1
|
Fu J, Li X, Jin F, Dong Y, Zhou H, Alhaskawi A, Wang Z, Lai J, Yao C, Ezzi SHA, Kota VG, Hasan Abdulla Hasan Abdulla M, Chen B, Lu H. The potential roles of dental pulp stem cells in peripheral nerve regeneration. Front Neurol 2023; 13:1098857. [PMID: 36712432 PMCID: PMC9874689 DOI: 10.3389/fneur.2022.1098857] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Peripheral nerve diseases are significantly correlated with severe fractures or trauma and surgeries, leading to poor life quality and impairment of physical and mental health. Human dental pulp stem cells (DPSCs) are neural crest stem cells with a strong multi-directional differentiation potential and proliferation capacity that provide a novel cell source for nerve regeneration. DPSCs are easily extracted from dental pulp tissue of human permanent or deciduous teeth. DPSCs can express neurotrophic and immunomodulatory factors and, subsequently, induce blood vessel formation and nerve regeneration. Therefore, DPSCs yield valuable therapeutic potential in the management of peripheral neuropathies. With the purpose of summarizing the advances in DPSCs and their potential applications in peripheral neuropathies, this article reviews the biological characteristics of DPSCs in association with the mechanisms of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Jing Fu
- Department of Stomatology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xigong Li
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feilu Jin
- Oral and Maxillofacial Surgery Department, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiying Zhou
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zewei Wang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingtian Lai
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chengjun Yao
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | | - Vishnu Goutham Kota
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | | | - Bin Chen
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Neural Regeneration in Regenerative Endodontic Treatment: An Overview and Current Trends. Int J Mol Sci 2022; 23:ijms232415492. [PMID: 36555133 PMCID: PMC9779866 DOI: 10.3390/ijms232415492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Pulpal and periapical diseases are the most common dental diseases. The traditional treatment is root canal therapy, which achieves satisfactory therapeutic outcomes-especially for mature permanent teeth. Apexification, pulpotomy, and pulp revascularization are common techniques used for immature permanent teeth to accelerate the development of the root. However, there are obstacles to achieving functional pulp regeneration. Recently, two methods have been proposed based on tissue engineering: stem cell transplantation, and cell homing. One of the goals of functional pulp regeneration is to achieve innervation. Nerves play a vital role in dentin formation, nutrition, sensation, and defense in the pulp. Successful neural regeneration faces tough challenges in both animal studies and clinical trials. Investigation of the regeneration and repair of the nerves in the pulp has become a serious undertaking. In this review, we summarize the current understanding of the key stem cells, signaling molecules, and biomaterials that could promote neural regeneration as part of pulp regeneration. We also discuss the challenges in preclinical or clinical neural regeneration applications to guide deep research in the future.
Collapse
|
3
|
Kwack KH, Lee HW. Clinical Potential of Dental Pulp Stem Cells in Pulp Regeneration: Current Endodontic Progress and Future Perspectives. Front Cell Dev Biol 2022; 10:857066. [PMID: 35478967 PMCID: PMC9035692 DOI: 10.3389/fcell.2022.857066] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Dental caries is a common disease that not only destroys the rigid structure of the teeth but also causes pulp necrosis in severe cases. Once pulp necrosis has occurred, the most common treatment is to remove the damaged pulp tissue, leading to a loss of tooth vitality and increased tooth fragility. Dental pulp stem cells (DPSCs) isolated from pulp tissue exhibit mesenchymal stem cell-like characteristics and are considered ideal candidates for regenerating damaged dental pulp tissue owing to their multipotency, high proliferation rate, and viability after cryopreservation. Importantly, DPSCs do not elicit an allogeneic immune response because they are non-immunogenic and exhibit potent immunosuppressive properties. Here, we provide an up-to-date review of the clinical applicability and potential of DPSCs, as well as emerging trends in the regeneration of damaged pulp tissue. In addition, we suggest the possibility of using DPSCs as a resource for allogeneic transplantation and provide a perspective for their clinical application in pulp regeneration.
Collapse
Affiliation(s)
- Kyu Hwan Kwack
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Hyeon-Woo Lee
- Department of Pharmacology, School of Dentistry, Graduate School, Institute of Oral Biology, Kyung Hee University, Seoul, South Korea
- *Correspondence: Hyeon-Woo Lee,
| |
Collapse
|
4
|
Wei C, Chu M, Zheng K, He P, Xiao J. miR-153-3p inhibited osteogenic differentiation of human DPSCs through CBFβ signaling. In Vitro Cell Dev Biol Anim 2022; 58:316-324. [PMID: 35426067 DOI: 10.1007/s11626-022-00665-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/11/2022] [Indexed: 11/29/2022]
Abstract
Dental pulp stem cells (DPSCs) have multilineage differentiation potential and especially show a great foreground in bone regeneration engineering. The mechanism of osteogenic differentiation of DPSCs needs to be explored exactly. As a kind of endogenous and non-coding small RNAs, microRNAs (miRNAs) play an important role in many biological processes including osteogenic differentiation. However, the mechanism of miR-153-3p in osteogenic differentiation of DPSCs is still unknown. Core-binding factors-beta (CBFβ) is a non-DNA-binding factor that combines with the runt-related transcription factor family transcription factors to mediate their DNA-binding affinities, and plays a critical role in regulating osteogenic differentiation. In this study, we explored the mechanisms of miR-153-3p and CBFβ in DPSC osteogenesis. The expression of miR-153-3p and CBFβ was tested under the osteogenic condition, and the influence led by changing the expression of miR-153-3p or CBFβ had also been detected. A luciferase reporter assay confirmed that miR-153-3p directly targeted to CBFβ. The osteogenic markers, alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and bone morphogenetic protein 2 (BMP2), were tested in protein level or mRNA level. ALP and Alizarin red staining were used to detect the osteoblast activity and mineral deposition. In osteogenic condition, the expressions of CBFβ and osteogenic markers were upregulated, whereas that of miR-153-3p was downregulated. miR-153-3p negatively regulated the osteogenic differentiation, and overexpression of CBFβ could offset the negative effect of miR-153-3p. Our findings provided a novel strategy for DPSC application in treatment of bone deficiencies and facilitated bone regeneration.
Collapse
Affiliation(s)
- Changbo Wei
- The Affiliated Stomatological Hospital of Soochow University, Suzhou Stomatological Hospital, Suzhou, 215000, China
| | - Manru Chu
- The Affiliated Stomatological Hospital of Soochow University, Suzhou Stomatological Hospital, Suzhou, 215000, China
| | - Ke Zheng
- Department of Stomatology, Wuxi No 2 People's Hospital, Wuxi, 214000, China
| | - Ping He
- Department of Stomatology, Wuxi No 2 People's Hospital, Wuxi, 214000, China
| | - Jingwen Xiao
- Department of Stomatology, Haimen People's Hospital Affiliated To Nantong University, Nantong, 226199, China. .,Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
5
|
Xiao J, Zheng Y, Zhang W, Zhang Y, Cao P, Liang Y, Bao L, Shi S, Feng X. General Control Nonrepressed Protein 5 Modulates Odontogenic Differentiation Through NF-κB Pathway in Tumor Necrosis Factor-α-Mediated Impaired Human Dental Pulp Stem Cells. Cell Reprogram 2022; 24:95-104. [PMID: 35172106 DOI: 10.1089/cell.2021.0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dental pulp stem cells (DPSCs) from pulpitis patients showed defective osteogenic differentiation. However, as the most well-studied histone acetyltransferase, the impaired general control nonrepressed protein 5 (GCN5) plays essential roles in various developmental processes. The aim of this study was to investigate the effect of GCN5 on DPSCs odontogenic differentiation. The healthy dental pulp tissues were obtained from the extracted impacted third molar of patients with the informed consent. DPSCs were treated with a high concentration of tumor necrosis factor-alpha (TNF-α) (100 ng/mL) and odontogenic differentiation-related gene and GCN5 protein level by Western blot analysis. Proliferation of the DPSCs was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Immunofluorescence staining detected GCN5 and NF-κB signaling for p-p65. The mechanism of GCN5 regulating odontogenic differentiation of DPSCs was determined by small interfering RNA analysis. Our data suggested that TNF-α can significantly reduce mineralization and the expression of dentin matrix acidic phosphoprotein 1 and dentin sialophosphoprotein at higher concentration (100 ng/mL). Meanwhile, it showed that the inflammation in microenvironment resulted in a downregulation of GCN5 expression and GCN5 knockdown caused decreased odontogenic differentiation of DPSCs was also found. In addition, the knockdown of GCN5 increased the expression of phosphorylation of p65, thus activating NF-κB pathway of DPSCs. Meanwhile, NF-κB pathway inhibitor pyrrolidinedithiocarbamic acid reversed the siGCN5 decreased odontogenic differentiation of DPSCs. Altogether, our findings indicated that in inflammatory microenvironments GCN5 plays a protective role in pulpitis impaired odontogenic differentiation of DPSCs by activating NF-κB pathway, which may provide a potential approach to dentin regeneration.
Collapse
Affiliation(s)
- Jingwen Xiao
- Department of Stomatology, Haimen District People's Hospital, Nantong, China
| | - Ya Zheng
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wei Zhang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Ye Zhang
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Peipei Cao
- Nantong Boyue Dentistry Out-patient Department, Nantong, China
| | - Yi Liang
- Department of Stomatology, Shanghai East Hospital Affiliated with Tongji University, Shanghai, China
| | - Liuliu Bao
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Suping Shi
- Department of Stomatology, Haimen District People's Hospital, Nantong, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
6
|
Huang L, Zheng Z, Bai D, Han X. Stem Cells from Human Exfoliated Deciduous Teeth and their Promise as Preventive and Therapeutic Strategies for Neurological Diseases and Injuries. Curr Stem Cell Res Ther 2021; 17:527-536. [PMID: 34967291 DOI: 10.2174/1574888x17666211229155533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/04/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
Stem cells from human exfoliated deciduous teeth (SHEDs) are relatively easy to isolate from exfoliated deciduous teeth, which are obtained via dental therapy as biological waste. SHEDs originate from the embryonic neural crest and therefore have considerable potential for neurogenic differentiation. Currently, an increasing amount of research attention is focused on the therapeutic applications of SHEDs in neurological diseases and injuries. In this article, we summarize the biological characteristics of SHEDs and the potential role of SHEDs and their derivatives, including conditioned medium from SHEDs and the exosomes they secrete, in the prevention and treatment of neurological diseases and injuries.
Collapse
Affiliation(s)
- Lingyi Huang
- West China College of Stomatology/ State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Zizhuo Zheng
- West China College of Stomatology/ State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Ding Bai
- West China College of Stomatology/ State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Xianglong Han
- West China College of Stomatology/ State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Hsiao HY, Nien CY, Hong HH, Cheng MH, Yen TH. Application of dental stem cells in three-dimensional tissue regeneration. World J Stem Cells 2021; 13:1610-1624. [PMID: 34909114 PMCID: PMC8641025 DOI: 10.4252/wjsc.v13.i11.1610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/06/2021] [Accepted: 09/29/2021] [Indexed: 02/06/2023] Open
Abstract
Dental stem cells can differentiate into different types of cells. Dental pulp stem cells, stem cells from human exfoliated deciduous teeth, periodontal ligament stem cells, stem cells from apical papilla, and dental follicle progenitor cells are five different types of dental stem cells that have been identified during different stages of tooth development. The availability of dental stem cells from discarded or removed teeth makes them promising candidates for tissue engineering. In recent years, three-dimensional (3D) tissue scaffolds have been used to reconstruct and restore different anatomical defects. With rapid advances in 3D tissue engineering, dental stem cells have been used in the regeneration of 3D engineered tissue. This review presents an overview of different types of dental stem cells used in 3D tissue regeneration, which are currently the most common type of stem cells used to treat human tissue conditions.
Collapse
Affiliation(s)
- Hui-Yi Hsiao
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Chung-Yi Nien
- Department of Life Sciences, National Central University, Zhongli, Taoyuan 320, Taiwan
| | - Hsiang-Hsi Hong
- Department of Periodontics, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Ming-Huei Cheng
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Linkou Branch, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Tzung-Hai Yen
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| |
Collapse
|
8
|
Kornsuthisopon C, Photichailert S, Nowwarote N, Tompkins KA, Osathanon T. Wnt signaling in dental pulp homeostasis and dentin regeneration. Arch Oral Biol 2021; 134:105322. [PMID: 34844087 DOI: 10.1016/j.archoralbio.2021.105322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Wnt signaling is crucial in the physiological and pathological processes of dental pulp tissues. The present study described the effects of Wnt signaling in dental pulp homeostasis and regeneration. DESIGN Publications in Pubmed and Scopus database were searched, and a narrative review was performed. The roles of Wnt signaling in dental pulp tissue were reviewed and discussed. RESULT In vitro and in vivo evidence have confirmed the involvement of Wnt signaling in tooth development, dental pulp homeostasis, and physiological processes in dental pulp responses. Manipulating Wnt signaling components generates beneficial effects on pulp healing, dentin repair, and epigenetic regulation related to stemness maintenance, implying that Wnt signaling is a potential therapeutic target for future clinical dental applications. Additionally, an overview of the epigenetic control of dental pulp stem cells by Wnt signaling is provided. CONCLUSION This review provides basic knowledge on Wnt signaling and outlines its functions in dental pulp tissues, focusing on their potential as therapeutic treatments by targeting the Wnt signaling pathway.
Collapse
Affiliation(s)
- Chatvadee Kornsuthisopon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suphalak Photichailert
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nunthawan Nowwarote
- Centre de Recherche des Cordeliers, Universite de Paris, Sorbonne Universite, INSERM UMRS 1138, Molecular Oral Pathophysiology and Universite de Paris, Dental Faculty Garanciere, Oral Biology Department, Paris F-75006, France
| | - Kevin A Tompkins
- Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
9
|
Jeyaraman N, Prajwal GS, Jeyaraman M, Muthu S, Khanna M. Chondrogenic Potential of Dental-Derived Mesenchymal Stromal Cells. OSTEOLOGY 2021; 1:149-174. [DOI: 10.3390/osteology1030016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The field of tissue engineering has revolutionized the world in organ and tissue regeneration. With the robust research among regenerative medicine experts and researchers, the plausibility of regenerating cartilage has come into the limelight. For cartilage tissue engineering, orthopedic surgeons and orthobiologists use the mesenchymal stromal cells (MSCs) of various origins along with the cytokines, growth factors, and scaffolds. The least utilized MSCs are of dental origin, which are the richest sources of stromal and progenitor cells. There is a paradigm shift towards the utilization of dental source MSCs in chondrogenesis and cartilage regeneration. Dental-derived MSCs possess similar phenotypes and genotypes like other sources of MSCs along with specific markers such as dentin matrix acidic phosphoprotein (DMP) -1, dentin sialophosphoprotein (DSPP), alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP), and STRO-1. Concerning chondrogenicity, there is literature with marginal use of dental-derived MSCs. Various studies provide evidence for in-vitro and in-vivo chondrogenesis by dental-derived MSCs. With such evidence, clinical trials must be taken up to support or refute the evidence for regenerating cartilage tissues by dental-derived MSCs. This article highlights the significance of dental-derived MSCs for cartilage tissue regeneration.
Collapse
|
10
|
Birjandi AA, Sharpe P. Wnt Signalling in Regenerative Dentistry. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.725468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Teeth are complex structures where a soft dental pulp tissue is enriched with nerves, vasculature and connective tissue and encased by the cushioning effect of dentin and the protection of a hard enamel in the crown and cementum in the root. Injuries such as trauma or caries can jeopardise these layers of protection and result in pulp exposure, inflammation and infection. Provision of most suitable materials for tooth repair upon injury has been the motivation of dentistry for many decades. Wnt signalling, an evolutionarily conserved pathway, plays key roles during pre- and post-natal development of many organs including the tooth. Mutations in the components of this pathway gives rise to various types of developmental tooth anomalies. Wnt signalling is also fundamental in the response of odontoblasts to injury and repair processes. The complexity of tooth structure has resulted in diverse studies looking at specific compartments or cell types of this organ. This review looks at the current advances in the field of tooth development and regeneration. The objective of the present review is to provide an updated vision on dental biomaterials research, focusing on their biological properties and interactions to act as evidence for their potential use in vital pulp treatment procedures. We discuss the outstanding questions and future directions to make this knowledge more translatable to the clinics.
Collapse
|
11
|
Yin JY, Luo XH, Feng WQ, Miao SH, Ning TT, Lei Q, Jiang T, Ma DD. Multidifferentiation potential of dental-derived stem cells. World J Stem Cells 2021; 13:342-365. [PMID: 34136070 PMCID: PMC8176842 DOI: 10.4252/wjsc.v13.i5.342] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/10/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Tooth-related diseases and tooth loss are widespread and are a major public health issue. The loss of teeth can affect chewing, speech, appearance and even psychology. Therefore, the science of tooth regeneration has emerged, and attention has focused on tooth regeneration based on the principles of tooth development and stem cells combined with tissue engineering technology. As undifferentiated stem cells in normal tooth tissues, dental mesenchymal stem cells (DMSCs), which are a desirable source of autologous stem cells, play a significant role in tooth regeneration. Researchers hope to reconstruct the complete tooth tissues with normal functions and vascularization by utilizing the odontogenic differentiation potential of DMSCs. Moreover, DMSCs also have the ability to differentiate towards cells of other tissue types due to their multipotency. This review focuses on the multipotential capacity of DMSCs to differentiate into various tissues, such as bone, cartilage, tendon, vessels, neural tissues, muscle-like tissues, hepatic-like tissues, eye tissues and glands and the influence of various regulatory factors, such as non-coding RNAs, signaling pathways, inflammation, aging and exosomes, on the odontogenic/osteogenic differentiation of DMSCs in tooth regeneration. The application of DMSCs in regenerative medicine and tissue engineering will be improved if the differentiation characteristics of DMSCs can be fully utilized, and the factors that regulate their differentiation can be well controlled.
Collapse
Affiliation(s)
- Jing-Yao Yin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xing-Hong Luo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Wei-Qing Feng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Sheng-Hong Miao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Ting-Ting Ning
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Qian Lei
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Tao Jiang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Dan-Dan Ma
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| |
Collapse
|
12
|
Key Markers and Epigenetic Modifications of Dental-Derived Mesenchymal Stromal Cells. Stem Cells Int 2021; 2021:5521715. [PMID: 34046069 PMCID: PMC8128613 DOI: 10.1155/2021/5521715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
As a novel research hotspot in tissue regeneration, dental-derived mesenchymal stromal cells (MSCs) are famous for their accessibility, multipotent differentiation ability, and high proliferation. However, cellular heterogeneity is a major obstacle to the clinical application of dental-derived MSCs. Here, we reviewed the heterogeneity of dental-derived MSCs firstly and then discussed the key markers and epigenetic modifications related to the proliferation, differentiation, immunomodulation, and aging of dental-derived MSCs. These messages help to control the composition and function of dental-derived MSCs and thus accelerate the translation of cell therapy into clinical practice.
Collapse
|
13
|
Luo L, Wang X, Zhang Y, Wu Y, Hu F, Xing Z, Wang L, Xiao J, Guastaldi F, He Y, Ye Q. Biological Behavioral Alterations of the Post-neural Differentiated Dental Pulp Stem Cells Through an in situ Microenvironment. Front Cell Dev Biol 2020; 8:625151. [PMID: 33344464 PMCID: PMC7744789 DOI: 10.3389/fcell.2020.625151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/16/2020] [Indexed: 12/27/2022] Open
Abstract
Transplantation of undifferentiated dental pulp stem cells (DPSCs) may suffer from tumorigenesis. Neuronal differentiated DPSCs (d-DPSCs) have emerged as an ideal source to treat central nervous system (CNS) disorders. Moreover, different components of culture medium functioned on the characteristics of d-DPSCs in vitro. In this study, d-DPSCs were cultured in three types of medium: Neurobasal®®-A medium supplemented with 2% B27 (the 2% B27 NM group), Neurobasal® -A medium supplemented with 2% B27 and 5% FBS (the 2% B27 + 5% FBS NM group), and α-MEM containing 10% FBS (the 10% FBS α-MEM group). We found that d-DPSCs in the 2% B27 + 5% FBS NM group had lower proliferation and reduced expression of transient receptor potential canonical 1 (TRPC1) and CD146, whereas up-regulated Nestin and microtubule-associated protein-2 (MAP-2). Notably, d-DPSCs in the 10% FBS α-MEM group possessed high proliferative capacity, decreased expression of neuron-like markers and partially restored stemness. It was demonstrated that d-DPSCs cultured in the 2% B27 + 5% FBS NM could maintain their neuron-like characteristics. Besides, d-DPSCs cultivated in the 10% FBS α-MEM could partially recover their stem cells properties, indicating that neural differentiation of DPSCs was reversible and could open novel avenues for exploring the pluripotency of DPSCs.
Collapse
Affiliation(s)
- Lihua Luo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Wang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yanni Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yuwei Wu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Fengting Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Zhenjie Xing
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Lei Wang
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fernando Guastaldi
- Skeletal Biology Research Center, Massachusetts General Hospital, Harvard University, Boston, MA, United States
| | - Yan He
- Skeletal Biology Research Center, Massachusetts General Hospital, Harvard University, Boston, MA, United States.,Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Qingsong Ye
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.,Skeletal Biology Research Center, Massachusetts General Hospital, Harvard University, Boston, MA, United States.,Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Abuarqoub D, Aslam N, Almajali B, Shajrawi L, Jafar H, Awidi A. Neuro-regenerative potential of dental stem cells: a concise review. Cell Tissue Res 2020; 382:267-279. [PMID: 32725424 DOI: 10.1007/s00441-020-03255-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
This review will summarize the research information regarding the regenerative potential of dental stem cells for the treatment of neurodegenerative disorders. As compared to existing treatment modalities, the stem cell therapy seems promising, and accumulating evidences about the differentiation of stem cells into various lineages are proving it. The incidence of neurodegenerative diseases such as Alzheimer's, Parkinson's, stroke, and peripheral neuropathy is increasing due to the rise in life expectancies of people which have put a huge burden on economies. Finding a promising treatment could benefit not only the patients but also the communities. Dental stem cells hold a great potential to differentiate into neuronal cells. Many studies have reported the differentiation potential of the dental stem cells with the presence of neuronal lineage markers. In this review, we conferred how the use of dental stem cells can benefit the above-mentioned bedridden diseases.
Collapse
Affiliation(s)
- Duaa Abuarqoub
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan. .,Cell Therapy Center, The University of Jordan, Amman, Jordan.
| | - Nazneen Aslam
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Bayan Almajali
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Leen Shajrawi
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Hanan Jafar
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,School of Medicine, The University of Jordan, Amman, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan. .,School of Medicine, The University of Jordan, Amman, Jordan.
| |
Collapse
|
15
|
Yoshida S, Tomokiyo A, Hasegawa D, Hamano S, Sugii H, Maeda H. Insight into the Role of Dental Pulp Stem Cells in Regenerative Therapy. BIOLOGY 2020; 9:biology9070160. [PMID: 32659896 PMCID: PMC7407391 DOI: 10.3390/biology9070160] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have the capacity for self-renewal and multilineage differentiation potential, and are considered a promising cell population for cell-based therapy and tissue regeneration. MSCs are isolated from various organs including dental pulp, which originates from cranial neural crest-derived ectomesenchyme. Recently, dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHEDs) have been isolated from dental pulp tissue of adult permanent teeth and deciduous teeth, respectively. Because of their MSC-like characteristics such as high growth capacity, multipotency, expression of MSC-related markers, and immunomodulatory effects, they are suggested to be an important cell source for tissue regeneration. Here, we review the features of these cells, their potential to regenerate damaged tissues, and the recently acquired understanding of their potential for clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Shinichiro Yoshida
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
- Correspondence: ; Tel.: +81-92-642-6432
| | - Atsushi Tomokiyo
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
| | - Daigaku Hasegawa
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
| | - Sayuri Hamano
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hideki Sugii
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
| | - Hidefumi Maeda
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
16
|
Zhang S, Yang Y, Jia S, Chen H, Duan Y, Li X, Wang S, Wang T, Lyu Y, Chen G, Tian W. Exosome-like vesicles derived from Hertwig's epithelial root sheath cells promote the regeneration of dentin-pulp tissue. Am J Cancer Res 2020; 10:5914-5931. [PMID: 32483427 PMCID: PMC7254987 DOI: 10.7150/thno.43156] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/03/2020] [Indexed: 02/05/2023] Open
Abstract
Background: The formation of dentin-pulp involves complex epithelial-mesenchymal interactions between Hertwig's epithelial root sheath cells (HERS) and dental papilla cells (DPCs). Earlier studies have identified some of the regulatory molecules participating in the crosstalk between HERS and DPCs and the formation of dentin-pulp. In the present study we focused on the role of HERS-secreted exosomes in DPCs and the formation of dentin-pulp. Specifically, we hypothesized that exosome-like vesicles (ELVs) might mediate the function of HERS and trigger lineage-specific differentiation of dental mesenchymal cells. To test our hypothesis, we evaluated the potential of ELVs derived from a HERS cell line (ELVs-H1) in inducing in vitro and in vivo differentiation of DPCs. Methods: ELVs-H1 were characterized using transmission electron microscopy and dynamic light scattering. The proliferation, migration, and odontoblast differentiation of DPCs after treatment with ELVs-H1, was detected by CCK8, transwell, ALP, and mineralization assays, respectively. Real time PCR and western blotting were used to detect gene and protein expression. For in vivo studies, DPC cells were mixed with collagen gel combined with or without ELVs and transplanted into the renal capsule of rats or subcutaneously into nude mice. HE staining and immunostaining were used to verify the regeneration of dentin-pulp and expression of odontoblast differentiation markers. Results: ELVs-H1 promoted the migration and proliferation of DPCs and also induced odontogenic differentiation and activation of Wnt/β-catenin signaling. ELVs-H1 also contributed to tube formation and neural differentiation in vitro. In addition, ELVs-H1 attached to the collagen gel, and were slowly released and endocytosed by DPCs, enhancing cell survival. ELVs-H1 together with DPCs triggered regeneration of dental pulp-dentin like tissue comprised of hard (reparative dentin-like tissue) and soft (blood vessels and neurons) tissue, in an in vivo tooth root slice model. Conclusion: Our data highlighted the potential of ELVs-H1 as biomimetic tools in providing a microenvironment for specific differentiation of dental mesenchymal stem cells. From a developmental perspective, these vesicles might be considered as novel mediators facilitating the epithelial-mesenchymal crosstalk. Their instructive potency might be exploited for the regeneration of dental pulp-dentin tissues.
Collapse
|
17
|
Ji L, Bao L, Gu Z, Zhou Q, Liang Y, Zheng Y, Xu Y, Zhang X, Feng X. Comparison of immunomodulatory properties of exosomes derived from bone marrow mesenchymal stem cells and dental pulp stem cells. Immunol Res 2019; 67:432-442. [DOI: 10.1007/s12026-019-09088-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Xiao J, Cao P, Wang C, Huang D, Lian M, Song Y, Yin W, Zheng K, Gu Z, Gu Y, Feng G, Feng X. The Forkhead Box C1, a Novel Negative Regulator of Osteogenesis, Plays a Crucial Role in Odontogenic Differentiation of Dental Pulp Stem Cells. Cell Reprogram 2019; 20:312-319. [PMID: 30277823 DOI: 10.1089/cell.2018.0011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The forkhead box C1 (Foxc1) protein, a member of the forkhead/winged helix transcription factor family, is required in stem cell developmental processes. Recently, multiple studies have indicated the crucial role of Foxc1 in mesenchymal stem cell differentiation, but the precise effects and mechanisms on dental pulp stem cells (DPSCs) remain unclear. In this study, we evaluate the role of Foxc1 on the odontogenic differentiation and proliferation of DPSCs. Our results show that Foxc1 decreases time dependently in odontogenic differentiation of DPSCs. Meanwhile, overexpression of Foxc1 could significantly inhibit the mineralization of DPSCs and the expression of odontogenic-related genes, such as runt-related transcription factor 2 (Runx2), dentin sialophosphoprote (DSPP), and dentin matrix acidic phosphoprotein 1 (DMP-1). Foxc1 overexpression does not significantly alter the proliferation of DPSCs. In addition, Foxc1 reduces the expression of p-Smad1/5, an important modulator of bone morphogenetic protein (BMP)/Smad signaling pathway, inhibiting BMP/Smad signaling pathway. In conclusion, our data demonstrated that Foxc1 inhibits odontogenic differentiation of DPSCs and odontogenic-related gene expression through the BMP/Smad signaling pathway which may be useful for the dental regeneration and repair.
Collapse
Affiliation(s)
- Jingwen Xiao
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, Jiangsu, China
| | - Peipei Cao
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, Jiangsu, China
| | - Chenfei Wang
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, Jiangsu, China
| | - Dan Huang
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, Jiangsu, China
| | - Min Lian
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, Jiangsu, China
| | - Yihua Song
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, Jiangsu, China
| | - Weiwei Yin
- 2 Department of Stomatology, Stomatological Hospital of Nantong City , Nantong, Jiangsu, China
| | - Ke Zheng
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, Jiangsu, China
| | - Zhifeng Gu
- 3 Department of Rheumatology, Affiliated Hospital of Nantong University , Nantong, Jiangsu, China
| | - Yongchun Gu
- 4 Department of Stomatology, First People's Hospital of Wujiang District, Nantong University , Suzhou, Jiangsu, China
| | - Guijuan Feng
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, Jiangsu, China
| | - Xingmei Feng
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, Jiangsu, China
| |
Collapse
|
19
|
Song Y, Wang C, Gu Z, Cao P, Huang D, Feng G, Lian M, Zhang Y, Feng X, Gao Z. CKIP-1 suppresses odontoblastic differentiation of dental pulp stem cells via BMP2 pathway and can interact with NRP1. Connect Tissue Res 2019; 60:155-164. [PMID: 29852799 DOI: 10.1080/03008207.2018.1483355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM Casein kinase 2 interacting protein-1 (CKIP-1) is a recently discovered intracellular regulator of bone formation, muscle cell differentiation, and tumor cell proliferation. Our study aims to identify the inhibition of BMP2-Smad1/5 signaling by CKIP-1 in odontoblastic differentiation of human dental pulp stem cells (DPSCs). MATERIALS AND METHODS DPSCs infected CKIP-1 siRNA or transfected CKIP-1 full-length plasmid were cultured in odontoblastic differentiation medium or added noggin (200 ng/mL) for 21 days. We examined the effects of CKIP-1 on odontoblastic differentiation, mineralized nodules formation, and interaction by western blot, real-time polymerase chain reaction (RT-PCR), alkaline phosphatase (ALP) staining, alizarin red S staining, and immunoprecipitation. RESULTS Firstly, we have demonstrated that CKIP-1 expression markedly decreased time-dependently along with cell odontoblastic differentiation. Indeed, the silence of CKIP-1 upregulated odontoblastic differentiation via BMP2-Smad1/5 signaling, while CKIP-1 over-expression had a negative effect on odontoblastic differentiation of DPSCs. Furthermore, CKIP-1 could interact with Neuropilin-1 (NRP1). CONCLUSIONS This work provides data that advocates a novel perception on odontoblastic differentiation of DPSCs. Therefore, inhibiting the expression of CKIP-1 may be of great significance to the development of dental caries.
Collapse
Affiliation(s)
- Yihua Song
- a Department of Stomatology , Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong , Jiangsu , China
| | - Chenfei Wang
- a Department of Stomatology , Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong , Jiangsu , China
| | - Zhifeng Gu
- b Department of Rheumatology , Affiliated Hospital of Nantong University , Nantong , Jiangsu , China
| | - Peipei Cao
- a Department of Stomatology , Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong , Jiangsu , China
| | - Dan Huang
- a Department of Stomatology , Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong , Jiangsu , China
| | - Guijuan Feng
- a Department of Stomatology , Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong , Jiangsu , China
| | - Min Lian
- a Department of Stomatology , Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong , Jiangsu , China
| | - Ye Zhang
- c Department of Stomatology , Qidong People's Hospital , Nantong , Jiangsu , China
| | - Xingmei Feng
- a Department of Stomatology , Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong , Jiangsu , China
| | - Zhenran Gao
- d Department of Stomatology , Jiangsu Taizhou People's Hospital , Taizhou , Jiangsu , China
| |
Collapse
|
20
|
Feng X, Wang C, Gu Z, Ni J, Huang D, Feng G, Lian M, Lu Q, Song Y. Rosuvastatin Regulates Odontoblast Differentiation by Suppressing NF-κB Activation in an Inflammatory Environment. Cell Reprogram 2019; 21:18-25. [PMID: 30735076 DOI: 10.1089/cell.2018.0031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Xingmei Feng
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Chenfei Wang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jian Ni
- Department of Urology and Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Dan Huang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Guijuan Feng
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Min Lian
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yihua Song
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
21
|
Ohkoshi S, Hirono H, Nakahara T, Ishikawa H. Dental pulp cell bank as a possible future source of individual hepatocytes. World J Hepatol 2018; 10:702-707. [PMID: 30386463 PMCID: PMC6206155 DOI: 10.4254/wjh.v10.i10.702] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/30/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) as a source for regenerative medicine are now the subject of much clinical attention. There are high expectations due to their safety, low tumorigenic risk, and low ethical concerns. MSC therapy has been approved for acute graft-versus host diseases since 2015. Tooth-derived MSCs are known to have a great potential in their proliferation and differentiation capacities, even when compared with bone-marrow-derived MSCs. In particular, stem cells from human exfoliated deciduous teeth (SHEDs) are the best candidates for personal cell banking (dental pulp cell bank), because they can be obtained less invasively in the natural process of individual growth. SHEDs are known to differentiate into hepatocytes. There have been several studies showing the effectiveness of SHEDs on the treatment of liver failure in animal models. They may exert their effects either by repopulation of cells in injured liver or by paracrine mechanisms due to their immune-regulatory functions. Moreover, it may be possible to use each individuals' dental pulp cells as a future source of tailor-made differentiated hepatocytes in the context of a bioartificial liver or liver-on-a-chip to screen for drug toxicity.
Collapse
Affiliation(s)
- Shogo Ohkoshi
- Department of Internal Medicine, School of Life Dentistry at Niigata, the Nippon Dental University, Niigata 951-8580, Japan.
| | - Haruka Hirono
- Department of Internal Medicine, School of Life Dentistry at Niigata, the Nippon Dental University, Niigata 951-8580, Japan
| | - Taka Nakahara
- Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, the Nippon Dental University, Chiyoda-ku 102-8159, Japan
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Laboratory of Advanced Research D #326, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
22
|
Iezzi I, Cerqueni G, Licini C, Lucarini G, Mattioli Belmonte M. Dental pulp stem cells senescence and regenerative potential relationship. J Cell Physiol 2018; 234:7186-7197. [PMID: 30362542 DOI: 10.1002/jcp.27472] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/30/2018] [Indexed: 12/30/2022]
Abstract
Uncomplicated treatments for pulpitis and periodontitis continues to be challenging and regenerative approaches could meet this contingency. Dental pulp stem cells (DPSCs) represent a good candidate for oral recovering therapies. Here, we investigated changes in morphology, proliferation, and in vitro differentiation toward mesenchymal and neuronal phenotypes of human DPSCs harvested from differently aged donors. Aging is a physiologic phenomenon occurring with time that hamper body's capability to maintain homeostasis also affecting the functional reserve. Cytofluorimetric, immunohistochemical, quantitative reverse-transcription polymerase chain reaction (qRT-PCR), and western blot analyses were performed to gain insight for successful regenerative strategies in elderly. We observed a decline in DPSCs proliferation and differentiation potential with age. Interestingly, these cells behaved differently under osteogenic or odontogenic stimuli, showing different age-related mineralization capabilities. Similarly, neurogenic differentiation decreased with age. In conclusion, our observations represent a valid tool for the development of tailored regenerative strategies in an aging society.
Collapse
Affiliation(s)
- Iolanda Iezzi
- Department of Clinical and Molecular Sciences-DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Giorgia Cerqueni
- Department of Clinical and Molecular Sciences-DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Caterina Licini
- Department of Clinical and Molecular Sciences-DISCLIMO, Università Politecnica delle Marche, Ancona, Italy.,Department of Applied Science and Technology (DISAT), Polytechnic of Turin, Turin, Italy
| | - Guendalina Lucarini
- Department of Clinical and Molecular Sciences-DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Monica Mattioli Belmonte
- Department of Clinical and Molecular Sciences-DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
23
|
Ou Y, Zhou Y, Liang S, Wang Y. Sclerostin promotes human dental pulp cells senescence. PeerJ 2018; 6:e5808. [PMID: 30356963 PMCID: PMC6195797 DOI: 10.7717/peerj.5808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/21/2018] [Indexed: 12/29/2022] Open
Abstract
Background Senescence-related impairment of proliferation and differentiation limits the use of dental pulp cells for tissue regeneration. Deletion of sclerostin improves the dentinogenesis regeneration, while its role in dental pulp senescence is unclear. We investigated the role of sclerostin in subculture-induced senescence of human dental pulp cells (HDPCs) and in the senescence-related decline of proliferation and odontoblastic differentiation. Methods Immunohistochemical staining and qRT-PCR analyses were performed to examine the expression pattern of sclerostin in young (20–30-year-old) and senescent (45–80-year-old) dental pulps. HDPCs were serially subcultured until senescence, and the expression of sclerostin was examined by qRT-PCR analysis. HDPCs with sclerostin overexpression and knockdown were constructed to investigate the role of sclerostin in HDPCs senescence and senescence-related impairment of odontoblastic differentiation potential. Results By immunohistochemistry and qRT-PCR, we found a significantly increased expression level of sclerostin in senescent human dental pulp compared with that of young human dental pulp. Additionally, elevated sclerostin expression was found in subculture-induced senescent HDPCs in vitro. By sclerostin overexpression and knockdown, we found that sclerostin promoted HDPCs senescence-related decline of proliferation and odontoblastic differentiation potential with increased expression of p16, p53 and p21 and downregulation of the Wnt signaling pathway. Discussion The increased expression of sclerostin is responsible for the decline of proliferation and odontoblastic differentiation potential of HDPCs during cellular senescence. Anti-sclerostin treatment may be beneficial for the maintenance of the proliferation and odontoblastic differentiation potentials of HDPCs.
Collapse
Affiliation(s)
- Yanjing Ou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shanshan Liang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yining Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Wang C, Song Y, Gu Z, Lian M, Huang D, Lu X, Feng X, Lu Q. Wedelolactone Enhances Odontoblast Differentiation by Promoting Wnt/β-Catenin Signaling Pathway and Suppressing NF-κB Signaling Pathway. Cell Reprogram 2018; 20:236-244. [PMID: 30089027 DOI: 10.1089/cell.2018.0004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Chenfei Wang
- Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu, China
| | - Yihua Song
- Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu, China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Min Lian
- Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu, China
| | - Dan Huang
- Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu, China
| | - Xiaohui Lu
- Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu, China
| | - Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
25
|
Potential Roles of Dental Pulp Stem Cells in Neural Regeneration and Repair. Stem Cells Int 2018; 2018:1731289. [PMID: 29853908 PMCID: PMC5964589 DOI: 10.1155/2018/1731289] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/22/2018] [Indexed: 12/22/2022] Open
Abstract
This review summarizes current advances in dental pulp stem cells (DPSCs) and their potential applications in the nervous diseases. Injured adult mammalian nervous system has a limited regenerative capacity due to an insufficient pool of precursor cells in both central and peripheral nervous systems. Nerve growth is also constrained by inhibitory factors (associated with central myelin) and barrier tissues (glial scarring). Stem cells, possessing the capacity of self-renewal and multicellular differentiation, promise new therapeutic strategies for overcoming these impediments to neural regeneration. Dental pulp stem cells (DPSCs) derive from a cranial neural crest lineage, retain a remarkable potential for neuronal differentiation, and additionally express multiple factors that are suitable for neuronal and axonal regeneration. DPSCs can also express immunomodulatory factors that stimulate formation of blood vessels and enhance regeneration and repair of injured nerve. These unique properties together with their ready accessibility make DPSCs an attractive cell source for tissue engineering in injured and diseased nervous systems. In this review, we interrogate the neuronal differentiation potential as well as the neuroprotective, neurotrophic, angiogenic, and immunomodulatory properties of DPSCs and its application in the injured nervous system. Taken together, DPSCs are an ideal stem cell resource for therapeutic approaches to neural repair and regeneration in nerve diseases.
Collapse
|
26
|
Marei MK, El Backly RM. Dental Mesenchymal Stem Cell-Based Translational Regenerative Dentistry: From Artificial to Biological Replacement. Front Bioeng Biotechnol 2018; 6:49. [PMID: 29770323 PMCID: PMC5941981 DOI: 10.3389/fbioe.2018.00049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022] Open
Abstract
Dentistry is a continuously changing field that has witnessed much advancement in the past century. Prosthodontics is that branch of dentistry that deals with replacing missing teeth using either fixed or removable appliances in an attempt to simulate natural tooth function. Although such "replacement therapies" appear to be easy and economic they fall short of ever coming close to their natural counterparts. Complications that arise often lead to failures and frequent repairs of such devices which seldom allow true physiological function of dental and oral-maxillofacial tissues. Such factors can critically affect the quality of life of an individual. The market for dental implants is continuously growing with huge economic revenues. Unfortunately, such treatments are again associated with frequent problems such as peri-implantitis resulting in an eventual loss or replacement of implants. This is particularly influential for patients having co-morbid diseases such as diabetes or osteoporosis and in association with smoking and other conditions that undoubtedly affect the final treatment outcome. The advent of tissue engineering and regenerative medicine therapies along with the enormous strides taken in their associated interdisciplinary fields such as stem cell therapy, biomaterial development, and others may open arenas to enhancing tissue regeneration via designing and construction of patient-specific biological and/or biomimetic substitutes. This review will overview current strategies in regenerative dentistry while overviewing key roles of dental mesenchymal stem cells particularly those of the dental pulp, until paving the way to precision/translational regenerative medicine therapies for future clinical use.
Collapse
Affiliation(s)
- Mona K Marei
- Department of Removable Prosthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.,Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Rania M El Backly
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.,Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
27
|
Effects of Transplanted Heparin-Poloxamer Hydrogel Combining Dental Pulp Stem Cells and bFGF on Spinal Cord Injury Repair. Stem Cells Int 2018; 2018:2398521. [PMID: 29765407 PMCID: PMC5892218 DOI: 10.1155/2018/2398521] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/30/2018] [Indexed: 12/16/2022] Open
Abstract
Spinal cord injury (SCI) is one of serious traumatic diseases of the central nervous system and has no effective treatment because of its complicated pathophysiology. Tissue engineering strategy which contains scaffolds, cells, and growth factors can provide a promising treatment for SCI. Hydrogel that has 3D network structure and biomimetic microenvironment can support cellular growth and embed biological macromolecules for sustaining release. Dental pulp stem cells (DPSCs), derived from cranial neural crest, possess mesenchymal stem cell (MSC) characteristics and have an ability to provide neuroprotective and neurotrophic properties for SCI treatment. Basic fibroblast growth factor (bFGF) is able to promote cell survival and proliferation and also has beneficial effect on neural regeneration and functional recovery after SCI. Herein, a thermosensitive heparin-poloxamer (HP) hydrogel containing DPSCs and bFGF was prepared, and the effects of HP-bFGF-DPSCs on neuron restoration after SCI were evaluated by functional recovery tests, western blotting, magnetic resonance imaging (MRI), histology evaluation, and immunohistochemistry. The results suggested that transplanted HP hydrogel containing DPSCs and bFGF had a significant impact on spinal cord repair and regeneration and may provide a promising strategy for neuron repair, functional recovery, and tissue regeneration after SCI.
Collapse
|
28
|
Zhao Y, Yuan X, Liu B, Tulu US, Helms JA. Wnt-Responsive Odontoblasts Secrete New Dentin after Superficial Tooth Injury. J Dent Res 2018; 97:1047-1054. [PMID: 29566345 DOI: 10.1177/0022034518763151] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The objective of our experiments was to identify new therapeutic strategies to stimulate dentin formation in an adult tooth. To address this objective, we evaluated dentin production in 2 acute trauma models: one involving a pulp exposure and the other involving a superficial dentin injury. Molecular, cellular, and histologic analyses revealed that in response to a severe injury, where the pulp is exposed to the oral cavity, cell death is rampant and the repair response initiates from surviving pulp cells and, to a lesser extent, surviving odontoblasts. When an injury is superficial, as in the case of a dentin injury model, then disturbances are largely confined to pulp tissue immediately underneath the damaged dentin tubules. We found that the pulp remained vital and innervated; primary odontoblasts upregulated HIF1α; and the rate of mineralization was significantly increased. A tamoxifen-inducible Axin2CreERT2/+; R26R mTmG/+ reporter strain was then used to demonstrate that a population of long-lived Wnt-responsive odontoblasts, which secreted dentin throughout the life of the animal, were responsible for depositing new dentin in response to a superficial injury. Amplifying Wnt signaling in the pulp stimulates dentin secretion, and in the dentin injury model, we show that a liposomal formulation of human WNT3A protein passes through dentinal tubules and is capable of upregulating Wnt signaling in the pulp. These data provide strong proof of concept for a therapeutic pulp-capping material to stimulate Wnt signaling in odontoblasts and thus improve the pulp repair response.
Collapse
Affiliation(s)
- Y Zhao
- 1 Department of Oral Basic Science, School of Dentistry, Lanzhou University, Lanzhou, China.,2 Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - X Yuan
- 2 Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - B Liu
- 3 Ankasa Regenerative Therapeutics, Inc., South San Francisco, CA, USA
| | - U S Tulu
- 2 Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - J A Helms
- 2 Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA.,3 Ankasa Regenerative Therapeutics, Inc., South San Francisco, CA, USA
| |
Collapse
|
29
|
Song Y, Cao P, Gu Z, Xiao J, Lian M, Huang D, Xing J, Zhang Y, Feng X, Wang C. The Role of Neuropilin-1-FYN Interaction in Odontoblast Differentiation of Dental Pulp Stem Cells. Cell Reprogram 2018; 20:117-126. [PMID: 29486132 DOI: 10.1089/cell.2017.0041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abnormal odontoblast differentiation of dental pulp stem cells (DPSCs) caused by inflammation is closely related to the development of dental caries. Neuropilin-1 (NRP1) is one of the members of neuropilin family. It can combine with disparate ligands involved in regulating cell differentiation. FYN belongs to the protein-tyrosine kinase family, which has been implicated in the control of cell growth, and the effect can be further strengthened by inflammatory factors. In our studies, we verified that NRP1 can form complexes with FYN and have the correlation changes in odontoblast differentiation of DPSCs. Therefore, we surmise that in the progress of dental caries, NRP1 interacts with FYN, by expanding inflammation and inhibition of odontoblast differentiation of DPSCs through nuclear factor kappa B (NF-κB) signaling pathway. In this subject, we first investigated the expression and interaction of NRP1 and FYN in DPSCs. And then, we researched the effect of this complex controlling downstream signal pathway in normal or inflammation stimulated DPSCs. Finally, we analyzed the relationship between this role and odontoblast differentiation of DPSCs. This research will provide the molecular mechanism of inflammation factors of dental caries through activating NF-κB signal regulating odontoblast differentiation in DPSCs for finding new potential drug targets for the clinical treatment of dental caries.
Collapse
Affiliation(s)
- Yihua Song
- 1 Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University , Nantong, China
| | - Peipei Cao
- 1 Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University , Nantong, China
| | - Zhifeng Gu
- 2 Department of Rheumatology, Affiliated Hospital of Nantong University , Nantong, China
| | - Jingwen Xiao
- 1 Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University , Nantong, China
| | - Min Lian
- 1 Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University , Nantong, China
| | - Dan Huang
- 1 Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University , Nantong, China
| | - Jing Xing
- 1 Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University , Nantong, China
| | - Ye Zhang
- 3 Department of Stomatology, Qidong People's Hospital , Nantong, China
| | - Xingmei Feng
- 1 Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University , Nantong, China
| | - Chenfei Wang
- 1 Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University , Nantong, China
| |
Collapse
|
30
|
Feng G, Zheng K, Cao T, Zhang J, Lian M, Huang D, Wei C, Gu Z, Feng X. Repeated stimulation by LPS promotes the senescence of DPSCs via TLR4/MyD88-NF-κB-p53/p21 signaling. Cytotechnology 2018; 70:1023-1035. [PMID: 29480340 DOI: 10.1007/s10616-017-0180-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/02/2017] [Indexed: 01/13/2023] Open
Abstract
Dental pulp stem cells (DPSCs), one type of mesenchymal stem cells, are considered to be a type of tool cells for regenerative medicine and tissue engineering. Our previous studies found that the stimulation with lipopolysaccharide (LPS) might introduce senescence of DPSCs, and this senescence would have a positive correlation with the concentration of LPS. The β-galactosidase (SA-β-gal) staining was used to evaluate the senescence of DPSCs and immunofluorescence to show the morphology of DPSCs. Our findings suggested that the activity of SA-β-gal has increased after repeated stimulation with LPS and the morphology of DPSCs has changed with the stimulation with LPS. We also found that LPS bound to the Toll-like receptor 4 (TLR4)/myeloid differentiation factor (MyD) 88 signaling pathway. Protein and mRNA expression of TLR4, MyD88 were enhanced in DPSCs with LPS stimulation, resulting in the activation of nuclear factor-κB (NF-κB) signaling, which exhibited the expression of p65 improved in the nucleus while the decreasing of IκB-α. Simultaneously, the expression of p53 and p21, the downstream proteins of the NF-κB signaling, has increased. In summary, DPSCs tend to undergo senescence after repeated stimulation in an inflammatory microenvironment. Ultimately, these findings may lead to a new direction for cell-based therapy in oral diseases and other regenerative medicines.
Collapse
Affiliation(s)
- Guijuan Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ke Zheng
- Department of Stomatology, Wuxi No.2 People's Hospital, Wuxi, 214000, China
| | - Tong Cao
- Department of Provost's Office, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jinlong Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Min Lian
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Dan Huang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Changbo Wei
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
31
|
Lee J, Lee KS, Kim CL, Byeon JS, Gu NY, Cho IS, Cha SH. Effect of donor age on the proliferation and multipotency of canine adipose-derived mesenchymal stem cells. J Vet Sci 2018; 18:141-148. [PMID: 27456768 PMCID: PMC5489460 DOI: 10.4142/jvs.2017.18.2.141] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 04/19/2016] [Accepted: 06/08/2016] [Indexed: 01/08/2023] Open
Abstract
Research into adipose tissue-derived mesenchymal stem cells (AD-MSCs) has demonstrated the feasibility of their use in clinical applications due to their ease of isolation and abundance in adipose tissue. We isolated AD-MSCs from young and old dogs, and the cells were subjected to sequential sub-passaging from passage 1 (P1) to P7. Canine AD-MSCs (cAD-MSCs) were examined for proliferation kinetics, expression of molecules associated with self-renewal, expression of cell surface markers, and differentiation potentials at P3. Cumulative population doubling level was significantly higher in cAD-MSCs of young donors than in those of old donors. In addition, expressions of CD73, CD80, Oct3/4, Nanog, cell survival genes and differentiation potentials were significantly higher in young donors than in old donors. The present study suggests that donor age should be considered when developing cell-based therapies for clinical application of cAD-MSCs.
Collapse
Affiliation(s)
- Jienny Lee
- Viral Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Keum Sil Lee
- Viral Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Chan-Lan Kim
- Viral Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Jeong Su Byeon
- Viral Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Na-Yeon Gu
- Viral Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - In-Soo Cho
- Viral Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Sang-Ho Cha
- Viral Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| |
Collapse
|
32
|
Xiaoxia L, Jiaozi F, Shi Y, Yuming Z, Lihong G. [Clinical applications of stem cells from human exfoliated deciduous teeth in stem cell therapy]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:533-537. [PMID: 29188652 DOI: 10.7518/hxkq.2017.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Stem cells from human exfoliated deciduous teeth (SHED) are one category of dental stem cells. They belong to ectodermal mesenchymal stem cells. As an ideal stem cell source, SHED possess great potential in stem cell therapy. This review demonstrates the biological characteristics and advantages of SHED in stem cell therapy and discusses its multiple functions in tissue regeneration and repair, including multiple differentiation potentiality, cell secretion of cytokines, and immunomodulatory ability. Furthermore, this article introduces the main findings regarding the potential clinical applications of SHED to a variety of diseases. This article demonstrates research progress in dentin-pulp regeneration, maxillofacial bone regeneration, and treatment of nervous system and immune system diseases with SHED for stem cell transplantation.
Collapse
Affiliation(s)
- Li Xiaoxia
- Dept. of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Fangteng Jiaozi
- Dept. of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yu Shi
- Dept. of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Zhao Yuming
- Dept. of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Ge Lihong
- Dept. of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
33
|
Song Y, Liu X, Feng X, Gu Z, Gu Y, Lian M, Xiao J, Cao P, Zheng K, Gu X, Li D, He P, Wang C. NRP1 Accelerates Odontoblast Differentiation of Dental Pulp Stem Cells Through Classical Wnt/β-Catenin Signaling. Cell Reprogram 2017; 19:324-330. [PMID: 28910136 DOI: 10.1089/cell.2017.0020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuropilin-1 (NRP1) is one of the members of neuropilin family. It can combine with disparate ligands involved in regulating cell proliferation, apoptosis, and differentiation. The binding of NRP1 to Sema3A stimulates osteoblast differentiation through the classical Wnt/β-catenin pathway. However, the functions of NRP1 in dental pulp stem cells (DPSCs) are not clear. The aim of our study was to investigate how NRP1 controlled odontoblast differentiation in DPSCs and clarified the underlying mechanisms. NRP1 expression was increased in time-dependent manner along with cell odontoblast differentiation. Overexpression of NRP1 upregulated dentin matrix protein-1, dentin sialophosphoprotein, alkaline phosphatase protein level, and mineralization in DPSCs, while knockdown of NRP1 induced the opposite effects. SiNRP1 similar to DKK1 availably blocked classical Wnt/β-catenin signaling and odontoblast differentiation. In summary, NRP1, as a promoter of odontoblast differentiation, regulates DPSCs via the classical Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yihua Song
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, China
| | - Xiaojuan Liu
- 2 Department of Pathogen Biology, Medical College, Nantong University , Nantong, China
| | - Xingmei Feng
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, China
| | - Zhifeng Gu
- 3 Department of Rheumatology, Affiliated Hospital of Nantong University , Nantong, China
| | - Yongchun Gu
- 4 Department of Stomatology, The First People's Hospital of Wujiang, Affliated Wujiang Hospital of Nantong University , Suzhou, China
| | - Min Lian
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, China
| | - Jingwen Xiao
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, China
| | - Peipei Cao
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, China
| | - Ke Zheng
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, China
| | - Xiaobing Gu
- 5 Department of Stomatology, The Second People's Hospital of Nantong , Nantong, China
| | - Dongping Li
- 5 Department of Stomatology, The Second People's Hospital of Nantong , Nantong, China
| | - Ping He
- 6 Department of Stomatology, Wuxi NO.2 People's Hospital , Wuxi, China
| | - Chenfei Wang
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, China
| |
Collapse
|
34
|
Silva GO, Zhang Z, Cucco C, Oh M, Camargo CHR, Nör JE. Lipoprotein Receptor-related Protein 6 Signaling is Necessary for Vasculogenic Differentiation of Human Dental Pulp Stem Cells. J Endod 2017; 43:S25-S30. [PMID: 28778505 PMCID: PMC5657009 DOI: 10.1016/j.joen.2017.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aim of this study was to evaluate the effects of Wnt signaling through lipoprotein receptor-related protein 6 (LRP6) and Frizzled6 on the endothelial differentiation of dental pulp stem cells (DPSCs). DPSCs were stably transduced with enhanced green fluorescent protein (EGFP)-tagged lentiviral vectors (short hairpin RNA-LRP6, short hairpin RNA-Frizzled6, or empty vector controls). We evaluated the effects of LRP6 and Frizzled6 on expression of endothelial markers and on capillary tube formation mediated by DPSCs induced with recombinant human Wnt1 (rhWnt1) and/or recombinant human vascular endothelial growth factor165 (rhVEGF165). In vivo, tooth slices/scaffolds were seeded with LRP6-silenced, Frizzled6-silenced, or vector control DPSC cells and transplanted into immunodeficient mice. The density of blood vessels generated by DPSCs differentiated into vascular endothelial cells was analyzed by immunohistochemistry for EGFP. The rhWnt1 and rhVEGF165 induced expression of active β-catenin in control DPSCs and in Frizzled6-silenced DPSCs, but not in LRP6-silenced DPSCs. Furthermore, VEGF and interleukin-8 were downregulated in LRP6-silenced DPSCs, but not in control DPSCs or in Frizzled6-silenced DPSCs (P < .05). Likewise, rhWnt1 and rhVEGF165 induced expression of the endothelial marker VEGF receptor-2 in control DPSCs and in Frizzled6-silenced DPSCs, but not in LRP6-silenced DPSCs. These data correlated with a trend for lower density of capillary sprouts generated by LRP6-silenced DPSCs when compared with control DPSCs in Matrigel. In vivo, tooth slice/scaffolds seeded with DPSC-short hairpinRNA-LRP6 cells showed lower density of human blood vessels (ie, EGFP-positive blood vessels), when compared with tooth slice/scaffolds seeded with vector control cells (P < .05). Collectively, these data demonstrated that LRP6 signaling is necessary for the vasculogenic differentiation of human DPSCs.
Collapse
Affiliation(s)
- Gleyce O Silva
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan; Department of Restorative Dentistry, Institute of Science and Technology, São Paulo State University, São José dos Campos, São Paulo, Brazil
| | - Zhaocheng Zhang
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Carolina Cucco
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Min Oh
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Carlos H R Camargo
- Department of Restorative Dentistry, Institute of Science and Technology, São Paulo State University, São José dos Campos, São Paulo, Brazil
| | - Jacques E Nör
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan; Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan; Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, Michigan.
| |
Collapse
|
35
|
Mortada I, Mortada R, Al Bazzal M. Dental pulp stem cells and the management of neurological diseases: An update. J Neurosci Res 2017; 96:265-272. [PMID: 28736906 DOI: 10.1002/jnr.24122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 01/08/2023]
Abstract
Medical research in regenerative medicine has brought promising perspectives for the use of stem cells in clinical trials. Stem cells are undifferentiated cells capable of multilineage differentiation and available in numerous sources in the human body. Dental pulp constitutes an attractive source of these cells since collecting mesenchymal stem cells from this site is a noninvasive practice that can be performed after a common surgical extraction of supernumerary or wisdom teeth. Thus, tissue sacrifice is very low and several cytotypes can be obtained owing to these cells' multipotency, in addition to the fact that they can be cryopreserved and stored for long periods. Mesenchymal stem cells have high proliferation rates, making them favorable for clinical application. These multipotent cells, present in biological waste, constitute an appropriate resource in the treatment of many neurological diseases.
Collapse
Affiliation(s)
- Ibrahim Mortada
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rola Mortada
- Lebanese University School of Dentistry, Beirut, Lebanon
| | | |
Collapse
|
36
|
Variation in human dental pulp stem cell ageing profiles reflect contrasting proliferative and regenerative capabilities. BMC Cell Biol 2017; 18:12. [PMID: 28148303 PMCID: PMC5288874 DOI: 10.1186/s12860-017-0128-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 01/20/2017] [Indexed: 12/17/2022] Open
Abstract
Background Dental pulp stem cells (DPSCs) are increasingly being recognized as a viable cell source for regenerative medicine. Although significant variations in their ex vivo expansion are well-established, DPSC proliferative heterogeneity remains poorly understood, despite such characteristics influencing their regenerative and therapeutic potential. This study assessed clonal human DPSC regenerative potential and the impact of cellular senescence on these responses, to better understand DPSC functional behaviour. Results All DPSCs were negative for hTERT. Whilst one DPSC population reached >80 PDs before senescence, other populations only achieved <40 PDs, correlating with DPSCs with high proliferative capacities possessing longer telomeres (18.9 kb) than less proliferative populations (5–13 kb). High proliferative capacity DPSCs exhibited prolonged stem cell marker expression, but lacked CD271. Early-onset senescence, stem cell marker loss and positive CD271 expression in DPSCs with low proliferative capacities were associated with impaired osteogenic and chondrogenic differentiation, favouring adipogenesis. DPSCs with high proliferative capacities only demonstrated impaired differentiation following prolonged expansion (>60 PDs). Conclusions This study has identified that proliferative and regenerative heterogeneity is related to contrasting telomere lengths and CD271 expression between DPSC populations. These characteristics may ultimately be used to selectively screen and isolate high proliferative capacity/multi-potent DPSCs for regenerative medicine exploitation.
Collapse
|
37
|
Dental Pulp Stem Cells and Neurogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1083:63-75. [DOI: 10.1007/5584_2017_71] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
38
|
Zhang J, Lian M, Cao P, Bao G, Xu G, Sun Y, Wang L, Chen J, Wang Y, Feng G, Cui Z. Effects of Nerve Growth Factor and Basic Fibroblast Growth Factor Promote Human Dental Pulp Stem Cells to Neural Differentiation. Neurochem Res 2016; 42:1015-1025. [PMID: 28005222 DOI: 10.1007/s11064-016-2134-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 10/14/2016] [Accepted: 12/03/2016] [Indexed: 02/08/2023]
Abstract
Dental pulp stem cells (DPSCs) were the most widely used seed cells in the field of neural regeneration and bone tissue engineering, due to their easily isolation, lack of ethical controversy, low immunogenicity and low rates of transplantation rejection. The purpose of this study was to investigate the role of basic fibroblast growth factor (bFGF) and nerve growth factor (NGF) on neural differentiation of DPSCs in vitro. DPSCs were cultured in neural differentiation medium containing NGF and bFGF alone or combination for 7 days. Then neural genes and protein markers were analyzed using western blot and RT-PCR. Our study revealed that bFGF and NGF increased neural differentiation of DPSCs synergistically, compared with bFGF and NGF alone. The levels of Nestin, MAP-2, βIII-tubulin and GFAP were the most highest in the DPSCs + bFGF + NGF group. Our results suggested that bFGF and NGF signifiantly up-regulated the levels of Sirt1. After treatment with Sirt1 inhibitor, western blot, RT-PCR and immunofluorescence staining showed that neural genes and protein markers had markedly decreased. Additionally, the ERK and AKT signaling pathway played a key role in the neural differentiation of DPSCs stimulated with bFGF + NGF. These results suggested that manipulation of the ERK and AKT signaling pathway may be associated with the differentiation of bFGF and NGF treated DPSCs. Our date provided theoretical basis for DPSCs to treat neurological diseases and repair neuronal damage.
Collapse
Affiliation(s)
- Jinlong Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Min Lian
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Peipei Cao
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Guofeng Bao
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Guanhua Xu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yuyu Sun
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Lingling Wang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jiajia Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yi Wang
- Department of Stomatology, Wang Yi Dental Clinic of Mudu Town, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Guijuan Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
39
|
Stem Cells of Dental Origin: Current Research Trends and Key Milestones towards Clinical Application. Stem Cells Int 2016; 2016:4209891. [PMID: 27818690 PMCID: PMC5081960 DOI: 10.1155/2016/4209891] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/14/2016] [Indexed: 12/17/2022] Open
Abstract
Dental Mesenchymal Stem Cells (MSCs), including Dental Pulp Stem Cells (DPSCs), Stem Cells from Human Exfoliated Deciduous teeth (SHED), and Stem Cells From Apical Papilla (SCAP), have been extensively studied using highly sophisticated in vitro and in vivo systems, yielding substantially improved understanding of their intriguing biological properties. Their capacity to reconstitute various dental and nondental tissues and the inherent angiogenic, neurogenic, and immunomodulatory properties of their secretome have been a subject of meticulous and costly research by various groups over the past decade. Key milestone achievements have exemplified their clinical utility in Regenerative Dentistry, as surrogate therapeutic modules for conventional biomaterial-based approaches, offering regeneration of damaged oral tissues instead of simply “filling the gaps.” Thus, the essential next step to validate these immense advances is the implementation of well-designed clinical trials paving the way for exploiting these fascinating research achievements for patient well-being: the ultimate aim of this ground breaking technology. This review paper presents a concise overview of the major biological properties of the human dental MSCs, critical for the translational pathway “from bench to clinic.”
Collapse
|
40
|
Zhang F, Song J, Zhang H, Huang E, Song D, Tollemar V, Wang J, Wang J, Mohammed M, Wei Q, Fan J, Liao J, Zou Y, Liu F, Hu X, Qu X, Chen L, Yu X, Luu HH, Lee MJ, He TC, Ji P. Wnt and BMP Signaling Crosstalk in Regulating Dental Stem Cells: Implications in Dental Tissue Engineering. Genes Dis 2016; 3:263-276. [PMID: 28491933 PMCID: PMC5421560 DOI: 10.1016/j.gendis.2016.09.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tooth is a complex hard tissue organ and consists of multiple cell types that are regulated by important signaling pathways such as Wnt and BMP signaling. Serious injuries and/or loss of tooth or periodontal tissues may significantly impact aesthetic appearance, essential oral functions and the quality of life. Regenerative dentistry holds great promise in treating oral/dental disorders. The past decade has witnessed a rapid expansion of our understanding of the biological features of dental stem cells, along with the signaling mechanisms governing stem cell self-renewal and differentiation. In this review, we first summarize the biological characteristics of seven types of dental stem cells, including dental pulp stem cells, stem cells from apical papilla, stem cells from human exfoliated deciduous teeth, dental follicle precursor cells, periodontal ligament stem cells, alveolar bone-derived mesenchymal stem cells (MSCs), and MSCs from gingiva. We then focus on how these stem cells are regulated by bone morphogenetic protein (BMP) and/or Wnt signaling by examining the interplays between these pathways. Lastly, we analyze the current status of dental tissue engineering strategies that utilize oral/dental stem cells by harnessing the interplays between BMP and Wnt pathways. We also highlight the challenges that must be addressed before the dental stem cells may reach any clinical applications. Thus, we can expect to witness significant progresses to be made in regenerative dentistry in the coming decade.
Collapse
Affiliation(s)
- Fugui Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing 401147, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jinglin Song
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing 401147, China
| | - Hongmei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing 401147, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Enyi Huang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing 401147, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Dongzhe Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Conservative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Viktor Tollemar
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jing Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Jinhua Wang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing 401147, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Maryam Mohammed
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Qiang Wei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Junyi Liao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Yulong Zou
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Feng Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Xue Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Xiangyang Qu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Liqun Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Xinyi Yu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing 401147, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Ping Ji
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing 401147, China
| |
Collapse
|
41
|
Runx2 modified dental pulp stem cells (DPSCs) enhance new bone formation during rapid distraction osteogenesis (DO). Differentiation 2016; 92:195-203. [DOI: 10.1016/j.diff.2016.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 05/20/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022]
|
42
|
Feng G, Zheng K, Song D, Xu K, Huang D, Zhang Y, Cao P, Shen S, Zhang J, Feng X, Zhang D. SIRT1 was involved in TNF-α-promoted osteogenic differentiation of human DPSCs through Wnt/β-catenin signal. In Vitro Cell Dev Biol Anim 2016; 52:1001-1011. [PMID: 27530621 DOI: 10.1007/s11626-016-0070-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 06/27/2016] [Indexed: 02/06/2023]
Abstract
Dental pulp stem cells (DPSCs), as one type of mesenchymal stem cells (MSCs), have the capability of self-renewal and differentiating along the various directions, including osteogenic, chondrogenic, neurogenic, and adipogenic. We previously study and found that tumor necrosis factor-α (TNF-α) promoted osteogenic differentiation of human DPSCs via the Wnt/β-catenin signaling pathway in low concentration while inhibited that in high concentration. In the abovementioned process, we found that sirtuin-1 (SIRT1) had the same change compared with the characteristic protein of bone formation, such as bone morphogenetic protein 2 (BMP2), runt-related transcription factor 2 (Runx2), and collagen I (COL1). We asked whether SIRT1 could regulate osteogenesis of DPSCs. In inflammation microenvironment constructed by TNF-α, we tested the expression changing of SIRT1 and analyzed the function of SIRT1 on osteogenic differentiation of DPSCs. SIRT1 deacetylated β-catenin, and then promote its accumulation in the nucleus. Accumulated β-catenin can lead to transcription of osteogenic characteristic genes. Using the activator of SIRT1, resveratrol, could promote the above-mentioned process of osteogenic differentiation. SIRT1 could regulate osteogenesis of DPSCs through Wnt/β-catenin signal. SIRT1, as a regulator of differentiation of DPSCs, may be a new target for cell-based therapy in oral diseases and other regenerative medicine.
Collapse
Affiliation(s)
- Guijuan Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ke Zheng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Donghui Song
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ke Xu
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Dan Huang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ye Zhang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Peipei Cao
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Shuling Shen
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jinlong Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Dongmei Zhang
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, 226001, China.
| |
Collapse
|
43
|
Rosa V, Dubey N, Islam I, Min KS, Nör JE. Pluripotency of Stem Cells from Human Exfoliated Deciduous Teeth for Tissue Engineering. Stem Cells Int 2016; 2016:5957806. [PMID: 27313627 PMCID: PMC4904107 DOI: 10.1155/2016/5957806] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/04/2016] [Indexed: 12/11/2022] Open
Abstract
Stem cells from human exfoliated deciduous teeth (SHED) are highly proliferative pluripotent cells that can be retrieved from primary teeth. Although SHED are isolated from the dental pulp, their differentiation potential is not limited to odontoblasts only. In fact, SHED can differentiate into several cell types including neurons, osteoblasts, adipocytes, and endothelial cells. The high plasticity makes SHED an interesting stem cell model for research in several biomedical areas. This review will discuss key findings about the characterization and differentiation of SHED into odontoblasts, neurons, and hormone secreting cells (e.g., hepatocytes and islet-like cell aggregates). The outcomes of the studies presented here support the multipotency of SHED and their potential to be used for tissue engineering-based therapies.
Collapse
Affiliation(s)
- Vinicius Rosa
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore 119083
| | - Nileshkumar Dubey
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore 119083
| | - Intekhab Islam
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, National University of Singapore, Singapore 119083
| | - Kyung-San Min
- Department of Conservative Dentistry, School of Dentistry, Chonbuk National University, Jeonju 54596, Republic of Korea
| | - Jacques E. Nör
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
44
|
Multipotent Differentiation of Human Dental Pulp Stem Cells: a Literature Review. Stem Cell Rev Rep 2016; 12:511-523. [DOI: 10.1007/s12015-016-9661-9] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Zhang J, Lu X, Feng G, Gu Z, Sun Y, Bao G, Xu G, Lu Y, Chen J, Xu L, Feng X, Cui Z. Chitosan scaffolds induce human dental pulp stem cells to neural differentiation: potential roles for spinal cord injury therapy. Cell Tissue Res 2016; 366:129-42. [PMID: 27147262 DOI: 10.1007/s00441-016-2402-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 03/30/2016] [Indexed: 01/03/2023]
Abstract
Cell-based transplantation strategies hold great potential for spinal cord injury (SCI) repair. Chitosan scaffolds have therapeutic benefits for spinal cord regeneration. Human dental pulp stem cells (DPSCs) are abundant available stem cells with low immunological incompatibility and can be considered for cell replacement therapy. The purpose of this study is to investigate the role of chitosan scaffolds in the neural differentiation of DPSCs in vitro and to assess the supportive effects of chitosan scaffolds in an animal model of SCI. DPSCs were incubated with chitosan scaffolds. Cell viability and the secretion of neurotrophic factors were analyzed. DPSCs incubated with chitosan scaffolds were treated with neural differentiation medium for 14 days and then neural genes and protein markers were analyzed by Western blot and reverse transcription plus the polymerase chain reaction. Our study revealed a higher cell viability and neural differentiation in the DPSC/chitosan-scaffold group. Compared with the control group, the levels of BDNF, GDNF, b-NGF, and NT-3 were significantly increased in the DPSC/chitosan-scaffold group. The Wnt/β-catenin signaling pathway played a key role in the neural differentiation of DPSCs combined with chitosan scaffolds. Transplantation of DPSCs together with chitosan scaffolds into an SCI rat model resulted in the marked recovery of hind limb locomotor functions. Thus, chitosan scaffolds were non-cytotoxic and provided a conducive and favorable microenvironment for the survival and neural differentiation of DPSCs. Transplantation of DPSCs might therefore be a suitable candidate for treating SCI and other neuronal degenerative diseases.
Collapse
Affiliation(s)
- Jinlong Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Xiaohui Lu
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Guijuan Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Yuyu Sun
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Guofeng Bao
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Guanhua Xu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Yuanzhou Lu
- Department of Cardiology Medical, Tongzhou First People's Hospital, Nantong, Jiangsu Province, 226300, China
| | - Jiajia Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Lingfeng Xu
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, China.
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, China.
| |
Collapse
|
46
|
Lian M, Zhang Y, Shen Q, Xing J, Lu X, Huang D, Cao P, Shen S, Zheng K, Zhang J, Chen J, Wang Y, Feng G, Feng X. JAB1 accelerates odontogenic differentiation of dental pulp stem cells. J Mol Histol 2016; 47:317-24. [DOI: 10.1007/s10735-016-9672-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/14/2016] [Indexed: 01/09/2023]
|
47
|
Heng BC, Lim LW, Wu W, Zhang C. An Overview of Protocols for the Neural Induction of Dental and Oral Stem Cells In Vitro. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:220-50. [PMID: 26757369 DOI: 10.1089/ten.teb.2015.0488] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To date, various adult stem cells have been identified within the oral cavity, including dental pulp stem cells, dental follicle stem cells, stem cells from apical papilla, stem cells from human exfoliated deciduous teeth, periodontal ligament stem cells, and mesenchymal stem cells from the gingiva. All of these possess neurogenic potential due to their common developmental origin from the embryonic neural crest. Besides the relative ease of isolation of these adult stem cells from readily available biological waste routinely produced during dental treatment, these cells also possess the advantage of immune compatibility in autologous transplantation. In recent years, much interest has been focused on the derivation of neural lineages from these adult stem cells for therapeutic applications in the brain, spinal cord, and peripheral nerve regeneration. In addition, there are also promising nontherapeutic applications of stem cell-derived neurons in pharmacological and toxicological screening of neuroactive drugs, and for in vitro modeling of neurodevelopmental and neurodegenerative diseases. Hence, this review will critically examine the diverse array of in vitro neural induction protocols that have been devised for dental and oral-derived stem cells. These protocols are defined not only by the culture milieu comprising the basal medium plus growth factors, small molecules, and other culture supplements but also by the substrata/surface coatings utilized, the presence of multiple culture stages, the total culture duration, the initial seeding density, and whether the spheroid/neurosphere formation is being utilized to recapitulate the three-dimensional neural differentiation microenvironment that is naturally present physiologically in vivo.
Collapse
Affiliation(s)
- Boon Chin Heng
- 1 Comprehensive Dental Care, Endodonthics, Faculty of Dentistry, The University of Hong Kong , Pokfulam, Hong Kong
| | - Lee Wei Lim
- 2 School of Biomedical Sciences, The University of Hong Kong , Pokfulam, Hong Kong
| | - Wutian Wu
- 2 School of Biomedical Sciences, The University of Hong Kong , Pokfulam, Hong Kong
| | - Chengfei Zhang
- 1 Comprehensive Dental Care, Endodonthics, Faculty of Dentistry, The University of Hong Kong , Pokfulam, Hong Kong
| |
Collapse
|
48
|
Cho JH, Park JH, Ahn JH, Lee JC, Hwang IK, Park SM, Ahn JY, Kim DW, Cho JH, Kim JD, Kim YM, Won MH, Kang IJ. Vanillin and 4-hydroxybenzyl alcohol promotes cell proliferation and neuroblast differentiation in the dentate gyrus of mice via the increase of brain-derived neurotrophic factor and tropomyosin-related kinase B. Mol Med Rep 2016; 13:2949-56. [PMID: 26935641 PMCID: PMC4805080 DOI: 10.3892/mmr.2016.4915] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 11/11/2015] [Indexed: 12/14/2022] Open
Abstract
4-Hydroxy-3-methoxybenzaldehyde (vanillin) and 4-hydroxybenzyl alcohol (4-HBA) are well-known phenolic compounds, which possess various therapeutic properties and are widely found in a variety of plants. In the present study, the effects of vanillin and 4-HBA were first investigated on cell proliferation, as well as neuronal differentiation and integration of granule cells in the dentate gyrus (DG) of adolescent mice using Ki-67, doublecortin (DCX) immunohistochemistry and 5-bromo-2′-de-oxyuridine (BrdU)/feminizing Locus on X 3 (NeuN) double immunofluorescence. In both the vanillin and 4-HBA groups, the number of Ki-67+ cells, DCX+ neuroblasts and BrdU+/NeuN+ neurons were significantly increased in the subgranular zone of the DG, as compared with the vehicle group. In addition, the levels of brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB), a BDNF receptor, were significantly increased in the DG in the vanillin and 4-HBA groups compared with the vehicle group. These results indicated that vanillin and 4-HBA enhanced cell proliferation, neuroblast differentiation and integration of granule cells in the DG of adolescent mice. These neurogenic effects of vanillin and 4-HBA may be closely associated with increases in BDNF and TrkB.
Collapse
Affiliation(s)
- Jeong-Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 151‑742, Republic of Korea
| | - Seung Min Park
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Ji Yun Ahn
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Dong Won Kim
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Jong-Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Il-Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Gangwon 200‑702, Republic of Korea
| |
Collapse
|
49
|
Majumdar D, Kanafi M, Bhonde R, Gupta P, Datta I. Differential Neuronal Plasticity of Dental Pulp Stem Cells From Exfoliated Deciduous and Permanent Teeth Towards Dopaminergic Neurons. J Cell Physiol 2016; 231:2048-63. [PMID: 26773559 DOI: 10.1002/jcp.25314] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/14/2016] [Indexed: 12/17/2022]
Abstract
Based on early occurrence in chronological age, stem-cells from human exfoliated deciduous teeth (SHED) has been reported to possess better differentiation-potential toward certain cell-lineage in comparison to stem-cells from adult teeth (DPSCs). Whether this same property between them extends for the yield of functional central nervous system neurons is still not evaluated. Hence, we aim to assess the neuronal plasticity of SHED in comparison to DPSCs toward dopaminergic-neurons and further, if the difference is reflected in a differential expression of sonic-hedgehog (SHH)-receptors and basal-expressions of tyrosine-hydroxylase [TH; through cAMP levels]. Human SHED and DPSCs were exposed to midbrain-cues [SHH, fibroblast growth-factor8, and basic fibroblast growth-factor], and their molecular, immunophenotypical, and functional characterization was performed at different time-points of induction. Though SHED and DPSCs spontaneously expressed early-neuronal and neural-crest marker in their naïve state, only SHED expressed a high basal-expression of TH. The upregulation of dopaminergic transcription-factors Nurr1, Engrailed1, and Pitx3 was more pronounced in DPSCs. The yield of TH-expressing cells decreased from 49.8% to 32.16% in SHED while it increased from 8.09% to 77.47% in DPSCs. Dopamine release and intracellular-Ca(2+) influx upon stimulation (KCl and ATP) was higher in induced DPSCs. Significantly lower-expression of SHH-receptors was noted in naïve SHED than DPSCs, which may explain the differential neuronal plasticity. In addition, unlike DPSCs, SHED showed a down-regulation of cyclic adenosine-monophosphate (cAMP) upon exposure to SHH; possibly another contributor to the lesser differentiation-potential. Our data clearly demonstrates for the first time that DPSCs possess superior neuronal plasticity toward dopaminergic-neurons than SHED; influenced by higher SHH-receptor and lower basal TH expression. J. Cell. Physiol. 231: 2048-2063, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Debanjana Majumdar
- Manipal Institute of Regenerative Medicine, University of Manipal, Bengaluru, Karnataka, India
| | - Mohammad Kanafi
- Manipal Institute of Regenerative Medicine, University of Manipal, Bengaluru, Karnataka, India
| | - Ramesh Bhonde
- Manipal Institute of Regenerative Medicine, University of Manipal, Bengaluru, Karnataka, India
| | - Pawan Gupta
- Stempeutics Research Pvt Limited, Bengaluru, Karnataka, India
| | - Indrani Datta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru, Karnataka, India
| |
Collapse
|
50
|
Visweswaran M, Pohl S, Arfuso F, Newsholme P, Dilley R, Pervaiz S, Dharmarajan A. Multi-lineage differentiation of mesenchymal stem cells - To Wnt, or not Wnt. Int J Biochem Cell Biol 2015; 68:139-47. [PMID: 26410622 DOI: 10.1016/j.biocel.2015.09.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 01/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent precursor cells originating from several adult connective tissues. MSCs possess the ability to self-renew and differentiate into several lineages, and are recognized by the expression of unique cell surface markers. Several lines of evidence suggest that various signal transduction pathways and their interplay regulate MSC differentiation. To that end, a critical player in regulating MSC differentiation is a group of proteins encoded by the Wnt gene family, which was previously known for influencing various stages of embryonic development and cell fate determination. As MSCs have gained significant clinical attention for their potential applications in regenerative medicine, it is imperative to unravel the mechanisms by which molecular regulators control differentiation of MSCs for designing cell-based therapeutics. It is rather coincidental that the functional outcome(s) of Wnt-induced signals share similarities with cellular redox-mediated networks from the standpoint of MSC biology. Furthermore, there is evidence for a crosstalk between Wnt and redox signalling, which begs the question whether Wnt-mediated differentiation signals involve the intermediary role of reactive oxygen species. In this review, we summarize the impact of Wnt signalling on multi-lineage differentiation of MSCs, and attempt to unravel the intricate interplay between Wnt and redox signals.
Collapse
Affiliation(s)
- Malini Visweswaran
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Sebastian Pohl
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Philip Newsholme
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Rodney Dilley
- Ear Sciences Centre, University of Western Australia and Ear Science Institute Australia, Perth, Western Australia 6008, Australia
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Arun Dharmarajan
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|