroke through their beneficial effects. However, no study has determined the effects of NYT and the possible mechanisms of neurorepair and functional recovery after stroke. AIM OF THE STUDY This study aimed to investigate the combined effects of NYT and exercise on neuroprotection and functional recovery and the underlying mechanisms in a rat ischemic stroke model. MATERIALS AND METHODS Stroke was induced with 60-min middle cerebral artery occlusion (MCAO) followed by reperfusion in adult male Sprague-Dawley rats. After stroke, the rats were assigned to four groups: ischemia reperfusion (IR), NYT, exercise (Ex), and NYT + Ex. NYT-treated rats were fed a diet containing 1% NYT one day after stroke. Exercise was performed using a motorized treadmill for 5 days a week (8-15 m/min, 20 min/day), starting 3 days after stroke. The NYT treatment and exercise were continued for 4 weeks after the stroke. Infarct volume, neurological deficits, sensorimotor functions, expression of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase A (TrkA) and B (TrkB), caspase-3 activity, and the p-Akt/Akt ratio were examined by immunohistochemistry and western blotting. RESULTS Compared to the IR group, all treated groups indicated reduced infarct volumes. The NYT + Ex group showed significantly improved waking time and beam walking score compared with the IR group. The expression of NGF/TrkA/p-TrkA and BDNF/TrkB was significantly increased in the NYT + Ex group compared with those in the IR group, whereas the number of caspase-3 positive cells around the lesion was significantly lower in the NYT + Ex group than in the IR group. In addition, the ratio of p-Akt/Akt was significantly higher in the NYT + Ex group than in the IR group. CONCLUSIONS This study suggests that NYT in combination with exercise provides neuroprotective effects and improves sensorimotor function by stimulating NGF/TrkA and BDNF/TrkB, and by activating the Akt pathway in ischemic stroke of rats. NYT may be an effective adjunctive agent in post-stroke rehabilitation.
Collapse
Affiliation(s)
- Akira Tani
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Japan
| | - Harutoshi Sakakima
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Japan.
| | - Shotaro Otsuka
- Department of Systems Biology in Thromboregulation, Kagoshima University, Japan
| | - Keita Mizuno
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki, Japan
| | - Kazuki Nakanishi
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Japan
| | - Kosuke Norimatsu
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Japan
| | - Seiya Takada
- Department of Systems Biology in Thromboregulation, Kagoshima University, Japan
| | - Teruki Matsuoka
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Japan
| | - Ryoma Matsuzaki
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Japan
| | - Tomomi Nakakogawa
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Japan
| | - Ikuro Maruyama
- Department of Systems Biology in Thromboregulation, Kagoshima University, Japan
| |
Collapse
|
14
|
Li T, Li X, Zhang J, Yu Z, Gong F, Wang J, Tang H, Xiang J, Zhang W, Cai D. Chemical component analysis of the traditional Chinese medicine Guipi Tang and its effects on major depressive disorder at molecular level. Heliyon 2022; 8:e12182. [DOI: 10.1016/j.heliyon.2022.e12182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
|
15
|
Wang L, Geng G, Zhu T, Chen W, Li X, Gu J, Jiang E. Progress in Research on TLR4-Mediated Inflammatory Response Mechanisms in Brain Injury after Subarachnoid Hemorrhage. Cells 2022; 11:cells11233781. [PMID: 36497041 PMCID: PMC9740134 DOI: 10.3390/cells11233781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is one of the common clinical neurological emergencies. Its incidence accounts for about 5-9% of cerebral stroke patients. Even surviving patients often suffer from severe adverse prognoses such as hemiplegia, aphasia, cognitive dysfunction and even death. Inflammatory response plays an important role during early nerve injury in SAH. Toll-like receptors (TLRs), pattern recognition receptors, are important components of the body's innate immune system, and they are usually activated by damage-associated molecular pattern molecules. Studies have shown that with TLR 4 as an essential member of the TLRs family, the inflammatory transduction pathway mediated by it plays a vital role in brain injury after SAH. After SAH occurrence, large amounts of blood enter the subarachnoid space. This can produce massive damage-associated molecular pattern molecules that bind to TLR4, which activates inflammatory response and causes early brain injury, thus resulting in serious adverse prognoses. In this paper, the process in research on TLR4-mediated inflammatory response mechanism in brain injury after SAH was reviewed to provide a new thought for clinical treatment.
Collapse
Affiliation(s)
- Lintao Wang
- Institute of Nursing and Health, Henan University, Kaifeng 475004, China
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
- Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Guangping Geng
- Henan Technician College of Medicine and Health, Kaifeng 475000, China
| | - Tao Zhu
- Department of Geriatrics, Kaifeng Traditional Chinese Medicine Hospital, Kaifeng 475001, China
| | - Wenwu Chen
- Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Xiaohui Li
- Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Jianjun Gu
- Department of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Enshe Jiang
- Institute of Nursing and Health, Henan University, Kaifeng 475004, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng 475004, China
- Correspondence:
| |
Collapse
|
16
|
Inchinkoto, the Traditional Japanese Kampo Medicine, Enhances Intestinal Epithelial Barrier Function In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4139812. [PMID: 36212959 PMCID: PMC9536930 DOI: 10.1155/2022/4139812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/11/2022] [Accepted: 09/10/2022] [Indexed: 11/18/2022]
Abstract
Inchinkoto (ICKT), a traditional herbal medicine that is often used as a hepatoprotective drug in Japan, has pharmacological properties that include antioxidant, anti-inflammatory, and choleretic actions. Genipin is a metabolite of geniposide and the most abundant ingredient of ICKT; furthermore, it is considered to be the active substance responsible for its pharmacological properties in the liver. Drugs with such pharmacological characteristics are expected to prevent intestinal barrier dysfunction, which causes inflammatory bowel diseases (IBDs). However, no studies have investigated the effects of ICKT on the intestinal epithelial barrier. Therefore, we investigated the activity of ICKT in intestinal tight junctions by using cultured Caco-2 cell monolayers. The action of the compound on tight junctions was examined by measuring transepithelial electrical resistance (TEER) and sodium fluorescein (Na-F) permeability in the presence or absence of lipopolysaccharide (LPS). Moreover, the expression of the tight junction protein claudin-1 was assessed by using immunofluorescent staining. ICKT and genipin increased TEER and decreased Na-F permeability, which was suggestive of enhanced intestinal epithelial barrier function. Moreover, they prevented the LPS-induced destruction of the barrier, i.e., a decrease in TEER and an increase in Na-F permeability. Immunofluorescence staining revealed a high claudin-1 expression level on the cell surface, whereas exposure to LPS downregulated claudin-1. In turn, ICKT and genipin prevented the LPS-mediated reduction of claudin-1. These results suggest that ICKT enhances intestinal epithelial barrier function by upregulating claudin-1. Furthermore, genipin contributed to these effects. ICKT may be a promising medicine for the prevention and treatment of diseases associated with intestinal barrier disruption, such as IBD, obesity, and metabolic disorders.
Collapse
|
17
|
Ohashi Y, Sakhri FZ, Ikemoto H, Okumo T, Adachi N, Sunagawa M. Yokukansan Inhibits the Development of Morphine Tolerance by Regulating Presynaptic Proteins in DRG Neurons. Front Pharmacol 2022; 13:862539. [PMID: 35662731 PMCID: PMC9157577 DOI: 10.3389/fphar.2022.862539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Opioids, such as morphine, are used in clinical settings for the management of acute and chronic pain. However, long-term use of morphine leads to antinociceptive tolerance and hypersensitivity. The cellular and molecular mechanisms of morphine tolerance seem to be quite complex, with suggestions including internalization of the μ-opioid receptor (MOR), neuroinflammation with activation of microglia and astrocytes, and changes in synaptic function in the central nervous system. Yokukansan (YKS), a traditional Kampo medicine consisting of seven herbs, has been used to treat emotional instability, neurosis, and insomnia. Interestingly, recent studies have begun to reveal the inhibitory effect of YKS on the development of morphine tolerance. In the present study, we determined the effect of YKS on morphine tolerance formation and its mechanisms in a rat model, focusing on the synapses between primary sensory neurons and spinal dorsal horn secondary neurons. We found that morphine tolerance formation was significantly inhibited by YKS (0.3 or 1.0 g/kg/day) preadministration for 7 days. Repeated administration of morphine (10 mg/kg/day) increased the expression of presynaptic proteins, including synaptotagmin I, in the spinal cord, which was suppressed by YKS. Furthermore, these changes in presynaptic protein expression were more pronounced at isolectin B4 (IB4)-positive excitatory synapses around the lamina II of the dorsal horn. These results suggest that YKS suppresses the development of morphine tolerance by inhibiting the enhancement of presynaptic function of dorsal root ganglia neurons projecting to spinal dorsal horn neurons caused by continuous morphine administration.
Collapse
Affiliation(s)
- Yusuke Ohashi
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Fatma Zahra Sakhri
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Hideshi Ikemoto
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Takayuki Okumo
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Naoki Adachi
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Masataka Sunagawa
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| |
Collapse
|
18
|
Chen D, Fang X, Zhu Z. Progress in the correlation of postoperative cognitive dysfunction and Alzheimer's disease and the potential therapeutic drug exploration. IBRAIN 2022; 9:446-462. [PMID: 38680509 PMCID: PMC11045201 DOI: 10.1002/ibra.12040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 05/01/2024]
Abstract
Postoperative cognitive dysfunction (POCD) is a decrease in mental capacity that can occur days to weeks after a medical procedure and may become permanent and rarely lasts for a longer period of time. With the continuous development of research, various viewpoints in academic circles have undergone subtle changes, and the role of anesthesia depth and anesthesia type seems to be gradually weakened; Alzheimer's disease (AD) is a latent and progressive neurodegenerative disease in the elderly. The protein hypothesis and the synaptic hypothesis are well-known reasons. These changes will also lead to the occurrence of an inflammatory cascade. The exact etiology and pathogenesis need to be studied. The reasonable biological mechanism affecting brain protein deposition, neuroinflammation, and acetylcholine-like effect has a certain relationship between AD and POCD. Whereas there is still further uncertainty about the mechanism and treatment, and it is elusive whether POCD is a link in the continuous progress of AD or a separate entity, which has doubts about the diagnosis and treatment of the disease. Therefore, this review is based on the current common clinical characteristics of AD and POCD, and pathophysiological research, to search for their common points and explore the direction and new strategies for future treatment.
Collapse
Affiliation(s)
- Dong‐Qin Chen
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- College of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Xu Fang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- College of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Zhao‐Qiong Zhu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
19
|
Jing X, Meng X, Wu Z, Ding Y, Peng Y, Shen M, Wang Q. Sub-acute toxicity of licorice-sargassum extract in Sprague-Dawley rats: biochemical, histopathological, and pharmacokinetic studies. Chin Med J (Engl) 2022; 135:872-874. [PMID: 34561335 PMCID: PMC9276250 DOI: 10.1097/cm9.0000000000001716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Xinyue Jing
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Xian Meng
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Zhenhui Wu
- Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Yongfang Ding
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Yunru Peng
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Mingqing Shen
- Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Qing Wang
- College of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| |
Collapse
|
20
|
Kawada K, Ishida T, Jobu K, Morisawa S, Kawazoe T, Nishida M, Nishimura S, Tamura N, Yoshioka S, Miyamura M. Yokukansan suppresses neuroinflammation in the hippocampus of mice and decreases the duration of lipopolysaccharide- and diazepam-mediated loss of righting reflex induced by pentobarbital. J Nat Med 2022; 76:634-644. [PMID: 35257304 DOI: 10.1007/s11418-022-01612-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/22/2022] [Indexed: 10/18/2022]
Abstract
Neuroinflammation is associated with the development of hypoactive delirium, which results in poor clinical outcomes. Drugs effective against hypoactive sur have not yet been established. Yokukansan has an anti-neuroinflammatory effect, making it potentially effective against hypoactive delirium. This study aimed to examine the effect of Yokukansan on the pentobarbital-induced loss of righting reflex duration extended with lipopolysaccharide (LPS)-induced neuroinflammation and diazepam-induced gamma-aminobutyric acid receptor stimulation in a mouse model. The active ingredients in Yokukansan and its anti-neuroinflammatory effect on the hippocampus were also investigated. Furthermore, we examined the in vitro anti-inflammatory effects of Yokukansan on LPS-stimulated BV2 cells, a murine microglial cell line. Findings revealed that treatment with Yokukansan significantly decreased the duration of pentobarbital-induced loss of righting reflex by attenuating the LPS-induced increase in interleukin-6 and tumor necrosis factor-alpha levels in the hippocampus. Moreover, treatment with Yokukansan significantly decreased the number of ionized calcium-binding adapter molecule-1-positive cells in the hippocampal dentate gyrus after 24 h of LPS administration. In addition, glycyrrhizic acid, an active ingredient in Yokukansan, partially decreased the duration of pentobarbital-induced loss of righting reflex. Treatment with Yokukansan also suppressed the expression of inducible nitric oxide, interleukin-6, and tumor necrosis factor mRNA in LPS-stimulated BV2 cells. Thus, these findings suggest that Yokukansan and glycyrrhizic acid may be effective therapeutic agents for treating neuroinflammation-induced hypoactive delirium.
Collapse
Affiliation(s)
- Kei Kawada
- Graduate School of Integrated Arts and Sciences, Kochi University, 185-1 Kohasu, Oko-cho, Nankoku-shi, Kochi, Japan. .,Department of Pharmacy, Kochi Medical School Hospital, 185-1 Kohasu, Oko, Nankoku, Kochi, Japan.
| | - Tomoaki Ishida
- Department of Pharmacy, Kochi Medical School Hospital, 185-1 Kohasu, Oko, Nankoku, Kochi, Japan
| | - Kohei Jobu
- Department of Pharmacy, Kochi Medical School Hospital, 185-1 Kohasu, Oko, Nankoku, Kochi, Japan
| | - Shumpei Morisawa
- Graduate School of Integrated Arts and Sciences, Kochi University, 185-1 Kohasu, Oko-cho, Nankoku-shi, Kochi, Japan.,Department of Pharmacy, Kochi Medical School Hospital, 185-1 Kohasu, Oko, Nankoku, Kochi, Japan
| | - Tetsushi Kawazoe
- Graduate School of Integrated Arts and Sciences, Kochi University, 185-1 Kohasu, Oko-cho, Nankoku-shi, Kochi, Japan.,Department of Pharmacy, Kochi Medical School Hospital, 185-1 Kohasu, Oko, Nankoku, Kochi, Japan
| | - Motoki Nishida
- Graduate School of Integrated Arts and Sciences, Kochi University, 185-1 Kohasu, Oko-cho, Nankoku-shi, Kochi, Japan.,Department of Pharmacy, Kochi Medical School Hospital, 185-1 Kohasu, Oko, Nankoku, Kochi, Japan
| | - Satomi Nishimura
- Graduate School of Integrated Arts and Sciences, Kochi University, 185-1 Kohasu, Oko-cho, Nankoku-shi, Kochi, Japan.,Department of Pharmacy, Kochi Medical School Hospital, 185-1 Kohasu, Oko, Nankoku, Kochi, Japan
| | - Naohisa Tamura
- Graduate School of Integrated Arts and Sciences, Kochi University, 185-1 Kohasu, Oko-cho, Nankoku-shi, Kochi, Japan.,Department of Pharmacy, Kochi Medical School Hospital, 185-1 Kohasu, Oko, Nankoku, Kochi, Japan
| | - Saburo Yoshioka
- Department of Pharmacy, Kochi Medical School Hospital, 185-1 Kohasu, Oko, Nankoku, Kochi, Japan
| | - Mitsuhiko Miyamura
- Graduate School of Integrated Arts and Sciences, Kochi University, 185-1 Kohasu, Oko-cho, Nankoku-shi, Kochi, Japan.,Department of Pharmacy, Kochi Medical School Hospital, 185-1 Kohasu, Oko, Nankoku, Kochi, Japan
| |
Collapse
|
21
|
Maity S, Kinra M, Nampoothiri M, Arora D, Pai KSR, Mudgal J. Caffeic acid, a dietary polyphenol, as a promising candidate for combination therapy. CHEMICAL PAPERS 2022; 76:1271-1283. [DOI: 10.1007/s11696-021-01947-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022]
Abstract
AbstractIncreased effectiveness and decreasing toxicity are prime objectives in drug research. Overwhelming evidence suggests the use of appropriate combination therapy for the better efficacy of drugs owing to their synergistic profile. Dietary active constituents play a major role in health outcomes. Therefore, it is possible to increase the effectiveness of the drug by combining contemporary medication with active natural/semi-synthetic constituents. One such dietary constituent, caffeic acid (CA), is a by-product of the shikimate pathway in plants and is a polyphenol of hydroxycinnamic acid class. Extensive research on CA has proposed its efficacy against inflammatory, neurodegenerative, oncologic, and metabolic disorders. The synergistic/additive effects of CA in combination with drugs like caffeine, metformin, pioglitazone, and quercetin have been reported in several experimental models and thus the present review is an attempt to consolidate outcomes of this research. Multi-target-based mechanistic studies will facilitate the development of effective combination regimens of CA.
Collapse
|
22
|
Identification of Chemical Components of Qi-Fu-Yin and Its Prototype Components and Metabolites in Rat Plasma and Cerebrospinal Fluid via UPLC-Q-TOF-MS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1995766. [PMID: 34992662 PMCID: PMC8727097 DOI: 10.1155/2021/1995766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022]
Abstract
Qi-Fu-Yin, a traditional Chinese medicine formula, has been used to treat Alzheimer's disease (AD, a neurodegenerative disorder) in clinical setting. In this study, the chemical components of Qi-Fu-Yin and its prototype components and metabolites in rat plasma and cerebrospinal fluid, after oral administration, were preliminarily characterized via ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS). A total of 180 compounds, including saponins, flavonoids, organic acids, sucrose esters, oligosaccharide esters, phthalides, phenylethanoid glycosides, alkaloids, xanthones, terpene lactones, ionones, and iridoid glycoside, were tentatively characterized. For the first time, 51 prototypical components and 26 metabolites, including saponins, phthalides, flavonoids, sucrose esters, organic acids, alkaloids, ionones, terpene lactones, iridoid glycoside, and their derivatives, have been tentatively identified in the plasma. Furthermore, 10 prototypical components (including butylidenephthalide, butylphthalide, 20(S)-ginsenoside Rh1, 20(R)-ginsenoside Rh1, and zingibroside R1) and 6 metabolites were preliminarily characterized in cerebrospinal fluid. These results were beneficial to the discovery of the active components of Qi-Fu-Yin anti-AD.
Collapse
|
23
|
Matsumoto T, Takiyama M, Sakamoto T, Kaifuchi N, Watanabe J, Takahashi Y, Setou M. Pharmacokinetic study of Ninjin'yoeito: Absorption and brain distribution of Ninjin'yoeito ingredients in mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114332. [PMID: 34129897 DOI: 10.1016/j.jep.2021.114332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ninjin'yoeito (NYT), a Japanese traditional Kampo medicine, has been reported to exert various clinical benefits such as relief from fatigue, malaise, anorexia, frailty, sarcopenia, and cognitive dysfunction. Recently, some review articles described the pharmacological effects of NYT and additionally indicated the possibility that multiple ingredients in NYT contribute to these effects. However, pharmacokinetic data on the ingredients are essential in addition to data on their pharmacological activities to accurately determine the active ingredients in NYT. AIM OF THE STUDY This study assessed the in vivo pharmacokinetics of NYT using mice. MATERIALS AND METHODS Target liquid chromatography-mass spectrometry (LC-MS) and wide target LC-MS or LC-tandem MS of NYT ingredients in plasma and the brain after oral administration of NYT were performed. Imaging MS was performed to investigate the detailed brain distributions of NYT ingredients. RESULTS The concentrations of 13 ingredients in plasma and schizandrin in the brain were quantified via target LC-MS, and the wide target analysis illustrated that several ingredients are absorbed into blood and transported into the brain. Imaging MS revealed that schizandrin was homogenously dispersed in the NYT-treated mouse brain. CONCLUSION These results should be useful for clarifying the active ingredients of NYT and their mechanisms of actions.
Collapse
Affiliation(s)
- Takashi Matsumoto
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan.
| | - Mikina Takiyama
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan.
| | - Takumi Sakamoto
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Noriko Kaifuchi
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan.
| | - Junko Watanabe
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan.
| | - Yutaka Takahashi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan; Preppers Co. Ltd., Medical and Industrial Collaboration Center Building, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan; Preppers Co. Ltd., Medical and Industrial Collaboration Center Building, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan; International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan; Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| |
Collapse
|
24
|
Neumaier F, Zlatopolskiy BD, Neumaier B. Drug Penetration into the Central Nervous System: Pharmacokinetic Concepts and In Vitro Model Systems. Pharmaceutics 2021; 13:1542. [PMID: 34683835 PMCID: PMC8538549 DOI: 10.3390/pharmaceutics13101542] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Delivery of most drugs into the central nervous system (CNS) is restricted by the blood-brain barrier (BBB), which remains a significant bottleneck for development of novel CNS-targeted therapeutics or molecular tracers for neuroimaging. Consistent failure to reliably predict drug efficiency based on single measures for the rate or extent of brain penetration has led to the emergence of a more holistic framework that integrates data from various in vivo, in situ and in vitro assays to obtain a comprehensive description of drug delivery to and distribution within the brain. Coupled with ongoing development of suitable in vitro BBB models, this integrated approach promises to reduce the incidence of costly late-stage failures in CNS drug development, and could help to overcome some of the technical, economic and ethical issues associated with in vivo studies in animal models. Here, we provide an overview of BBB structure and function in vivo, and a summary of the pharmacokinetic parameters that can be used to determine and predict the rate and extent of drug penetration into the brain. We also review different in vitro models with regard to their inherent shortcomings and potential usefulness for development of fast-acting drugs or neurotracers labeled with short-lived radionuclides. In this regard, a special focus has been set on those systems that are sufficiently well established to be used in laboratories without significant bioengineering expertise.
Collapse
Affiliation(s)
- Felix Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Boris D. Zlatopolskiy
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| |
Collapse
|
25
|
Paudel YN, Khan SU, Othman I, Shaikh MF. Naturally Occurring HMGB1 Inhibitor, Glycyrrhizin, Modulates Chronic Seizures-Induced Memory Dysfunction in Zebrafish Model. ACS Chem Neurosci 2021; 12:3288-3302. [PMID: 34463468 DOI: 10.1021/acschemneuro.0c00825] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glycyrrhizin (GL) is a well-known pharmacological inhibitor of high mobility group box 1 (HMGB1) and is abundantly present in the licorice root (Glycyrrhiza radix). HMGB1 protein, a key mediator of neuroinflammation, has been implicated in several neurological disorders, including epilepsy. Epilepsy is a devastating neurological disorder with no effective disease-modifying treatment strategies yet, suggesting a pressing need for exploring novel therapeutic options. In the current investigation, using a second hit pentylenetetrazol (PTZ) induced chronic seizure model in adult zebrafish, regulated mRNA expression of HMGB1 was inhibited by pretreatment with GL (25, 50, and 100 mg/kg, ip). A molecular docking study suggests that GL establishes different binding interactions with the various amino acid chains of HMGB1 and Toll-like receptor-4 (TLR4). Our finding suggests that GL pretreatment reduces/suppresses second hit PTZ induced seizure, as shown by the reduction in the seizure score. GL also regulates the second hit PTZ induced behavioral impairment and rescued second hit PTZ related memory impairment as demonstrated by an increase in the inflection ratio (IR) at the 3 h and 24 h T-maze trial. GL inhibited seizure-induced neuronal activity as demonstrated by reduced C-fos mRNA expression. GL also modulated mRNA expression of BDNF, CREB-1, and NPY. The possible mechanism underlying the anticonvulsive effect of GL could be attributed to its anti-inflammatory activity, as demonstrated by the downregulated mRNA expression level of HMGB1, TLR4, NF-kB, and TNF-α. Overall, our finding suggests that GL exerts an anticonvulsive effect and ameliorates seizure-related memory disruption plausibly through regulating of the HMGB1-TLR4-NF-kB axis.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Shafi Ullah Khan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
- Department of Pharmacy, Abasyn University, Ring Road, Peshawar 25120, Pakistan
| | - Iekhsan Othman
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
- Liquid Chromatography-Mass Spectrometry (LCMS) Platform, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
26
|
Indole- and Pyrazole-Glycyrrhetinic Acid Derivatives as PTP1B Inhibitors: Synthesis, In Vitro and In Silico Studies. Molecules 2021; 26:molecules26144375. [PMID: 34299651 PMCID: PMC8308021 DOI: 10.3390/molecules26144375] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 11/17/2022] Open
Abstract
Regulating insulin and leptin levels using a protein tyrosine phosphatase 1B (PTP1B) inhibitor is an attractive strategy to treat diabetes and obesity. Glycyrrhetinic acid (GA), a triterpenoid, may weakly inhibit this enzyme. Nonetheless, semisynthetic derivatives of GA have not been developed as PTP1B inhibitors to date. Herein we describe the synthesis and evaluation of two series of indole- and N-phenylpyrazole-GA derivatives (4a-f and 5a-f). We measured their inhibitory activity and enzyme kinetics against PTP1B using p-nitrophenylphosphate (pNPP) assay. GA derivatives bearing substituted indoles or N-phenylpyrazoles fused to their A-ring showed a 50% inhibitory concentration for PTP1B in a range from 2.5 to 10.1 µM. The trifluoromethyl derivative of indole-GA (4f) exhibited non-competitive inhibition of PTP1B as well as higher potency (IC50 = 2.5 µM) than that of positive controls ursolic acid (IC50 = 5.6 µM), claramine (IC50 = 13.7 µM) and suramin (IC50 = 4.1 µM). Finally, docking and molecular dynamics simulations provided the theoretical basis for the favorable activity of the designed compounds.
Collapse
|
27
|
Su XQ, Wang XY, Gong FT, Feng M, Bai JJ, Zhang RR, Dang XQ. Oral treatment with glycyrrhizin inhibits NLRP3 inflammasome activation and promotes microglial M2 polarization after traumatic spinal cord injury. Brain Res Bull 2020; 158:1-8. [DOI: 10.1016/j.brainresbull.2020.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/19/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
|
28
|
Chen CM, Chen WL, Hung CT, Lin TH, Lee MC, Chen IC, Lin CH, Chao CY, Wu YR, Chang KH, Hsieh-Li HM, Lee-Chen GJ. Shaoyao Gancao Tang (SG-Tang), a formulated Chinese medicine, reduces aggregation and exerts neuroprotection in spinocerebellar ataxia type 17 (SCA17) cell and mouse models. Aging (Albany NY) 2020; 11:986-1007. [PMID: 30760647 PMCID: PMC6382417 DOI: 10.18632/aging.101804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 01/24/2019] [Indexed: 12/22/2022]
Abstract
Spinocerebellar ataxia (SCA) type 17 is an autosomal dominant ataxia caused by expanded polyglutamine (polyQ) tract in the TATA-box binding protein (TBP). Substantial studies have shown involvement of compromised mitochondria biogenesis regulator peroxisome proliferator-activated receptor gamma-coactivator 1 alpha (PGC-1α), nuclear factor erythroid 2-related factor 2 (NRF2), nuclear factor-Y subunit A (NFYA), and their downstream target genes in the pathogenesis of polyQ-expansion diseases. The extracts of Paeonia lactiflora (P. lactiflora) and Glycyrrhiza uralensis (G. uralensis) have long been used as a Chinese herbal medicine (CHM). Shaoyao Gancao Tang (SG-Tang) is a formulated CHM made of P. lactiflora and G. uralensis at a 1:1 ratio. In the present study, we demonstrated the aggregate-inhibitory and anti-oxidative effect of SG-Tang in 293 TBP/Q79 cells. We then showed that SG-Tang reduced the aggregates and ameliorated the neurite outgrowth deficits in TBP/Q79 SH-SY5Y cells. SG-Tang upregulated expression levels of NFYA, PGC-1α, NRF2, and their downstream target genes in TBP/Q79 SH-SY5Y cells. Knock down of NFYA, PGC-1α, and NRF2 attenuated the neurite outgrowth promoting effect of SG-Tang on TBP/Q79 SH-SY5Y cells. Furthermore, SG-Tang inhibited aggregation and rescued motor-deficits in SCA17 mouse model. The study results suggest the potential of SG-Tang in treating SCA17 and probable other polyQ diseases.
Collapse
Affiliation(s)
- Chiung-Mei Chen
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Wan-Ling Chen
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Chen-Ting Hung
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Te-Hsien Lin
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | | | - I-Cheng Chen
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Chih-Ying Chao
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
29
|
Le K, Wu S, Chibaatar E, Ali AI, Guo Y. Alarmin HMGB1 Plays a Detrimental Role in Hippocampal Dysfunction Caused by Hypoxia-Ischemia Insult in Neonatal Mice: Evidence from the Application of the HMGB1 Inhibitor Glycyrrhizin. ACS Chem Neurosci 2020; 11:979-993. [PMID: 32073822 DOI: 10.1021/acschemneuro.0c00084] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hippocampal dysfunction related to cognitive impairment and emotional disorders in young children and adolescents caused by neonatal hypoxic-ischemic brain injury (HIBI) has attracted increasing attention in recent years. Crosstalk between the nervous and immune systems organized by hypoxia-ischemia (HI) insult may contribute to hippocampal dysfunction after HIBI. Extracellular HMGB1 functions as a damage-associated molecular pattern to instigate and amplify inflammatory responses, but whether this molecule is correlated with hippocampal dysfunction after HIBI is largely unknown. Therefore, this study examined hippocampal function after HMGB1 inhibition in an experimental HIBI model to verify the hypothesis that HMGB1 is a key mediator of hippocampal neuropathology in neonatal HIBI. By administering different doses of the HMGB1-specific inhibitor glycyrrhizin (GLY), we first found that GLY reversed the HI insult-induced loss of neurons and myelin in the hippocampal region and neurobehavioral impairments, partially in a dose-dependent manner, and based on this, we determined the optimal drug concentration to be 50 mg/kg. Subsequent analysis found that this neuroprotective effect was achieved through the inhibition of HMGB1 expression and nucleocytoplasmic translocation, a reduction in the abnormal expression of proteins associated with the downstream signaling pathway of HMGB1, a decrease in the inflammatory response, the suppression of increases in microglia/astrocytes, and the inhibition of hippocampal cell apoptosis. Collectively, our discoveries contribute to the rising appreciation of the role of HMGB1 in the neuropathology of hippocampal dysfunction and related behavioral outcomes following HIBI.
Collapse
Affiliation(s)
- Kai Le
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Shanshan Wu
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Enkhmurun Chibaatar
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Abdoulaye Idriss Ali
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Yijing Guo
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China
| |
Collapse
|
30
|
Paudel YN, Angelopoulou E, Semple B, Piperi C, Othman I, Shaikh MF. Potential Neuroprotective Effect of the HMGB1 Inhibitor Glycyrrhizin in Neurological Disorders. ACS Chem Neurosci 2020; 11:485-500. [PMID: 31972087 DOI: 10.1021/acschemneuro.9b00640] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glycyrrhizin (glycyrrhizic acid), a bioactive triterpenoid saponin constituent of Glycyrrhiza glabra, is a traditional medicine possessing a plethora of pharmacological anti-inflammatory, antioxidant, antimicrobial, and antiaging properties. It is a known pharmacological inhibitor of high mobility group box 1 (HMGB1), a ubiquitous protein with proinflammatory cytokine-like activity. HMGB1 has been implicated in an array of inflammatory diseases when released extracellularly, mainly by activating intracellular signaling upon binding to the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4). HMGB1 neutralization strategies have demonstrated disease-modifying outcomes in several preclinical models of neurological disorders. Herein, we reveal the potential neuroprotective effects of glycyrrhizin against several neurological disorders. Emerging findings demonstrate the therapeutic potential of glycyrrhizin against several HMGB1-mediated pathological conditions including traumatic brain injury, neuroinflammation and associated conditions, epileptic seizures, Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Glycyrrhizin's effects in neurological disorders are mainly attributed to the attenuation of neuronal damage by inhibiting HMGB1 expression and translocation as well as by downregulating the expression of inflammatory cytokines. A large number of preclinical findings supports the notion that glycyrrhizin might be a promising therapeutic alternative to overcome the shortcomings of the mainstream therapeutic strategies against neurological disorders, mainly by halting disease progression. However, future research is warranted for a deeper exploration of the precise underlying molecular mechanism as well as for clinical translation.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Bridgette Semple
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne 3800, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia
| |
Collapse
|
31
|
Targeting high-mobility group box protein 1 (HMGB1) in pediatric traumatic brain injury: Chronic neuroinflammatory, behavioral, and epileptogenic consequences. Exp Neurol 2019; 320:112979. [DOI: 10.1016/j.expneurol.2019.112979] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/29/2019] [Accepted: 06/18/2019] [Indexed: 11/18/2022]
|
32
|
Yoshida Y, Fujigaki H, Kato K, Yamazaki K, Fujigaki S, Kunisawa K, Yamamoto Y, Mouri A, Oda A, Nabeshima T, Saito K. Selective and competitive inhibition of kynurenine aminotransferase 2 by glycyrrhizic acid and its analogues. Sci Rep 2019; 9:10243. [PMID: 31308447 PMCID: PMC6629613 DOI: 10.1038/s41598-019-46666-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
The enzyme kynurenine aminotransferase (KAT) catalyses the conversion of kynurenine (KYN) to kynurenic acid (KYNA). Although the isozymes KAT1–4 have been identified, KYNA is mainly produced by KAT2 in brain tissues. KNYA is an antagonist of N-methyl-D-aspartate and α-7-nicotinic acetylcholine receptors, and accumulation of KYNA in the brain has been associated with the pathology of schizophrenia. Therefore, KAT2 could be exploited as a therapeutic target for the management of schizophrenia. Although currently available KAT2 inhibitors irreversibly bind to pyridoxal 5′-phosphate (PLP), inhibition via this mechanism may cause adverse side effects because of the presence of other PLP-dependent enzymes. Therefore, we identified novel selective KAT2 inhibitors by screening approximately 13,000 molecules. Among these, glycyrrhizic acid (GL) and its analogues, glycyrrhetinic acid (GA) and carbenoxolone (CBX), were identified as KAT2 inhibitors. These compounds were highly selective for KAT2 and competed with its substrate KYN, but had no effects on the other 3 KAT isozymes. Furthermore, we demonstrated that in complex structures that were predicted in docking calculations, GL, GA and CBX were located on the same surface as the aromatic ring of KYN. These results indicate that GL and its analogues are highly selective and competitive inhibitors of KAT2.
Collapse
Affiliation(s)
- Yukihiro Yoshida
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi, 470-1192, Japan
| | - Hidetsugu Fujigaki
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi, 470-1192, Japan.
| | - Koichi Kato
- College of Pharmacy, Kinjo Gakuin University, Aichi, 463-8521, Japan.,Faculty of Pharmacy, Meijo University, Aichi, 468-8503, Japan
| | - Kyoka Yamazaki
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi, 470-1192, Japan
| | - Suwako Fujigaki
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi, 470-1192, Japan
| | - Kazuo Kunisawa
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Aichi, 470-1192, Japan
| | - Yasuko Yamamoto
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi, 470-1192, Japan
| | - Akihiro Mouri
- Department of Regulatory Science, Fujita Health University Graduate School of Health Sciences, Aichi, 470-1192, Japan.,Japanese Drug Organization of Appropriate Use and Research, Aichi, 468-0069, Japan
| | - Akifumi Oda
- Faculty of Pharmacy, Meijo University, Aichi, 468-8503, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Aichi, 470-1192, Japan.,Japanese Drug Organization of Appropriate Use and Research, Aichi, 468-0069, Japan
| | - Kuniaki Saito
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi, 470-1192, Japan.,Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Aichi, 470-1192, Japan.,Japanese Drug Organization of Appropriate Use and Research, Aichi, 468-0069, Japan.,Human Health Sciences, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
33
|
Hisaoka-Nakashima K, Tomimura Y, Yoshii T, Ohata K, Takada N, Zhang FF, Nakamura Y, Liu K, Wake H, Nishibori M, Nakata Y, Morioka N. High-mobility group box 1-mediated microglial activation induces anxiodepressive-like behaviors in mice with neuropathic pain. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:347-362. [PMID: 30763674 DOI: 10.1016/j.pnpbp.2019.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/22/2019] [Accepted: 02/07/2019] [Indexed: 12/13/2022]
Abstract
Clinical evidence indicates that major depression is a common comorbidity of chronic pain, including neuropathic pain. However, the cellular basis for chronic pain-mediated major depression remains unclear. High-mobility group box 1 protein (HMGB1) has a key role in innate immune responses and appears to be have a role in mediating diverse disorders, including neuropathic pain and depression. The current study aimed to characterize neuropathic pain-induced changes in affect over time and to determine whether HMGB1 has a role in neuropathic pain-induced changes in affect. Neuropathic pain was induced by partial sciatic nerve ligation (PSNL) in mice. Anxiodepressive-like behaviors in mice were evaluated over 10 weeks, in the social interaction, forced swim, and novelty suppressed feeding tests. Mice developed anxiodepressive-like behavior 6 to 8 weeks after induction of neuropathy. Accompanying anxiodepressive-like behavior, increased HMGB1 protein and microglia activation were observed in frontal cortex at 8 weeks after PSNL. Intracerebroventricular administration of rHMGB1 in naïve mice induced anxiodepressive-like behavior and microglia activation. Blockage of HMGB1 in PSNL mice with glycyrrhizic acid (GZA) or anti-HMGB1 antibody reduced microglia activation and anxiodepressive-like behavior. These results indicate that PSNL-induced anxiodepressive-like behavior is likely mediated by HMGB1. Furthermore, the data indicate that inhibition of HMGB1-dependent microglia activation could be a strategy for the treatment of depression associated with neuropathic pain.
Collapse
Affiliation(s)
- Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Yoshiaki Tomimura
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Toshiki Yoshii
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Kazuto Ohata
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Naoki Takada
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Fang Fang Zhang
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan; Institute of Pharmacology, Tawishan Medical University, 619 Changcheng Road, Taian, Shandong 271016, China
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Keyue Liu
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama, Japan
| | - Hidenori Wake
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan.
| |
Collapse
|
34
|
Takiyama M, Matsumoto T, Watanabe J. LC-MS/MS detection of citrus unshiu peel-derived flavonoids in the plasma and brain after oral administration of yokukansankachimpihange in rats. Xenobiotica 2019; 49:1494-1503. [PMID: 30741064 DOI: 10.1080/00498254.2019.1581300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
1. Yokukansankachimpihange (YKSCH), a Kampo formulation combining Citrus unshiu peel (CUP) and Pinellia tuber (PT) with yokukansan (YKS), has been recently used to treat the behavioral and psychological symptoms of dementia. Several flavonoids derived from CUP and PT reportedly exhibit psychopharmacological activity, but it remains unclear whether these flavonoids reach the brain after oral administration of YKSCH. 2. In this study, we first measured eight target flavonoids in the plasma and brain in rats orally administered YKSCH. Among these flavonoids, hesperidin, narirutin, nobiletin, and heptamethoxyflavone (HMF) were detected in the plasma, and nobiletin and HMF were detected in the brain. 3. Next, to clarify whether CUP and PT affect the pharmacokinetics of YKS ingredients in YKSCH, the plasma pharmacokinetics of geissoschizine methyl ether (GM) as a representative active ingredient in YKS was examined in rats orally administered YKSCH or YKS. There was no significant difference between the two groups, inferring that the pharmacokinetics of GM may not be affected by the two additional crude drugs. 4. Taken together, this study suggests that the CUP-derived flavonoids nobiletin and HMF may be responsible for the psychopharmacological effects of YKSCH in addition to YKS ingredients.
Collapse
Affiliation(s)
- Mikina Takiyama
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co. , Ibaraki , Japan
| | - Takashi Matsumoto
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co. , Ibaraki , Japan
| | - Junko Watanabe
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co. , Ibaraki , Japan
| |
Collapse
|
35
|
Basic Study of Drug-Drug Interaction between Memantine and the Traditional Japanese Kampo Medicine Yokukansan. Molecules 2018; 24:molecules24010115. [PMID: 30597998 PMCID: PMC6337661 DOI: 10.3390/molecules24010115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 12/19/2022] Open
Abstract
Several basic pharmacokinetic and pharmacological studies were conducted as part of a group of studies to clarify the drug-drug interaction (DDI) between memantine (MEM), a drug used to treat Alzheimer's disease, and yokukansan (YKS), a traditional Japanese Kampo medicine used to treat behavioral and psychological symptoms of dementia. The pharmacokinetic studies showed that there were no statistically significant differences in MEM concentrations in the plasma, brain, and urine between mice treated with MEM alone and with MEM plus YKS. Regarding candidate active ingredients of YKS, there were also no statistically significant differences in concentrations of geissoschizine methyl ether in the plasma and brain, urine, glycyrrhetinic acid in the plasma, and isoliquiritigenin in the urine, in mice treated with YKS alone or with MEM plus YKS. The pharmacological studies showed that isoliquiritigenin, which has an N-methyl-d-aspartic acid (NMDA) receptor antagonistic effect, did not affect the inhibitory effect of MEM on NMDA-induced intracellular Ca2+ influx in primary cultured rat cortical neurons. Moreover, YKS did not affect either the ameliorative effects of MEM on NMDA-induced learning and memory impairment, or the MEM-induced decrease in locomotor activities in mice. These results suggest that there is probably no pharmacokinetic or pharmacological interaction between MEM and YKS in mice, but more detailed studies are needed in the future. Our findings provide important information for future studies, to clarify the DDI more regarding the efficacy and safety of combined use of these drugs in a clinical situation.
Collapse
|
36
|
Ovais M, Zia N, Ahmad I, Khalil AT, Raza A, Ayaz M, Sadiq A, Ullah F, Shinwari ZK. Phyto-Therapeutic and Nanomedicinal Approaches to Cure Alzheimer's Disease: Present Status and Future Opportunities. Front Aging Neurosci 2018; 10:284. [PMID: 30405389 PMCID: PMC6205985 DOI: 10.3389/fnagi.2018.00284] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by cognitive inability manifested due to the accumulation of β-amyloid, formation of hyper phosphorylated neurofibrillary tangles, and a malfunctioned cholinergic system. The degeneration integrity of the neuronal network can appear long after the onset of the disease. Nanotechnology-based interventions have opened an exciting area via theranostics of AD in terms of tailored nanomedicine, which are able to target and deliver drugs across the blood-brain barrier (BBB). The exciting interface existing between medicinal plants and nanotechnology is an emerging marvel in medicine, which has delivered promising results in the treatment of AD. In order to assess the potential applications of the medicinal plants, their derived components, and various nanomedicinal approaches, a review of literature was deemed as necessary. In the present review, numerous phytochemicals and various feats in nanomedicine for the treatment of AD have been discussed mechanistically for the first time. Furthermore, recent trends in nanotechnology such as green synthesis of metal nanoparticles with reference to the treatment of AD have been elaborated. Foreseeing the recent progress, we hope that the interface of medicinal plants and nanotechnology will lead to highly effective theranostic strategies for the treatment of AD in the near future.
Collapse
Affiliation(s)
- Muhammad Ovais
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- National Institute of Lasers and Optronics, Pakistan Atomic Energy Commission, Islamabad, Pakistan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Nashmia Zia
- National Institute of Lasers and Optronics, Pakistan Atomic Energy Commission, Islamabad, Pakistan
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Irshad Ahmad
- Department of Life Sciences, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Ali Talha Khalil
- Department of Eastern Medicine and Surgery, Qarshi University, Lahore, Pakistan
| | - Abida Raza
- National Institute of Lasers and Optronics, Pakistan Atomic Energy Commission, Islamabad, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
- Department of Life Sciences and Chemistry, Faculty of Health, Jacobs University Bremen, Bremen, Germany
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Zabta Khan Shinwari
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Eastern Medicine and Surgery, Qarshi University, Lahore, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| |
Collapse
|
37
|
Terada K, Matsushima Y, Matsunaga K, Takata J, Karube Y, Ishige A, Chiba K. The Kampo medicine Yokukansan (YKS) enhances nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. Bosn J Basic Med Sci 2018; 18:224-233. [PMID: 28961087 PMCID: PMC6087561 DOI: 10.17305/bjbms.2017.2248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence indicates that neurotrophic factor-like substances involved in the induction of neurotrophic factor synthesis may aid in the treatment of neurological disorders, such as Alzheimer's disease. Yokukansan (YKS), a traditional Kampo medicine, has been used for the treatment of anxiety and mood disorders. In the present study, we aimed to identify the signaling pathways associated with YKS-mediated enhancement of nerve growth factor (NGF)-induced neurite extension in rat pheochromocytoma (PC12) cells. Akt and extracellular-regulated kinase 1/2 (ERK1/2) phosphorylation levels were assessed by western blot analysis, in the presence of YKS and following the treatment with TrkA inhibitor, K252a. YKS treatment (NGF+YKS 0.5 group) enhanced NGF-induced neurite outgrowth and phosphorylation/activation of Akt and ERK1/2 in PC12 cells. Moreover, YKS-induced effects were inhibited by the treatment with the TrkA receptor antagonist K252a (NGF+YKS 0.5+K252a group); no significant difference in neurite outgrowth was observed between K252a-treated (NGF+YKS 0.5+K252a group) and NGF-K252a-treated cells (NGF+K252a group). However, neurite outgrowth in K252a-treated cells (NGF+K252a and NGF+YKS 0.5+K252a group) reached only one-third of the level in NGF-treated cells (NGF group). NGF-mediated Akt phosphorylation increased by YKS was also inhibited by K252a treatment (NGF+YKS 0.5+K252a group), but no significant difference in ERK1/2 phosphorylation was observed between NGF-YKS-K252a- and NGF-treated cells (NGF group). Our results indicate that YKS treatment enhanced NGF-induced neurite outgrowth via induction of Akt and ERK1/2 phosphorylation, following the binding of NGF to the TrkA receptor. These findings may be useful in the development of novel therapeutic strategies for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Kazuki Terada
- Laboratory of Drug Design and Drug Delivery, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
Huang M, Cheng Z, Wang L, Feng Y, Huang J, Du Z, Jiang H. A targeted strategy to identify untargeted metabolites from in vitro to in vivo: Rapid and sensitive metabolites profiling of licorice in rats using ultra-high performance liquid chromatography coupled with triple quadrupole-linear ion trap mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1092:40-50. [PMID: 29883888 DOI: 10.1016/j.jchromb.2018.05.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 12/31/2022]
Abstract
It is challenging to conduct in vivo metabolic study for traditional Chinese medicines (TCMs) because of complex components, unpredictable metabolic pathways and low metabolite concentrations. Herein, we proposed a sensitive strategy to characterize TCM metabolites in vivo at an orally clinical dose using ultra-high performance liquid chromatography-triple quadrupole-linear ion trap mass spectrometry (UHPLC-QTRAP-MS). Firstly, the metabolism of individual compounds in rat liver microsomes was studied to obtain the metabolic pathways and fragmentation patterns. The untargeted metabolites in vitro were detected by multiple ion monitoring-enhanced product ion (EPI) and neutral loss-EPI scans. Subsequently, a sensitive multiple reaction monitoring-EPI method was developed according to the in vitro results and predicted metabolites to profile the in vivo metabolites. Licorice as a model herb was used to evaluate and validate our strategy. A clinical dose of licorice water extract was orally administered to rats, then a total of 45 metabolites in urine, 21 metabolites in feces and 35 metabolites in plasma were detected. Among them, 18 minor metabolites have not been reported previously and 6 minor metabolites were first detected in vivo. Several isomeric metabolites were well separated and differentiated in our strategy. These results suggested that this new strategy could be widely used for the detection and characterization of in vivo metabolites of TCMs.
Collapse
Affiliation(s)
- Meilin Huang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, China
| | - Zhongzhe Cheng
- Tongji School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, China
| | - Lu Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, China
| | - Yulin Feng
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jiangeng Huang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, China
| | - Zhifeng Du
- Tongji School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, China
| | - Hongliang Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, China.
| |
Collapse
|
39
|
Schultz ML, Tecedor L, Lysenko E, Ramachandran S, Stein CS, Davidson BL. Modulating membrane fluidity corrects Batten disease phenotypes in vitro and in vivo. Neurobiol Dis 2018; 115:182-193. [PMID: 29660499 PMCID: PMC5969532 DOI: 10.1016/j.nbd.2018.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/25/2018] [Accepted: 04/11/2018] [Indexed: 12/19/2022] Open
Abstract
The neuronal ceroid lipofuscinoses are a class of inherited neurodegenerative diseases characterized by the accumulation of autofluorescent storage material. The most common neuronal ceroid lipofuscinosis has juvenile onset with rapid onset blindness and progressive degeneration of cognitive processes. The juvenile form is caused by mutations in the CLN3 gene, which encodes the protein CLN3. While mouse models of Cln3 deficiency show mild disease phenotypes, it is apparent from patient tissue- and cell-based studies that its loss impacts many cellular processes. Using Cln3 deficient mice, we previously described defects in mouse brain endothelial cells and blood-brain barrier (BBB) permeability. Here we expand on this to other components of the BBB and show that Cln3 deficient mice have increased astrocyte endfeet area. Interestingly, this phenotype is corrected by treatment with a commonly used GAP junction inhibitor, carbenoxolone (CBX). In addition to its action on GAP junctions, CBX has also been proposed to alter lipid microdomains. In this work, we show that CBX modifies lipid microdomains and corrects membrane fluidity alterations in Cln3 deficient endothelial cells, which in turn improves defects in endocytosis, caveolin-1 distribution at the plasma membrane, and Cdc42 activity. In further work using the NIH Library of Integrated Network-based Cellular Signatures (LINCS), we discovered other small molecules whose impact was similar to CBX in that they improved Cln3-deficient cell phenotypes. Moreover, Cln3 deficient mice treated orally with CBX exhibited recovery of impaired BBB responses and reduced auto-fluorescence. CBX and the compounds identified by LINCS, many of which have been used in humans or approved for other indications, may find therapeutic benefit in children suffering from CLN3 deficiency through mechanisms independent of their original intended use.
Collapse
Affiliation(s)
- Mark L Schultz
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Luis Tecedor
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Elena Lysenko
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Shyam Ramachandran
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Colleen S Stein
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Beverly L Davidson
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Pathology & Laboratory Medicine, Philadelphia, PA 19104, United States.
| |
Collapse
|
40
|
Kong ZH, Chen X, Hua HP, Liang L, Liu LJ. The Oral Pretreatment of Glycyrrhizin Prevents Surgery-Induced Cognitive Impairment in Aged Mice by Reducing Neuroinflammation and Alzheimer’s-Related Pathology via HMGB1 Inhibition. J Mol Neurosci 2017; 63:385-395. [DOI: 10.1007/s12031-017-0989-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/10/2017] [Indexed: 11/24/2022]
|
41
|
Mizoguchi K, Ikarashi Y. Cellular Pharmacological Effects of the Traditional Japanese Kampo Medicine Yokukansan on Brain Cells. Front Pharmacol 2017; 8:655. [PMID: 28979206 PMCID: PMC5611794 DOI: 10.3389/fphar.2017.00655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/04/2017] [Indexed: 01/31/2023] Open
Abstract
Yokukansan (YKS) is a traditional Japanese Kampo medicine currently used for the treatment of the behavioral psychological symptoms associated with dementia (BPSD), which is frequently problematic in neurodegenerative disorders such as Alzheimer’s disease. Regarding the pharmacological mechanisms underlying its efficacy, we recently reviewed the multiple effects of YKS on the neurotransmitter systems (e.g., glutamatergic, serotonergic, dopaminergic, cholinergic, GABAergic, and adrenergic neurotransmission) in various brain regions that are related to the psychological, emotional, cognitive, or memory functions. These multiple effects are thought to be caused by multiple components included in YKS. In addition, YKS exhibits various effects on brain cells (i.e., neurons, glial cells including astrocytes, oligodendrocytes, and microglial cells, and endothelial cells). In this review, we summarize recent evidence demonstrating the cellular pharmacological effects of YKS on these brain cells, and discuss the current understanding of its efficacy and mechanism. In particular, YKS maintains the neuronal survival and function by multiple beneficial effects, including anti-apoptosis, anti-oxidation, anti-endoplasmic reticulum stress, and neurogenesis. YKS also acts on glial cells by: facilitating the transport of glutamate into astrocytes; promoting the proliferation and differentiation of oligodendrocytes; and enhancing the anti-inflammatory properties of microglial cells. These glial effects are thought to support neuronal functioning within the brain. Various ingredients involved in these effects have been identified, some of which can pass through the artificial blood–brain barrier without disrupting the endothelial tight junctions. This multitude of interactive effects displayed by YKS on neuronal and glial cells is suggested to be involved in the multitude of neuropsychopharmacological actions of YKS, which are related to the improvement of BPSD.
Collapse
Affiliation(s)
- Kazushige Mizoguchi
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co.Ibaraki, Japan
| | - Yasushi Ikarashi
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co.Ibaraki, Japan
| |
Collapse
|
42
|
In silico modeling on ADME properties of natural products: Classification models for blood-brain barrier permeability, its application to traditional Chinese medicine and in vitro experimental validation. J Mol Graph Model 2017. [DOI: 10.1016/j.jmgm.2017.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
43
|
Mizoguchi K, Ikarashi Y. Multiple Psychopharmacological Effects of the Traditional Japanese Kampo Medicine Yokukansan, and the Brain Regions it Affects. Front Pharmacol 2017; 8:149. [PMID: 28377723 PMCID: PMC5359390 DOI: 10.3389/fphar.2017.00149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/09/2017] [Indexed: 12/27/2022] Open
Abstract
Yokukansan (YKS), a traditional Japanese Kampo medicine, has indications for use in night crying and irritability in children, as well as neurosis and insomnia. It is currently also used for the remedy of the behavioral and psychological symptoms of dementia (BPSD), such as aggressiveness, agitation, and hallucinations. In parallel with clinical evidence, a significant amount of fundamental researches have been undertaken to clarify the neuropsychopharmacological efficacies of YKS, with approximately 70 articles, including our own, being published to date. Recently, we reviewed the neuropharmacological mechanisms of YKS, including its effects on glutamatergic, serotonergic, and dopaminergic neurotransmission, and pharmacokinetics of the ingredients responsible for the effects. This review is aimed to integrate the information regarding the psychopharmacological effects of YKS with the brain regions known to be affected, to facilitate our understanding of the clinical efficacy of YKS. In this review, we first show that YKS has several effects that act to improve symptoms that are similar to BPSDs, like aggressiveness, hallucinations, anxiety, and sleep disturbance, as well as symptoms like tardive dyskinesia and cognitive deficits. We next provide the evidence showing that YKS can interact with various brain regions, including the cerebral cortex, hippocampus, striatum, and spinal cord, dysfunctions of which are related to psychiatric symptoms, cognitive deficits, abnormal behaviors, and dysesthesia. In addition, the major active ingredients of YKS, geissoschizine methyl ether and 18β-glycyrrhetinic acid, are shown to predominantly bind to the frontal cortex and hippocampus, respectively. Our findings suggest that YKS has multiple psychopharmacological effects, and that these are probably mediated by interactions among several brain regions. In this review, we summarize the available information about the valuable effects of a multicomponent medicine YKS on complex neural networks.
Collapse
Affiliation(s)
- Kazushige Mizoguchi
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., IbarakiJapan
| | - Yasushi Ikarashi
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., IbarakiJapan
| |
Collapse
|
44
|
Xu J, Chen HB, Li SL. Understanding the Molecular Mechanisms of the Interplay Between Herbal Medicines and Gut Microbiota. Med Res Rev 2017; 37:1140-1185. [PMID: 28052344 DOI: 10.1002/med.21431] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/21/2016] [Accepted: 11/16/2016] [Indexed: 02/06/2023]
Abstract
Herbal medicines (HMs) are much appreciated for their significant contribution to human survival and reproduction by remedial and prophylactic management of diseases. Defining the scientific basis of HMs will substantiate their value and promote their modernization. Ever-increasing evidence suggests that gut microbiota plays a crucial role in HM therapy by complicated interplay with HM components. This interplay includes such activities as: gut microbiota biotransforming HM chemicals into metabolites that harbor different bioavailability and bioactivity/toxicity from their precursors; HM chemicals improving the composition of gut microbiota, consequently ameliorating its dysfunction as well as associated pathological conditions; and gut microbiota mediating the interactions (synergistic and antagonistic) between the multiple chemicals in HMs. More advanced experimental designs are recommended for future study, such as overall chemical characterization of gut microbiota-metabolized HMs, direct microbial analysis of HM-targeted gut microbiota, and precise gut microbiota research model development. The outcomes of such research can further elucidate the interactions between HMs and gut microbiota, thereby opening a new window for defining the scientific basis of HMs and for guiding HM-based drug discovery.
Collapse
Affiliation(s)
- Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, P.R. China.,Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, 210028, P.R. China
| |
Collapse
|
45
|
Zhou YZ, Zhao FF, Gao L, Du GH, Zhang X, Qin XM. Licorice extract attenuates brain aging of d-galactose induced rats through inhibition of oxidative stress and attenuation of neuronal apoptosis. RSC Adv 2017. [DOI: 10.1039/c7ra07110h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A potential protective mechanism of licorice for d-galactose induced aging in rats.
Collapse
Affiliation(s)
- Yu-Zhi Zhou
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- China
| | - Fan-Fan Zhao
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- China
- College of Chemistry and Chemical Engineering
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- China
| | - Guan-Hua Du
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- China
- Institute of Materia Medica
| | - Xiang Zhang
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- China
- Department of Chemistry
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
46
|
Pharmacological Activities and Phytochemical Constituents. LIQUORICE 2017. [PMCID: PMC7120246 DOI: 10.1007/978-3-319-74240-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Glycyrrhiza glabra is one of the most popular medicinal plants and it has been used in traditional herbal remedy since ancient times (Blumenthal et al. in Herbal medicine: expanded commission E monographs. Integrative Medicine Communications, Newton, 2000; Parvaiz et al. in Global J Pharmocol 8(1):8–13, 2014; Altay et al. in J Plant Res 129(6):1021–1032, 2016). Many experimental, pharmacological and clinical studies show that liquorice has antimicrobial, antibacterial, antiviral, antifungal, antihepatotoxic, antioxidant, antiulcer, anti-hemorrhoid antihyperglycemic, antidiuretic, antinephritic, anticarcinogenic, antimutagenic, anticytotoxic, anti-inflammatory, and blood stopper activity.
Collapse
|
47
|
Ikarashi Y, Mizoguchi K. Neuropharmacological efficacy of the traditional Japanese Kampo medicine yokukansan and its active ingredients. Pharmacol Ther 2016; 166:84-95. [PMID: 27373856 DOI: 10.1016/j.pharmthera.2016.06.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 02/07/2023]
Abstract
Dementia is a progressive neurodegenerative disorder with cognitive dysfunction, and is often complicated by behavioral and psychological symptoms of dementia (BPSD) including excitement, aggression, and hallucinations. Typical and atypical antipsychotics are used for the treatment of BPSD, but induce adverse events. The traditional Japanese Kampo medicine yokukansan (YKS), which had been originated from the traditional Chinese medicine Yi-Gan-San, has been reported to improve BPSD without severe adverse effects. In the preclinical basic studies, there are over 70 research articles indicating the neuropharmacological efficacies of YKS. In this review, we first describe the neuropharmacological actions of YKS and its bioactive ingredients. Multiple potential actions for YKS were identified, which include effects on serotonergic, glutamatergic, cholinergic, dopaminergic, adrenergic, and GABAergic neurotransmissions as well as neuroprotection, anti-stress effect, promotion of neuroplasticity, and anti-inflammatory effect. Geissoschizine methyl ether (GM) in Uncaria hook and 18β-glycyrrhetinic acid (GA) in Glycyrrhiza were responsible for several pharmacological actions of YKS. Subsequently, we describe the pharmacokinetics of GM and GA in rats. These ingredients were absorbed into the blood, crossed the blood-brain barrier, and reached the brain, in rats orally administered YKS. Moreover, autoradiography showed that [(3)H]GM predominantly distributed in the frontal cortex and [(3)H]GA in the hippocampus. Thus, YKS is a versatile herbal remedy with a variety of neuropharmacological effects, and may operate as a multicomponent drug including various active ingredients.
Collapse
Affiliation(s)
- Yasushi Ikarashi
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan.
| | - Kazushige Mizoguchi
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan.
| |
Collapse
|
48
|
CRF receptor 1 antagonism and brain distribution of active components contribute to the ameliorative effect of rikkunshito on stress-induced anorexia. Sci Rep 2016; 6:27516. [PMID: 27273195 PMCID: PMC4897628 DOI: 10.1038/srep27516] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 05/09/2016] [Indexed: 02/07/2023] Open
Abstract
Rikkunshito (RKT), a Kampo medicine, has been reported to show an ameliorative effect on sustained hypophagia after novelty stress exposure in aged mice through serotonin 2C receptor (5-HT2CR) antagonism. We aimed to determine (1) whether the activation of anorexigenic neurons, corticotropin-releasing factor (CRF), and pro-opiomelanocortin (POMC) neurons, is involved in the initiation of hypophagia induced by novelty stress in aged mice; (2) whether the ameliorative effect of RKT is associated with CRF and POMC neurons and downstream signal transduction; and (3) the plasma and brain distribution of the active components of RKT. The administration of RKT or 5-HT2CR, CRF receptor 1 (CRFR1), and melanocortin-4 receptor antagonists significantly restored the decreased food intake observed in aged male C57BL/6 mice in the early stage after novelty stress exposure. Seven components of RKT exhibited antagonistic activity against CRFR1. Hesperetin and isoliquiritigenin, which showed antagonistic effects against both CRFR1 and 5-HT2CR, were distributed in the plasma and brain of male Sprague-Dawley rats after a single oral administration of RKT. In conclusion, the ameliorative effect of RKT in this model is assumed to be at least partly due to brain-distributed active components possessing 5-HT2CR and CRFR1 antagonistic activities.
Collapse
|
49
|
Helms HC, Abbott NJ, Burek M, Cecchelli R, Couraud PO, Deli MA, Förster C, Galla HJ, Romero IA, Shusta EV, Stebbins MJ, Vandenhaute E, Weksler B, Brodin B. In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab 2016; 36:862-90. [PMID: 26868179 PMCID: PMC4853841 DOI: 10.1177/0271678x16630991] [Citation(s) in RCA: 555] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022]
Abstract
The endothelial cells lining the brain capillaries separate the blood from the brain parenchyma. The endothelial monolayer of the brain capillaries serves both as a crucial interface for exchange of nutrients, gases, and metabolites between blood and brain, and as a barrier for neurotoxic components of plasma and xenobiotics. This "blood-brain barrier" function is a major hindrance for drug uptake into the brain parenchyma. Cell culture models, based on either primary cells or immortalized brain endothelial cell lines, have been developed, in order to facilitate in vitro studies of drug transport to the brain and studies of endothelial cell biology and pathophysiology. In this review, we aim to give an overview of established in vitro blood-brain barrier models with a focus on their validation regarding a set of well-established blood-brain barrier characteristics. As an ideal cell culture model of the blood-brain barrier is yet to be developed, we also aim to give an overview of the advantages and drawbacks of the different models described.
Collapse
Affiliation(s)
- Hans C Helms
- Department of Pharmacy, University of Copenhagen, Denmark
| | - N Joan Abbott
- Institute of Pharmaceutical Science, King's College London, UK
| | - Malgorzata Burek
- Klinik und Poliklinik für Anästhesiologie, University of Wurzburg, Germany
| | | | - Pierre-Olivier Couraud
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria A Deli
- Institute of Biophysics, Biological Research Centre, HAS, Szeged, Hungary
| | - Carola Förster
- Klinik und Poliklinik für Anästhesiologie, University of Wurzburg, Germany
| | - Hans J Galla
- Institute of Biochemistry, University of Muenster, Germany
| | - Ignacio A Romero
- Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes, UK
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, WI, USA
| | - Matthew J Stebbins
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, WI, USA
| | | | - Babette Weksler
- Division of Hematology and Medical Oncology, Weill Cornell Medical College, NY, USA
| | - Birger Brodin
- Department of Pharmacy, University of Copenhagen, Denmark
| |
Collapse
|
50
|
Wang YL, Chen M, Huo TG, Zhang YH, Fang Y, Feng C, Wang SY, Jiang H. Effects of Glycyrrhetinic Acid on GSH Synthesis Induced by Realgar in the Mouse Hippocampus: Involvement of System X AG - $$ {\mathbf{X}}_{{\mathbf{AG}}^{-}} $$ , System X C - $$ {\mathbf{X}}_{{\mathbf{C}}^{-}} $$ , MRP-1, and Nrf2. Mol Neurobiol 2016; 54:3102-3116. [DOI: 10.1007/s12035-016-9859-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
|