1
|
Zafar S, Jamil M, Khan MI, Din FU, Seo EK, Khan S. 7β-(3-ethyl-cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro-Z-notonipetranone (ECN) attenuates inflammation and oxidative stress via MAPK, and Nrf2/HO-1 signaling in Traumatic brain injury. Chem Biol Interact 2025; 415:111510. [PMID: 40222441 DOI: 10.1016/j.cbi.2025.111510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/28/2024] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Traumatic brain injury (TBI) is an acquired neurological insult that has become a major cause of mortality.Hence, immediate and appropriate medical attention is essential. The present study investigated the neuroprotective effect of 7β-(3-ethyl-cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro-Z-notonipetranone (ECN), a sesquiterpenoid against a weight drop model of traumatic brain injury (TBI). During the in-vitro analysis, ECN demonstrated neuroprotective potential by remarkably improving the cell viability and also provided significant protection in case of nitric oxide-evoked oxidative stress in HT22 cells. The administration of ECN significantly improved the neurological severity score, and mechanical/periorbital allodynia following TBI, when compared with the TBI-group. The level of brain edema and blood-brain barrier (BBB) disruption were also significantly reduced by ECN treatment. ECN also restored constitutional changes in the protein/lipid profile; simultaneous with histological changes in the brain in contrast to the TBI-group. It significantly ameliorated neuronal loss and also minimized the intracerebral hemorrhages arising from traumatic insult. ECN exhibited potent anti-inflammatory effects, by altering the expression of extracellular-signal-regulated kinase (ERK), p38, and activating protein-1 (AP-1) proteins. It also exhibited antioxidant effects by increasing the production levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Furthermore, ECN also produced an anti-apoptotic effect by downregulation of caspase3 and upregulation of B-cell lymphoma 2 (Bcl-2). It also increased the levels of antioxidants while reducing the levels of oxidative stress and inflammatory markers in comparison to the TBI-group. In short, it was concluded that ECN exhibited protective anti-inflammatory, antioxidant, and anti-apoptotic effects against trauma-induced brain injury.
Collapse
Affiliation(s)
- Sana Zafar
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Maryam Jamil
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Ibrar Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Department of Pharmacology, Faculty of Pharmacy, Capital University of Science & Technology, Islamabad Expressway, Islamabad 747424, Pakistan.
| | - Fakhar Ud Din
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Eun Kyoung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, South Korea.
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
2
|
Yao, Li PS, Jiang S, Meng X, Hua-Gao, Yang X. A Mechanism Study on the Antioxidant Pathway of Keap1-Nrf2- ARE Inhibiting Ferroptosis in Dopaminergic Neurons. Curr Mol Med 2025; 25:37-44. [PMID: 38178661 DOI: 10.2174/0115665240266555231120044938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND The pathology of Parkinson's disease (PD) indicates that iron deposition exists in dopaminergic neurons, which may be related to the death of cellular lipid iron peroxide. The extracellular autophagy adaptor SQSTM1(p62) of dopamine (DA) neurons can activate the intracellular Keap1-Nrf2-ARE signaling pathway to inhibit ferroptosis, which has a protective effect on DA neurons. OBJECTIVE The objective of this study was to investigate the protective mechanism of the Keap1- Nrf2-ARE antioxidant pathway against iron death in dopaminergic neurons. METHODS The experiment was divided into a control group (Control group), 1-methyl-4- phenylpyridiniumion control group (MPP+ Control group), p62 overexpression group (MPP+OVp62), and p62 overexpression no-load group (MPP+ OV-P62-NC). The inhibitors brusatol and ZnPP inhibited the activation of NF-E2-related factor 2(Nrf2) and Heme oxygenase-1(HO-1), respectively, and were divided into brusatol group (MPP+OV-p62+brusatol) and ZnPP group (MPP+OV-p62+ZnPP). RT-qPCR was used to detect transfection efficiency, and Cell Counting Kit-8 (CCK8) was used to detect cell activity. FerroOrange, 2,7-Dichlorodihydrofluorescein diacetate (DCFH-DA), and Liperfluo probes were used to detect intracellular iron, reactive oxygen species (ROS), and lipid peroxidation (LPO) levels. Western Blotting detected the levels of Nrf2, HO-1, Kelch-like ECH-associated protein1 (Keap1), and their downstream Glutathione peroxidase 4(GPX4) and Acyl-CoA synthetase long-chain family member 4(ACSL4). The levels of LGlutathione (GSH) and Malondialdehyde (MDA) were detected by GSH and MDA kits, and the activation of Keap1-Nrf2-ARE pathway was verified at the cellular level to have an antioxidant protective effect on iron death in dopaminergic neurons. RESULTS (1) The results of RT-qPCR showed that compared with the control group, the expression of the p62 gene was significantly increased in the MPP+OV-p62 groups (p = 0.039), and the p62 gene was significantly increased in the brusatol and ZnPP groups, indicating successful transfection (p =0.002; p=0.008). (2) The immunofluorescence probe flow results showed that compared to the normal control group, the contents of three kinds of probes in MPP+ model group were significantly increased (p =0.001; p <0.001; p<0.001), and the contents of three kinds of probes in MPP+OV-p62 group were decreased compared to the MPP+ model group (p =0.004). The results indicated that the levels of iron, ROS, and LPO were increased in the MPP+ group and decreased in the MPP+OV-p62 group. (3) Compared with the control group, the expressions of Nrf2, HO-1, and GPX4 in the MPP+OV-p62 group were increased (p =0.007; p =0.004; p=0.010), and the expressions of Keap1 and ACSL4 in MPP+p62 overexpression group were decreased (p =0.017; p =0.005). Compared with the MPP+ control group, Nrf2 and GPX4 were increased in the MPP+OV-p62 group, and ACSL4 was decreased in the MPP+OV-p62 group (p =0.041; p <0.001; p <0.001). The results of the GSH and MDA kit showed that compared with the normal control group, the content of GSH in the MPP+ control group was decreased (p < 0.01), and the content of MDA was increased (p < 0.01). Compared with the MPP+ model group, GSH content was increased (P = 0.003), and MDA content was decreased in the MPP+OV-p62 group (p < 0.001). Nrf2, HO-1, and GPX4 increased in the MPP+p62 overexpression group but decreased in the brusatol group and ZnPP group (p < 0.001). CONCLUSION Based on the transfection of P62 plasmid, it was found that P62 plasmid can inhibit the lipid peroxidation of iron death in dopaminergic nerve cells by activating the Nrf2 signaling pathway, thus playing a protective role in dopaminergic nerve cells.
Collapse
Affiliation(s)
- Yao
- Department of Neurology, Second affiliated Hospital of Xinjiang Medical University, Xinjiang, China
- Department of Neurology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Pei-Shan Li
- Department of Neurology, Second affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Sen Jiang
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - XinLing Meng
- Department of Neurology, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Xinjiang, China
| | - Hua-Gao
- Department of Neurology, Fifth Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - XinLing Yang
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| |
Collapse
|
3
|
Goyal L, Singh S. Neurological Manifestations Following Traumatic Brain Injury: Role of Behavioral, Neuroinflammation, Excitotoxicity, Nrf-2 and Nitric Oxide. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:47-59. [PMID: 39082170 DOI: 10.2174/0118715273318552240708055413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 01/31/2025]
Abstract
Traumatic Brain Injury (TBI) is attributed to a forceful impact on the brain caused by sharp, penetrating bodies, like bullets and any sharp object. Some popular instances like falls, traffic accidents, physical assaults, and athletic injuries frequently cause TBI. TBI is the primary cause of both mortality and disability among young children and adults. Several individuals experience psychiatric problems, including cognitive dysfunction, depression, post-traumatic stress disorder, and anxiety, after primary injury. Behavioral changes post TBI include cognitive deficits and emotional instability (anxiety, depression, and post-traumatic stress disorder). These alterations are linked to neuroinflammatory processes. On the other hand, the direct impact mitigates inflammation insult by the release of pro-inflammatory cytokines, namely IL-1β, IL-6, and TNF-α, exacerbating neuronal injury and contributing to neurodegeneration. During the excitotoxic phase, activation of glutamate subunits like NMDA enhances the influx of Ca2+ and leads to mitochondrial metabolic impairment and calpain-mediated cytoskeletal disassembly. TBI pathological insult is also linked to transcriptional response suppression Nrf-2, which plays a critical role against TBI-induced oxidative stress. Activation of NRF-2 enhances the expression of anti-oxidant enzymes, providing neuroprotection. A possible explanation for the elevated levels of NO is that the stimulation of NMDA receptors by glutamate leads to the influx of calcium in the postsynaptic region, activating NOS's constitutive isoforms.
Collapse
Affiliation(s)
- Lav Goyal
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001 Punjab, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001 Punjab, India
| |
Collapse
|
4
|
Al-Najjar AH, Khalifa MK, Amin OM, Badawi NM. Epigallocatechin-3-gallate loaded proliposomal vesicles for management of traumatic brain injury: In-vitro and in-vivo evaluation. J Drug Deliv Sci Technol 2024; 97:105745. [DOI: 10.1016/j.jddst.2024.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Chen D, Duan H, Zou C, Yang R, Zhang X, Sun Y, Luo X, Lv D, Chen P, Shen Z, He B. 20(R)-ginsenoside Rg3 attenuates cerebral ischemia-reperfusion injury by mitigating mitochondrial oxidative stress via the Nrf2/HO-1 signaling pathway. Phytother Res 2024; 38:1462-1477. [PMID: 38246696 DOI: 10.1002/ptr.8118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/12/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
Reducing mitochondrial oxidative stress has become an important strategy to prevent neuronal death in ischemic stroke. Previous studies have shown that 20(R)-ginsenoside Rg3 can significantly improve behavioral abnormalities, reduce infarct size, and decrease the number of apoptotic neurons in cerebral ischemia/reperfusion injury rats. However, it remains unclear whether 20(R)-ginsenoside Rg3 can inhibit mitochondrial oxidative stress in ischemic stroke and the potential molecular mechanism. In this study, we found that 20(R)-ginsenoside Rg3 notably inhibited mitochondrial oxidative stress in middle cerebral artery occlusion/reperfusion (MCAO/R) rats and maintained the stability of mitochondrial structure and function. Treatment with 20(R)-ginsenoside Rg3 also decreased the levels of mitochondrial fission proteins (Drp1 and Fis1) and increased the levels of fusion proteins (Opa1, Mfn1, and Mfn2) in MCAO/R rats. Furthermore, we found that 20(R)-ginsenoside Rg3 promoted nuclear aggregation of nuclear factor erythroid2-related factor 2 (Nrf2) but did not affect Kelch-like ECH-associated protein-1 (Keap1), resulting in the downstream expression of antioxidants. In in vitro oxygen-glucose deprivation/reperfusion stroke models, the results of PC12 cells treated with 20(R)-ginsenoside Rg3 were consistent with animal experiments. After transfection with Nrf2 short interfering RNA (siRNA), the protective effect of 20(R)-ginsenoside Rg3 on PC12 cells was reversed. In conclusion, the inhibition of mitochondrial oxidative stress plays a vital position in the anti-cerebral ischemia-reperfusion injury of 20(R)-ginsenoside Rg3, and its neuroprotective mechanism is related to the activation of the nuclear factor erythroid2-related factor 2/heme oxygenase 1 signaling pathway.
Collapse
Affiliation(s)
- Deyun Chen
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- College of Food, Drugs, and Health, Yunnan Vocational and Technical College of Agriculture, Kunming, China
| | - Hengqian Duan
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Cheng Zou
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Renhua Yang
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Xiaochao Zhang
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Yan Sun
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Xingwei Luo
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Di Lv
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Peng Chen
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Zhiqiang Shen
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Bo He
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|
6
|
Egorov ES, Kondratenko ND, Averina OA, Permyakov OA, Emelyanova MA, Prikhodko AS, Zinovkina LA, Sergiev PV, Zinovkin RA. A New Mouse Strain with a Mutation in the NFE2L2 (NRF2) Gene. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1987-1996. [PMID: 38462445 DOI: 10.1134/s0006297923120039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 03/12/2024]
Abstract
Transcription factor NRF2 is involved in inflammatory reactions, maintenance of redox balance, metabolism of xenobiotics, and is of particular interest for studying aging. In the present work, the CRISPR/Cas9 genome editing technology was used to generate the NRF2ΔNeh2 mice containing a substitution of eight amino acid residues at the N-terminus of the NRF2 protein, upstream of the functional Neh2 domain, which ensures binding of NRF2 to its inhibitor KEAP1. Heterozygote NRF2wt/ΔNeh2 mice gave birth to homozygous mice with lower than expected frequency, accompanied by their increased embryonic lethality and visual signs of anemia. Mouse embryonic fibroblasts (MEFs) from the NRF2ΔNeh2/ΔNeh2 homozygotes showed impaired resistance to oxidative stress compared to the wild-type MEFs. The tissues of homozygous NRF2ΔNeh2/ΔNeh2 animals had a decreased expression of the NRF2 target genes: NAD(P)H:Quinone oxidoreductase-1 (Nqo1); aldehyde oxidase-1 (Aox1); glutathione-S-transferase A4 (Gsta4); while relative mRNA levels of the monocyte chemoattractant protein 1 (Ccl2), vascular cell adhesion molecule 1 (Vcam1), and chemokine Cxcl8 was increased. Thus, the resulting mutation in the Nfe2l2 gene coding for NRF2, partially impaired function of this transcription factor, expanding our insights into the functional role of the unstructured N-terminus of NRF2. The obtained NRF2ΔNeh2 mouse line can be used as a model object for studying various pathologies associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
- Evgeniy S Egorov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Natalia D Kondratenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Russian Clinical Research Center for Gerontology, Ministry of Health of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, 129226, Russia
| | - Olga A Averina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Oleg A Permyakov
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Maria A Emelyanova
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anastasia S Prikhodko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ludmila A Zinovkina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Petr V Sergiev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Roman A Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- HSE University, Moscow, 101000, Russia
| |
Collapse
|
7
|
Zamanian MY, Soltani A, Khodarahmi Z, Alameri AA, Alwan AMR, Ramírez-Coronel AA, Obaid RF, Abosaooda M, Heidari M, Golmohammadi M, Anoush M. Targeting Nrf2 signaling pathway by quercetin in the prevention and treatment of neurological disorders: An overview and update on new developments. Fundam Clin Pharmacol 2023; 37:1050-1064. [PMID: 37259891 DOI: 10.1111/fcp.12926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/16/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Neurological disorders (NLDs) are widely acknowledged as a significant public health concern worldwide. Stroke, Alzheimer's disease (AD), and traumatic brain injury (TBI) are three of these disorders that have sparked major study attention. Neurological dysfunction, protein buildup, oxidation and neuronal injury, and aberrant mitochondria are all prevalent neuropathological hallmarks of these disorders. The signaling cascade of nuclear factor erythroid 2 related factor 2 (Nrf2) shares all of them as a common target. Several studies have found that overexpression of Nrf2 is a promising treatment method in NLDs. Effective treatment of these disorders continues to be a universal concern regardless of various medicines. In order to treat a variety of neurological problems, organic remedies may provide an alternative treatment. It has been demonstrated that polyphenols like quercetin (Que) offer considerable capabilities for treating NLDs. One of Que's greatest key targets, Nrf2, has the capacity to control the production of a number of cytoprotective enzymes that exhibit neuroprotective, detoxifying, and antioxidative effects. Additionally, Que enhanced the expression of Nrf2 and inhibited alterations in the shape and death of neurons in the hippocampus. OBJECTIVE In this review, we have focused on Que's medicinal prospects as a neuroprotective drug. METHODS PubMed, Scopus, Science Direct, and Google Scholar were used to search articles for this study. RESULTS The findings of this research demonstrate that (1) Que protected the blood-brain barrier via stimulating Nrf2 in animal stroke, which alleviated ischemic reperfusion and motor dysfunction. (2) By triggering the Nrf2 pathway, Que reduced the neuroinflammation and oxidative damage brought on by TBI in the cortex. (3) In an experimental model of AD, Que enhanced cognitive function by decreasing A1-4, antioxidant activity, and Nrf2 levels in the brain. CONCLUSION We discuss recent research on Que-mediated Nrf2 expression in the management of several NLDs in this paper.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Afsaneh Soltani
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Khodarahmi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Athemar M R Alwan
- Department of Radiological Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Doctorate in Psychology, University of Palermo, Buenos Aires, Argentina
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
| | | | - Munther Abosaooda
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
| | - Mahsa Heidari
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdieh Anoush
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
8
|
Deng X, Chu W, Zhang H, Peng Y. Nrf2 and Ferroptosis: A New Research Direction for Ischemic Stroke. Cell Mol Neurobiol 2023; 43:3885-3896. [PMID: 37728817 PMCID: PMC11407729 DOI: 10.1007/s10571-023-01411-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
Ischemic stroke (IS) is one of the leading causes of death and morbidity worldwide. As a novel form of cell death, ferroptosis is an important mechanism of ischemic stroke. Nuclear factor E2-related factor 2 (Nrf2) is the primary regulator of cellular antioxidant response. In addition to alleviating ischemic stroke nerve damage by reducing oxidative stress, Nrf2 regulates genes associated with ferroptosis, suggesting that Nrf2 may inhibit ferroptosis after ischemic stroke. However, the specific pathway of Nrf2 on ferroptosis in the field of ischemic stroke remains unclear. Therefore, this paper provides a concise overview of the mechanisms underlying ferroptosis, with a particular focus on the regulatory role of Nrf2. The discussion highlights the potential connections between Nrf2 and the mitigation of oxidative stress, regulation of iron metabolism, modulation of the interplay between ferroptosis and inflammation, as well as apoptosis. This paper focuses on the specific pathway of Nrf2 regulation of ferroptosis after ischemic stroke, providing scientific research ideas for further research on the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Xiaoman Deng
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Wenming Chu
- Henan University of Chinese Medicine, Zhengzhou, 450000, Henan Province, China
| | - Hanrui Zhang
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Yongjun Peng
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
9
|
Chen Z, Wang P, Cheng H, Wang N, Wu M, Wang Z, Wang Z, Dong W, Guan D, Wang L, Zhao R. Adolescent traumatic brain injury leads to incremental neural impairment in middle-aged mice: role of persistent oxidative stress and neuroinflammation. Front Neurosci 2023; 17:1292014. [PMID: 37965213 PMCID: PMC10642192 DOI: 10.3389/fnins.2023.1292014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) increases the risk of mental disorders and neurodegenerative diseases in the chronic phase. However, there is limited neuropathological or molecular data on the long-term neural dysfunction and its potential mechanism following adolescent TBI. METHODS A total of 160 male mice aged 8 weeks were used to mimic moderate TBI by controlled cortical impact. At 1, 3, 6 and 12 months post-injury (mpi), different neurological functions were evaluated by elevated plus maze, forced swimming test, sucrose preference test and Morris water maze. The levels of oxidative stress, antioxidant response, reactive astrocytes and microglia, and expression of inflammatory cytokines were subsequently assessed in the ipsilateral hippocampus, followed by neuronal apoptosis detection. Additionally, the morphological complexity of hippocampal astrocytes was evaluated by Sholl analysis. RESULTS The adolescent mice exhibited persistent and incremental deficits in memory and anxiety-like behavior after TBI, which were sharply exacerbated at 12 mpi. Depression-like behaviors were observed in TBI mice at 6 mpi and 12 mpi. Compared with the age-matched control mice, apoptotic neurons were observed in the ipsilateral hippocampus during the chronic phase of TBI, which were accompanied by enhanced oxidative stress, and expression of inflammatory cytokines (IL-1β and TNF-α). Moreover, the reactive astrogliosis and microgliosis in the ipsilateral hippocampus were observed in the late phase of TBI, especially at 12 mpi. CONCLUSION Adolescent TBI leads to incremental cognitive dysfunction, and depression- and anxiety-like behaviors in middle-aged mice. The chronic persistent neuroinflammation and oxidative stress account for the neuronal loss and neural dysfunction in the ipsilateral hippocampus. Our results provide evidence for the pathogenesis of chronic neural damage following TBI and shed new light on the treatment of TBI-induced late-phase neurological dysfunction.
Collapse
Affiliation(s)
- Ziyuan Chen
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Pengfei Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Hao Cheng
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Ning Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Mingzhe Wu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Ziwei Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Zhi Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Wenwen Dong
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Dawei Guan
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Linlin Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Rui Zhao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, China
| |
Collapse
|
10
|
Protective Mechanisms of 3-Acetyl-11-keto-β-Boswellic Acid and Piperine in Fluid Percussion Rat Model of Traumatic Brain Injury Targeting Nrf2 and NFkB Signaling. Neurotox Res 2023; 41:57-84. [PMID: 36576717 DOI: 10.1007/s12640-022-00628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/18/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
The current study aimed to investigate the neuroprotective effect of 3-acetyl-11-keto-β-boswellic acid (AKBA) in combination with bioenhancer piperine in lateral fluid percussion injury-induced TBI in experimental rats. Fluid percussion injury was introduced in the rat brain by delivering 50 mmHg of pressure for 3 min to the exposed brain. AKBA 25 mg/kg, 50 mg/kg orally, and AKBA (25 mg/kg, p.o.) in combination with piperine (2.5 mg/kg, p.o.) were administered from day 1 to day 14 to the assigned groups. On the 1st, 7th, and 14th day, behavioral parameters were checked. On the 15th day, animals were euthanized. In TBI rat model, AKBA-piperine combination significantly restored the altered performance of grip strength, rotarod test, open field task, narrow beam task (beam crossing time and no. of foot slips), and Morris water maze (escape latency and time spent in target quadrant) (p < 0.001 vs TBI control). Furthermore, the AKBA-piperine combination significantly reduced pro-inflammatory cytokine level in TBI rat model (&p < 0.001 vs TBI control). The combined effect of AKBA and piperine significantly restored oxidative stress parameters level, catecholamines level, and neurotransmitters level (p < 0.001 vs TBI control). Further findings showed that the AKBA-piperine combination prevented histopathological changes (p < 0.001), and the immunohistological study confirmed increased Nrf2-positive cells (p < 0.001 vs TBI control) and reduced nuclear factor kappa B (NFkB) expression (p < 0.001 vs TBI control, p < 0.01 vs TBI + AKBA 50 mg/kg) in the cortical region following AKBA-piperine administration. The present study concluded that AKBA along with piperine achieved anti-oxidant, and anti-inflammatory effects, and also prevented neuronal injury via targeting Nrf2 and NFkB expressions.
Collapse
|
11
|
Cheng Y, Gao Y, Li J, Rui T, Li Q, Chen H, Jia B, Song Y, Gu Z, Wang T, Gao C, Wang Y, Wang Z, Wang F, Tao L, Luo C. TrkB agonist N-acetyl serotonin promotes functional recovery after traumatic brain injury by suppressing ferroptosis via the PI3K/Akt/Nrf2/Ferritin H pathway. Free Radic Biol Med 2023; 194:184-198. [PMID: 36493983 DOI: 10.1016/j.freeradbiomed.2022.12.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Ferroptosis is a form of regulated cell death that is mainly triggered by iron-dependent lipid peroxidation. A growing body of evidence suggests that ferroptosis is involved in the pathophysiology of traumatic brain injury (TBI), and tropomyosin-related kinase B (TrkB) deficiency would mediate TBI pathologies. As an agonist of TrkB and an immediate precursor of melatonin, N-acetyl serotonin (NAS) exerts several beneficial effects on TBI, but there is no information regarding the role of NAS in ferroptosis after TBI. Here, we examined the effect of NAS treatment on TBI-induced functional outcomes and ferroptosis. Remarkably, the administration of NAS alleviated TBI-induced neurobehavioral deficits, lesion volume, and neurodegeneration. NAS also rescued TBI-induced mitochondrial shrinkage, the changes in ferroptosis-related molecule expression, and iron accumulation in the ipsilateral cortex. Similar results were obtained with a well-established ferroptosis inhibitor, liproxstatin-1. Furthermore, NAS activated the TrkB/PI3K/Akt/Nrf2 pathway in the mouse model of TBI, while inhibition of PI3K and Nrf2 weakened the protection of NAS against ferroptosis both in vitro and in vivo, suggesting that a possible pathway linking NAS to the action of anti-ferroptosis was TrkB/PI3K/Akt/Nrf2. Given that ferritin H (Fth) is a known transcription target of Nrf2, we then investigated the effects of NAS on neuron-specific Fth knockout (Fth-KO) mice. Strikingly, Fth deletion almost abolished the protective effects of NAS against TBI-induced ferroptosis and synaptic damage, although Fth deletion-induced susceptibility toward ferroptosis after TBI was reversed by an iron chelator, deferoxamine. Taken together, these data indicate that the TrkB agonist NAS treatment appears to improve brain function after TBI by suppressing ferroptosis, at least in part, through activation of the PI3K/Akt/Nrf2/Fth pathway, providing evidence that NAS is likely to be a promising anti-ferroptosis agent for further treatment for TBI.
Collapse
Affiliation(s)
- Ying Cheng
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Yuan Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Jing Li
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Tongyu Rui
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Qianqian Li
- School of Forensic Medicine, Wannan Medical College, Wuhu, 241002, China
| | - Huan Chen
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Bowen Jia
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Yiting Song
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Zhiya Gu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Tao Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Cheng Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Ying Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Zufeng Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Fudi Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Luyang Tao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China.
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
12
|
Ala M. Sestrin2 Signaling Pathway Regulates Podocyte Biology and Protects against Diabetic Nephropathy. J Diabetes Res 2023; 2023:8776878. [PMID: 36818747 PMCID: PMC9937769 DOI: 10.1155/2023/8776878] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
Sestrin2 regulates cell homeostasis and is an upstream signaling molecule for several signaling pathways. Sestrin2 leads to AMP-activated protein kinase- (AMPK-) and GTPase-activating protein activity toward Rags (GATOR) 1-mediated inhibition of mammalian target of rapamycin complex 1 (mTORC1), thereby enhancing autophagy. Sestrin2 also improves mitochondrial biogenesis via AMPK/Sirt1/peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) signaling pathway. Blockade of ribosomal protein synthesis and augmentation of autophagy by Sestrin2 can prevent misfolded protein accumulation and attenuate endoplasmic reticulum (ER) stress. In addition, Sestrin2 enhances P62-mediated autophagic degradation of Keap1 to release nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 release by Sestrin2 vigorously potentiates antioxidant defense in diabetic nephropathy. Impaired autophagy and mitochondrial biogenesis, severe oxidative stress, and ER stress are all deeply involved in the development and progression of diabetic nephropathy. It has been shown that Sestrin2 expression is lower in the kidney of animals and patients with diabetic nephropathy. Sestrin2 knockdown aggravated diabetic nephropathy in animal models. In contrast, upregulation of Sestrin2 enhanced autophagy, mitophagy, and mitochondrial biogenesis and suppressed oxidative stress, ER stress, and apoptosis in diabetic nephropathy. Consistently, overexpression of Sestrin2 ameliorated podocyte injury, mesangial proliferation, proteinuria, and renal fibrosis in animal models of diabetic nephropathy. By suppressing transforming growth factor beta (TGF-β)/Smad and Yes-associated protein (YAP)/transcription enhancer factor 1 (TEF1) signaling pathways in experimental models, Sestrin2 hindered epithelial-mesenchymal transition and extracellular matrix accumulation in diabetic kidneys. Moreover, modulation of the downstream molecules of Sestrin2, for instance, augmentation of AMPK or Nrf2 signaling and inhibition of mTORC1, has been protective in diabetic nephropathy. Regarding the beneficial effects of Sestrin2 on diabetic nephropathy and its interaction with several signaling molecules, it is worth targeting Sestrin2 in diabetic nephropathy.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
13
|
Wang Q, Botchway BOA, Zhang Y, Liu X. Ellagic acid activates the Keap1-Nrf2-ARE signaling pathway in improving Parkinson's disease: A review. Biomed Pharmacother 2022; 156:113848. [PMID: 36242848 DOI: 10.1016/j.biopha.2022.113848] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a familiar neurodegenerative disease, accompanied by motor retardation, static tremor, memory decline and dementia. Heredity, environment, age and oxidative stress have been suggested as key factors in the instigation of PD. The Keap1-Nrf2-ARE signaling is one of the most significant anti- oxidative stress (OS) pathways. The Keap1 is a negative regulator of the Nrf2. The Keap1-Nrf2-ARE pathway can induce cell oxidation resistance and reduce nerve injury to treat neurodegenerative diseases. Ellagic acid (EA) can inhibit the Keap1 to accumulate the Nrf2 in the nucleus, and act on the ARE to produce target proteins, which in turn may alleviate the impact of OS on neuronal cells of PD. This review analyzes the structure and physiological role of EA, along with the structure, composition and functions of the Keap1-Nrf2-ARE signaling pathway. We further expound on the mechanism of ellagic acid in its activation of the Keap1-Nrf2-ARE signaling pathway, as well as the relationship between EA in impairing the TLR4/Myd88/NF-κB and Nrf2 pathways. Ellagic acid has the potentiality of improving PD by activating the Keap1-Nrf2-ARE signaling pathway and scavenging free radicals.
Collapse
Affiliation(s)
- Qianhui Wang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China.
| |
Collapse
|
14
|
Salem M, Shaheen M, Borjac J. Crocin suppresses inflammation-induced apoptosis in rmTBI mouse model via modulation of Nrf2 transcriptional activity. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Upadhayay S, Mehan S. Targeting Nrf2/HO-1 anti-oxidant signaling pathway in the progression of multiple sclerosis and influences on neurological dysfunctions. BRAIN DISORDERS 2021. [DOI: 10.1016/j.dscb.2021.100019] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
16
|
Sivandzade F, Alqahtani F, Cucullo L. Impact of chronic smoking on traumatic brain microvascular injury: An in vitro study. J Cell Mol Med 2021; 25:7122-7134. [PMID: 34160882 PMCID: PMC8335687 DOI: 10.1111/jcmm.16741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/26/2022] Open
Abstract
Traumatic brain injury (TBI) is a major reason of cerebrovascular and neurological damage. Premorbid conditions such as tobacco smoking (TS) can worsen post‐TBI injuries by promoting vascular endothelial impairments. Indeed, TS‐induced oxidative stress (OS) and inflammation can hamper the blood‐brain barrier (BBB) endothelium. This study evaluated the subsequence of chronic TS exposure on BBB endothelial cells in an established in vitro model of traumatic cell injury. Experiments were conducted on confluent TS‐exposed mouse brain microvascular endothelial cells (mBMEC‐P5) following scratch injury. The expression of BBB integrity–associated tight junction (TJ) proteins was assessed by immunofluorescence imaging (IF), Western blotting (WB) and quantitative RT‐PCR. We evaluated reactive oxygen species (ROS) generation, the nuclear factor 2–related (Nrf2) with its downstream effectors and several inflammatory markers. Thrombomodulin expression was used to assess the endothelial haemostatic response to injury and TS exposure. Our results show that TS significantly decreased Nrf2, thrombomodulin and TJ expression in the BBB endothelium injury models while increased OS and inflammation compared to parallel TS‐free cultures. These data suggest that chronic TS exposure exacerbates traumatic endothelial injury and abrogates the protective antioxidative cell responses. The downstream effect was a more significant decline of BBB endothelial viability, which could aggravate subsequent neurological impairments.
Collapse
Affiliation(s)
- Farzane Sivandzade
- Department of Biological Sciences, Oakland University, Rochester, MI, USA.,Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Luca Cucullo
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| |
Collapse
|
17
|
Geng Z, Guo Z, Guo R, Ye R, Zhu W, Yan B. Ferroptosis and traumatic brain injury. Brain Res Bull 2021; 172:212-219. [PMID: 33932492 DOI: 10.1016/j.brainresbull.2021.04.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) is a worldwide health problem contributing to significant economic burden. TBI is difficult to treat partly due to incomplete understanding of pathophysiology. Ferroptosis is a type of iron-dependent programmed cell death which has gained increasing attention due to its possible role in TBI. Current studies have demonstrated that ferroptosis is related to the pathology of TBI, and inhibition of ferroptosis may improve long term outcomes of TBI. Therefore, clarification of the exact association between ferroptosis and traumatic brain injury is necessary and may provide new targets for treatment. This review describes (1) the ferroptosis pathways following traumatic brain injury, (2) the role of ferroptosis during the chronic phase of traumatic brain injury, and (3) potential therapies targeting the ferroptosis pathways.
Collapse
Affiliation(s)
- Zhiwen Geng
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, China.
| | - Zhiliang Guo
- Department of Neurology, The Second Affiliated Hospital of Soochow University, China.
| | - Ruibing Guo
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, China.
| | - Ruidong Ye
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, China.
| | - Wusheng Zhu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, China.
| | - Bernard Yan
- Department of Neurology, Neurointervention Service, Royal Melbourne Hospital, Australia; Melbourne Brain Centre @ RMH, Department of Medicine, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
18
|
Dhaliwal N, Dhaliwal J, Singh A, Chopra K. Dimethyl fumarate attenuates 2-VO-induced vascular dementia via activating the Nrf2 signaling pathway in rats. Inflammopharmacology 2021; 29:537-547. [PMID: 33459879 DOI: 10.1007/s10787-020-00785-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Chronic cerebral hypoperfusion (CCH) induced oxidative stress and inflammation is known to be implicated in the pathogenesis of vascular dementia. The nuclear factor erythroid 2-related factor 2 (Nrf2) has emerged as a potential therapeutic target for neuroprotection. In the present study, we investigated the beneficial effects of dimethyl fumarate (DMF), an Nrf2 activator in an experimental model of vascular dementia. METHODS Permanent occlusion of the bilateral common carotid arteries (2-VO) was performed to induce CCH in adult male Sprague-Dawley rats. DMF (15, 30, and 60 mg/kg) was administered for 4 weeks. Cognitive performance was assessed using the Morris water maze (MWM) and novel object (NOR) tests. After behavior tests, various oxidative and inflammatory markers were assessed in the hippocampus. RESULTS The obtained results indicate that treatment with DMF significantly improved 2 VO-induced cognitive deficits. DMF decreased MDA (p < 0.001), protein carbonyl (PCO) contents (p < 0.001), and acetylcholinesterase (p < 0.01) activities, and inhibited inflammatory markers (TNF-α, IL-1β, NF-κβ, and COX-2) levels. Furthermore, our results showed that DMF augmented GSH (p < 0.001) levels and SOD (p < 0.05), CAT, and GSH-Px (p < 0.001) activities in the hippocampus. Nrf2 (p < 0.05) and its downstream targets HO-1 levels (p < 0.01) and NQO1 (p < 0.05) levels were also up-regulated after DMF treatment. CONCLUSION Taken together, the results demonstrate that DMF could serve as a promising neuroprotective agent for treating vascular dementia.
Collapse
Affiliation(s)
- Navneet Dhaliwal
- Pharmacology Research Laboratory, Pharmacology Division, UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Jatinder Dhaliwal
- Pharmacology Research Laboratory, Pharmacology Division, UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Aagamjit Singh
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Kanwaljit Chopra
- Pharmacology Research Laboratory, Pharmacology Division, UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
19
|
Yang T, Zhang F. Targeting Transcription Factor Nrf2 (Nuclear Factor Erythroid 2-Related Factor 2) for the Intervention of Vascular Cognitive Impairment and Dementia. Arterioscler Thromb Vasc Biol 2020; 41:97-116. [PMID: 33054394 DOI: 10.1161/atvbaha.120.314804] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vascular cognitive impairment and dementia (VCID) is an age-related, mild to severe mental disability due to a broad panel of cerebrovascular disorders. Its pathobiology involves neurovascular dysfunction, blood-brain barrier disruption, white matter damage, microRNAs, oxidative stress, neuroinflammation, and gut microbiota alterations, etc. Nrf2 (Nuclear factor erythroid 2-related factor 2) is the master regulator of redox status and controls the transcription of a panel of antioxidative and anti-inflammatory genes. By interacting with NF-κB (nuclear factor-κB), Nrf2 also fine-tunes the cellular oxidative and inflammatory balance. Aging is associated with Nrf2 dysfunction, and increasing evidence has proved the role of Nrf2 in mitigating the VCID process. Based on VCID pathobiologies and Nrf2 studies from VCID and other brain diseases, we point out several hypothetical Nrf2 targets for VCID management, including restoration of endothelial function and neurovascular coupling, preservation of blood-brain barrier integrity, reduction of amyloidopathy, promoting white matter integrity, and mitigating oxidative stress and neuroinflammation. Collectively, the Nrf2 pathway could be a promising direction for future VCID research. Targeting Nrf2 would shed light on VCID managing strategies.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, PA
| | - Feng Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, PA
| |
Collapse
|
20
|
Sivandzade F, Alqahtani F, Sifat A, Cucullo L. The cerebrovascular and neurological impact of chronic smoking on post-traumatic brain injury outcome and recovery: an in vivo study. J Neuroinflammation 2020; 17:133. [PMID: 32340626 PMCID: PMC7184717 DOI: 10.1186/s12974-020-01818-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is among the most prevalent causes of cerebrovascular and neurological damage worldwide. To this end, tobacco smoke (TS) has been shown to promote vascular inflammation, neurovascular impairments, and risk of cerebrovascular and neurological disorders through oxidative stress (OS) stimuli targeting the blood-brain barrier (BBB) endothelium among others. It has been recently suggested that premorbid conditions such as TS may exacerbate post-TBI brain damage and impact recovery. METHODS Our study investigated the mechanisms underlying the exacerbation of TBI injury by TS using a weight drop model. For this purpose, male C57BL/6J mice, age range 6-8 weeks, were chronically exposed to premorbid TS for 3 weeks. Test animals were then subjected to TBI by guided vertical head weight drop using a 30 g metal weight free felling from an 80 cm distance before reaching the target. We analyzed the physical activity and body weight of the mice before TBI and 1 h, 24 h, and 72 h post-injury. Finally, mice were sacrificed to collect blood and brain samples for subsequent biochemical and molecular analysis. Western blotting was applied to assess the expression of Nrf2 (a critical antioxidant transcription factor) as well as tight junction proteins associated with BBB integrity including ZO-1, Occludin, and Claudin-5 from brain tissues homogenates. Levels of NF-kB (a pro-inflammatory transcript factor which antagonizes Nrf2 activity) and pro-inflammatory cytokines IL-6, IL-10, and TNF-α were assessed in blood samples. RESULTS Our data revealed that premorbid TS promoted significantly increased inflammation and loss of BBB integrity in TBI when compared to TS-Free test mice. Additionally, mice chronically exposed to TS before TBI experienced a more significant weight loss, behavioral and motor activity deficiency, and slower post-TBI recovery when compared to TS-free TBI mice. CONCLUSION The effects of premorbid TS appear consequential to the abrogation of physiological antioxidative and anti-inflammatory response to TBI leading to worsening impairments of the BBB, OS damage, and inflammation. These factors are also likely responsible for the retardation of post-traumatic recovery observed in these animals.
Collapse
Affiliation(s)
- Farzane Sivandzade
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center | Jerry H. Hodge School of pharmacy, 1300 S. Coulter Street, Amarillo, TX 79106 USA
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Ali Sifat
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center | Jerry H. Hodge School of pharmacy, 1300 S. Coulter Street, Amarillo, TX 79106 USA
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center | Jerry H. Hodge School of pharmacy, 1300 S. Coulter Street, Amarillo, TX 79106 USA
- Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106 USA
| |
Collapse
|
21
|
Sivandzade F, Alqahtani F, Cucullo L. Traumatic Brain Injury and Blood-Brain Barrier (BBB): Underlying Pathophysiological Mechanisms and the Influence of Cigarette Smoking as a Premorbid Condition. Int J Mol Sci 2020; 21:E2721. [PMID: 32295258 PMCID: PMC7215684 DOI: 10.3390/ijms21082721] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) is among the most pressing global health issues and prevalent causes of cerebrovascular and neurological disorders all over the world. In addition to the brain injury, TBI may also alter the systemic immune response. Thus, TBI patients become vulnerable to infections, have worse neurological outcomes, and exhibit a higher rate of mortality and morbidity. It is well established that brain injury leads to impairments of the blood-brain barrier (BBB) integrity and function, contributing to the loss of neural tissue and affecting the response to neuroprotective drugs. Thus, stabilization/protection of the BBB after TBI could be a promising strategy to limit neuronal inflammation, secondary brain damage, and acute neurodegeneration. Herein, we present a review highlighting the significant post-traumatic effects of TBI on the cerebrovascular system. These include the loss of BBB integrity and selective permeability, impact on BBB transport mechanisms, post-traumatic cerebral edema formation, and significant pathophysiological factors that may further exacerbate post-traumatic BBB dysfunctions. Furthermore, we discuss the post-traumatic impacts of chronic smoking, which has been recently shown to act as a premorbid condition that impairs post-TBI recovery. Indeed, understanding the underlying molecular mechanisms associated with TBI damage is essential to better understand the pathogenesis and progression of post-traumatic secondary brain injury and the development of targeted treatments to improve outcomes and speed up the recovery process. Therapies aimed at restoring/protecting the BBB may reduce the post-traumatic burden of TBI by minimizing the impairment of brain homeostasis and help to restore an optimal microenvironment to support neuronal repair.
Collapse
Affiliation(s)
- Farzane Sivandzade
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA;
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA;
- Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
22
|
Transcriptional activation of antioxidant gene expression by Nrf2 protects against mitochondrial dysfunction and neuronal death associated with acute and chronic neurodegeneration. Exp Neurol 2020; 328:113247. [PMID: 32061629 DOI: 10.1016/j.expneurol.2020.113247] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/04/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
Mitochondria are both a primary source of reactive oxygen species (ROS) and a sensitive target of oxidative stress; damage to mitochondria can result in bioenergetic dysfunction and both necrotic and apoptotic cell death. These relationships between mitochondria and cell death are particularly strong in both acute and chronic neurodegenerative disorders. ROS levels are affected by both the production of superoxide and its toxic metabolites and by antioxidant defense mechanisms. Mitochondrial antioxidant activities include superoxide dismutase 2, glutathione peroxidase and reductase, and intramitochondrial glutathione. When intracellular conditions disrupt the homeostatic balance between ROS production and detoxification, a net increase in ROS and an oxidized shift in cellular redox state ensues. Cells respond to this imbalance by increasing the expression of genes that code for proteins that protect against oxidative stress and inhibit cytotoxic oxidation of proteins, DNA, and lipids. If, however, the genomic response to mitochondrial oxidative stress is insufficient to maintain homeostasis, mitochondrial bioenergetic dysfunction and release of pro-apoptotic mitochondrial proteins into the cytosol initiate a variety of cell death pathways, ultimately resulting in potentially lethal damage to vital organs, including the brain. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a translational activating protein that enters the nucleus in response to oxidative stress, resulting in increased expression of numerous cytoprotective genes, including genes coding for mitochondrial and non-mitochondrial antioxidant proteins. Many experimental and some FDA-approved drugs promote this process. Since mitochondria are targets of ROS, it follows that protection against mitochondrial oxidative stress by the Nrf2 pathway of gene expression contributes to neuroprotection by these drugs. This document reviews the evidence that Nrf2 activation increases mitochondrial antioxidants, thereby protecting mitochondria from dysfunction and protecting neural cells from damage and death. New experimental results are provided demonstrating that post-ischemic administration of the Nrf2 activator sulforaphane protects against hippocampal neuronal death and neurologic injury in a clinically-relevant animal model of cardiac arrest and resuscitation.
Collapse
|
23
|
Cao J, Duan Y, Liu Y, Liu H, Wei C, Wang J, Qin X, Wang X, Li Z. Metabolomics coupled with SystemsDock reveal the protective effect and the potential active components of Naozhenning granule against traumatic brain injury. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112247. [PMID: 31542470 DOI: 10.1016/j.jep.2019.112247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Naozhenning granule (NZN), a widely traditional Chinese medicine (TCM) prescription with a long history of clinical, which is mainly used in the treatment of concussion, cerebral post-traumatic syndrome, consists of Di Huang (Radix of Rehmannia glutinosa (Gaertn.) DC.), Dang Gui (Radix of Angelica sinensis (Oliv.) Diels), Chen Pi (Pericarpium of Citrus reticulata Blanco), Dan shen (Radix of Salvia Miltiorrhiza Bunge.), Di Long (Pheretima aspergillum (E. Perrier)), Mu Dan Pi (Cortex of Paeonia suffruticosa Andrews), Suan Zao Ren (Semen of Ziziphus jujuba Mill.), Chuan Xiong (Rhizoma of Ligusticum striatum DC.), Zhu Ru (Phyllostachys nigra (Lodd. Ex Lindl.) Munro), Bai Zi Ren (Semen of Platycladus orientalis (L.) Franco) and Fu Ling (sclerotium of Poria cocos (Schw.)Wolf). AIM OF THE STUDY This study aimed to unravel the mechanism and material basis of NZN against traumatic brain injury. MATERIALS AND METHODS In this study, a 1H nuclear magnetic resonance (NMR) based metabolomic approach combined with systemsDock was employed to study the protective effect of NZN against traumatic brain injury using a cerebral concussion rat model. The morris water maze test and biochemical indexes were used to evaluate the efficacy of NZN. RESULTS The results of morris water maze test suggested NZN can improve the spatial learning and memory of model rats, and the superoxide dismutas (SOD) and malonyldialdehyde (MDA) level indicated that the effect of NZN was related with the regulation of oxidative stress. Multivariate analysis revealed that the effect of NZN was related with regulation of 18 brain metabolites, and the corresponding metabolic pathways were further revealed by MetPA analysis. 13 serum absorbed components were found to hit the targets both related with the metabolic regulation and cerebral trauma through systemsDock-aided molecular docking experiments, and these compounds might be served as the active compounds in NZN against cerebral trauma. CONCLUSION 1H-NMR based metabolomics and molecular docking provided the insights for the synergistic mechanisms and the potential active compounds of NZN in treating cerebral trauma. However, the bioactive compounds and their synergistic effect need to be further validated.
Collapse
Affiliation(s)
- Jianhua Cao
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, 030006, China; College of Chemistry and Chemical Engineering of Shanxi University, Taiyuan, 030006, China
| | - Yahui Duan
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, 030006, China; College of Chemistry and Chemical Engineering of Shanxi University, Taiyuan, 030006, China
| | - Yanzhi Liu
- Shanxi Zhendong Ante Biological Pharmaceutical Co, Ltd, Jinzhong, 030600, China
| | - Haixia Liu
- Shanxi Zhendong Ante Biological Pharmaceutical Co, Ltd, Jinzhong, 030600, China
| | - Chunhong Wei
- Shanxi Zhendong Ante Biological Pharmaceutical Co, Ltd, Jinzhong, 030600, China
| | - Jiang Wang
- Shanxi Zhendong Ante Biological Pharmaceutical Co, Ltd, Jinzhong, 030600, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, 030006, China
| | - Xuwen Wang
- Shanxi Zhendong Ante Biological Pharmaceutical Co, Ltd, Jinzhong, 030600, China.
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
24
|
Niu F, Qian K, Qi H, Zhao Y, Jiang Y, Jia W, Sun M. CPCGI Reduces Gray and White Matter Injury by Upregulating Nrf2 Signaling and Suppressing Calpain Overactivation in a Rat Model of Controlled Cortical Impact. Neuropsychiatr Dis Treat 2020; 16:1929-1941. [PMID: 32904488 PMCID: PMC7455756 DOI: 10.2147/ndt.s266136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/28/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Compound porcine cerebroside and ganglioside injection (CPCGI), which involves injection of a neurotrophic drug, has been widely used to treat certain brain disorders in the clinic; however, the detailed mechanism is unknown. This study investigated whether CPCGI protects the brain from trauma by stimulating antioxidative nuclear factor erythroid-2-related factor 2 (Nrf2) signaling and suppressing calpain overactivation in a rat model of controlled cortical impact (CCI). MATERIALS AND METHODS The rat model of CCI was used. Neurological deficits, contusion, and white matter damage were evaluated 3 days after CCI. Calpain activation, Nrf2 signaling and oxidative stress were determined 24 h after CCI. RESULTS CPCGI dose-dependently reduced neurological deficits, attenuated axonal and myelin sheath injury, and decreased contusion volume 3 days post-CCI. Moreover, CPCGI reduced calpain activity, and enhanced the cytosolic levels of calpastatin, αII-spectrin, microtubule-associated protein 2 (MAP2), neurofilament heavy chain (NF-H) and myelin basic protein (MBP) in traumatic tissues 24 h post-CCI. Furthermore, CPCGI reduced the levels of nuclear Kelch-like ECH-associated protein 1 (Keap1) and thioredoxin interacting protein (TXNIP); increased the levels of cytosolic Nrf2 and thioredoxin 1 (Trx 1) and nuclear Nrf2; increased the cytosolic and nuclear Nrf2/Keap1 and Trx 1/TXNIP ratios; enhanced the levels of heme oxygenase 1 (HO-1), glutathione (GSH), superoxide dismutase activity, and total antioxidative capacity; and reduced the levels of malondialdehyde in TBI tissues. CONCLUSION These data confirm the neuroprotective effect of CPCGI against gray and white matter damage due to CCI and suggest that activating Nrf2 signaling and alleviating oxidative stress-mediated calpain activation could be one mechanism by which CPCGI protects against brain trauma.
Collapse
Affiliation(s)
- Fei Niu
- Department of Neurotrauma, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| | - Ke Qian
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Hongyan Qi
- Department of Acupuncture, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang City 222000, Jiangsu Province, People's Republic of China
| | - Yumei Zhao
- Department of Neuropharmacology, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| | - Yingying Jiang
- Department of Neuropharmacology, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Ming Sun
- Department of Neuropharmacology, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| |
Collapse
|
25
|
Sivandzade F, Bhalerao A, Cucullo L. Cerebrovascular and Neurological Disorders: Protective Role of NRF2. Int J Mol Sci 2019; 20:ijms20143433. [PMID: 31336872 PMCID: PMC6678730 DOI: 10.3390/ijms20143433] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 12/13/2022] Open
Abstract
Cellular defense mechanisms, intracellular signaling, and physiological functions are regulated by electrophiles and reactive oxygen species (ROS). Recent works strongly considered imbalanced ROS and electrophile overabundance as the leading cause of cellular and tissue damage, whereas oxidative stress (OS) plays a crucial role for the onset and progression of major cerebrovascular and neurodegenerative pathologies. These include Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD), stroke, and aging. Nuclear factor erythroid 2-related factor (NRF2) is the major modulator of the xenobiotic-activated receptor (XAR) and is accountable for activating the antioxidative response elements (ARE)-pathway modulating the detoxification and antioxidative responses of the cells. NRF2 activity, however, is also implicated in carcinogenesis protection, stem cells regulation, anti-inflammation, anti-aging, and so forth. Herein, we briefly describe the NRF2–ARE pathway and provide a review analysis of its functioning and system integration as well as its role in major CNS disorders. We also discuss NRF2-based therapeutic approaches for the treatment of neurodegenerative and cerebrovascular disorders.
Collapse
Affiliation(s)
- Farzane Sivandzade
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Aditya Bhalerao
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
- Center for Blood Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
26
|
Dong W, Sun Y, Cheng H, Yang B, Wang L, Jiang Z, Li B, Wen S, Guo X, Guan D, Zhao R. Dynamic cell type-specific expression of Nrf2 after traumatic brain injury in mice. Eur J Neurosci 2019; 50:1981-1993. [PMID: 30828870 DOI: 10.1111/ejn.14399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 02/22/2019] [Indexed: 12/19/2022]
Abstract
Nrf2 plays a pivotal role in antioxidant response and anti-inflammation after traumatic brain injury (TBI), and its deletion aggravates TBI-induced brain damage. Previous studies have demonstrated that Nrf2 is activated post TBI, but dynamic changes in expression and cell type-specific characteristics remain unclear. In this study, the Feeney weight-drop contusion model was conducted to mimic TBI, and the ipsilateral cerebral cortex was collected at 1, 3, 7 and 14 days post TBI (dpi). Nrf2 protein levels were observed by western blot. Cell type-specific localization of Nrf2 after TBI was detected at different time intervals by double immunofluorescence staining. NeuN, GFAP, IBA1 and NG2 were used as cell type-specific markers to neurons, astrocytes, microglia and NG2 glia, respectively. After TBI, Nrf2 protein levels peaked at 1 dpi. Robust transient Nrf2 accumulation was co-localized with neurons, which was predominant at 1 dpi. Continuous weak Nrf2 expression was detected in activated astrocytes, and the number of double positive cells peaked at 7 dpi. Inducible widespread immunostaining of Nrf2 was observed in the nucleus of the microglia, and the number of Nrf2+ microglia peaked at 7 dpi. In addition, we also explored colocalization of Nrf2 in NG2 glia, in which the percentage of Nrf2+ in NG2 glia reached a climax at 3 dpi. This study reveals that the accumulation of endogenous Nrf2 might mediate different pathophysical roles in neurons and glias after TBI, the cell-type specific and time-dependent expression provide insights to explain the roles of Nrf2 in different neural cells.
Collapse
Affiliation(s)
- Wenwen Dong
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Yingfu Sun
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Hao Cheng
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Bei Yang
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Linlin Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Zhenfei Jiang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Bingxuan Li
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Shuheng Wen
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Xiangshen Guo
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Dawei Guan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, China
| | - Rui Zhao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, China
| |
Collapse
|
27
|
Sivandzade F, Prasad S, Bhalerao A, Cucullo L. NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: Molecular mechanisms and possible therapeutic approaches. Redox Biol 2019; 21:101059. [PMID: 30576920 PMCID: PMC6302038 DOI: 10.1016/j.redox.2018.11.017] [Citation(s) in RCA: 461] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022] Open
Abstract
Electrophiles and reactive oxygen species (ROS) play a major role in modulating cellular defense mechanisms as well as physiological functions, and intracellular signaling. However, excessive ROS generation (endogenous and exogenous) can create a state of redox imbalance leading to cellular and tissue damage (Ma and He, 2012) [1]. A growing body of research data strongly suggests that imbalanced ROS and electrophile overproduction are among the major prodromal factors in the onset and progression of several cerebrovascular and neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), stroke, Alzheimer's disease (AD), Parkinson's disease (PD), and aging (Ma and He, 2012; Ramsey et al., 2017; Salminen et al., 2012; Sandberg et al., 2014; Sarlette et al., 2008; Tanji et al., 2013) [1-6]. Cells offset oxidative stress by the action of housekeeping antioxidative enzymes (such as superoxide dismutase, catalase, glutathione peroxidase) as well direct and indirect antioxidants (Dinkova-Kostova and Talalay, 2010) [7]. The DNA sequence responsible for modulating the antioxidative and cytoprotective responses of the cells has been identified as the antioxidant response element (ARE), while the nuclear factor erythroid 2-related factor (NRF2) is the major regulator of the xenobiotic-activated receptor (XAR) responsible for activating the ARE-pathway, thus defined as the NRF2-ARE system (Ma and He, 2012) [1]. In addition, the interplay between the NRF2-ARE system and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB, a protein complex that controls cytokine production and cell survival), has been further investigated in relation to neurodegenerative and neuroinflammatory disorders. On these premises, we provide a review analysis of current understanding of the NRF2-NF-ĸB interplay, their specific role in major CNS disorders, and consequent therapeutic implication for the treatment of neurodegenerative and cerebrovascular diseases.
Collapse
Affiliation(s)
- Farzane Sivandzade
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Shikha Prasad
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Aditya Bhalerao
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Center for Blood Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
28
|
Zhang M, Huang LL, Teng CH, Wu FF, Ge LY, Shi YJ, He ZL, Liu L, Jiang CJ, Hou RN, Xiao J, Zhang HY, Chen DQ. Isoliquiritigenin Provides Protection and Attenuates Oxidative Stress-Induced Injuries via the Nrf2-ARE Signaling Pathway After Traumatic Brain Injury. Neurochem Res 2018; 43:2435-2445. [PMID: 30446968 DOI: 10.1007/s11064-018-2671-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/14/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) is a serious public health and medical problem worldwide. Oxidative stress plays a vital role in the pathogenesis of TBI. Nuclear factor erythroid 2-related factor 2 (Nrf2), an important factor in the cellular defense against oxidative stress, is activated following TBI. In this study, the protective effects of Isoliquiritigenin (ILG), a promising antioxidant stress drug, was evaluated as a protective agent against TBI. In a mouse model of controlled cortical impact Injury, we found that the ILG administration reduced the Garcia neuroscore, injury histopathology, brain water content, cerebral vascular permeability, the expression of cleaved caspase3, aquaporin-4, glial fibrillary acidic protein and the increased the expression of neurofilament light chain protein, indicating the protective effects against TBI in vivo. ILG treatment after TBI also restored the oxidative stress and promoted the Nrf2 protein transfer from the cytoplasm to the nucleus. We then used Nrf2-/- mice to test the protective effect of Nrf2 during ILG treatment of TBI. Our findings indicated that Nrf2-/- mice had greater brain injury and oxidative stress than wild-type (WT) mice and ILG was less effective at inhibiting oxidative stress and repairing the brain injury than in the WT mice. In vitro studies in SY5Y cells under oxygen glucose deprivation/re-oxygenation stimulation yielded results that were consistent with those obtained in vivo showing that ILG promotes Nrf2 protein transfer from the cytoplasm to the nucleus. Taken together, our findings demonstrate that Nrf2 is an important protective factor against TBI-induced injuries, which indicates that the protective effects of ILG are mediated by inhibiting oxidative stress after TBI via a mechanism that involves the promotion of Nrf2 protein transfer from the cytoplasm to the nucleus.
Collapse
Affiliation(s)
- Man Zhang
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li-Li Huang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chen-Huai Teng
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fang-Fang Wu
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li-Yun Ge
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu-Juan Shi
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zheng-Le He
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Liu
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cheng-Jie Jiang
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ruo-Nan Hou
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hong-Yu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Da-Qing Chen
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
29
|
Li F, Guo S, Wang H, Huang X, Tan X, Cai Q, Zhang Q, Wang C, Hu J, Lin W. Yiqi Huoxue Decoction attenuates ischemia/hypoxia-induced oxidative stress injury in H9c2 cardiomyocytes. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2018. [DOI: 10.1016/j.jtcms.2018.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
30
|
Ma MW, Wang J, Dhandapani KM, Wang R, Brann DW. NADPH oxidases in traumatic brain injury - Promising therapeutic targets? Redox Biol 2018; 16:285-293. [PMID: 29571125 PMCID: PMC5952873 DOI: 10.1016/j.redox.2018.03.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Despite intense investigation, no neuroprotective agents for TBI have yet translated to the clinic. Recent efforts have focused on identifying potential therapeutic targets that underlie the secondary TBI pathology that evolves minutes to years following the initial injury. Oxidative stress is a key player in this complex cascade of secondary injury mechanisms and prominently contributes to neurodegeneration and neuroinflammation. NADPH oxidase (NOX) is a family of enzymes whose unique function is to produce reactive oxygen species (ROS). Human post-mortem and animal studies have identified elevated NOX2 and NOX4 levels in the injured brain, suggesting that these two NOXs are involved in the pathogenesis of TBI. In support of this, NOX2 and NOX4 deletion studies have collectively revealed that targeting NOX enzymes can reduce oxidative stress, attenuate neuroinflammation, promote neuronal survival, and improve functional outcomes following TBI. In addition, NOX inhibitor studies have confirmed these findings and demonstrated an extended critical window of efficacious TBI treatment. Finally, the translational potential, caveats, and future directions of the field are highlighted and discussed throughout the review.
Collapse
Affiliation(s)
- Merry W Ma
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ruimin Wang
- Department of Neurobiology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
31
|
All-Trans Retinoic Acid Ameliorates the Early Experimental Cerebral Ischemia-Reperfusion Injury in Rats by Inhibiting the Loss of the Blood-Brain Barrier via the JNK/P38MAPK Signaling Pathway. Neurochem Res 2018; 43:1283-1296. [PMID: 29802528 DOI: 10.1007/s11064-018-2545-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 12/16/2022]
Abstract
All-trans retinoic acid (ATRA) influences the outcomes of cerebral ischemic reperfusion (CIR) injury, but the mechanism remains unclear. The present study aimed to investigate the effects of ATRA on loss of the blood brain barrier (BBB) following CIR and to explore the possible mechanisms. Transient middle cerebral artery occlusion was performed on male SD rats to construct an in vivo CIR model. Neurological deficits, BBB permeability, brain edema, MRI and JNK/P38 MAPK proteins were detected at 24 h following CIR. We demonstrated that ATRA pretreatment could alleviate CIR-induced neurological deficits, increase of BBB permeability, infarct volume, degradation of tight junction proteins, inhibit MMP-9 protein expression and activity. ATRA treatment also reduced the p-P38 and p-JNK protein level. However the protective effect of ATRA on CIR could be reversed by administration of retinoic acid alpha receptor antagonist Ro41-5253. SP600125 and SB203580, which is the JNK/P38 pathway inhibitors has the same protective effect as ATRA. These results indicated that ATRA may inhibit the JNK/P38 MAPK pathway to alleviate BBB disruption and improve CIR outcomes.
Collapse
|
32
|
Dong W, Yang B, Wang L, Li B, Guo X, Zhang M, Jiang Z, Fu J, Pi J, Guan D, Zhao R. Curcumin plays neuroprotective roles against traumatic brain injury partly via Nrf2 signaling. Toxicol Appl Pharmacol 2018; 346:28-36. [PMID: 29571711 DOI: 10.1016/j.taap.2018.03.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 12/28/2022]
Abstract
Traumatic brain injury (TBI), which leads to high mortality and morbidity, is a prominent public health problem worldwide with no effective treatment. Curcumin has been shown to be beneficial for neuroprotection in vivo and in vitro, but the underlying mechanism remains unclear. This study determined whether the neuroprotective role of curcumin in mouse TBI is dependent on the NF-E2-related factor (Nrf2) pathway. The Feeney weight-drop contusion model was used to mimic TBI. Curcumin was administered intraperitoneally 15 min after TBI induction, and brains were collected at 24 h after TBI. The levels of Nrf2 and its downstream genes (Hmox-1, Nqo1, Gclm, and Gclc) were detected by Western blot and qRT-PCR at 24 h after TBI. In addition, edema, oxidative damage, cell apoptosis and inflammatory reactions were evaluated in wild type (WT) and Nrf2-knockout (Nrf2-KO) mice to explore the role of Nrf2 signaling after curcumin treatment. In wild type mice, curcumin treatment resulted in reduced ipsilateral cortex injury, neutrophil infiltration, and microglia activation, improving neuron survival against TBI-induced apoptosis and degeneration. These effects were accompanied by increased expression and nuclear translocation of Nrf2, and enhanced expression of antioxidant enzymes. However, Nrf2 deletion attenuated the neuroprotective effects of curcumin in Nrf2-KO mice after TBI. These findings demonstrated that curcumin effects on TBI are associated with the activation the Nrf2 pathway, providing novel insights into the neuroprotective role of Nrf2 and the potential therapeutic use of curcumin for TBI.
Collapse
Affiliation(s)
- Wenwen Dong
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Bei Yang
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
| | - Linlin Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Bingxuan Li
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Xiangshen Guo
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Miao Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Zhenfei Jiang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical Univeristy, Shenyang 110122, China
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical Univeristy, Shenyang 110122, China
| | - Dawei Guan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China.
| | - Rui Zhao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang 110122, China.
| |
Collapse
|
33
|
Zhang D, Xiao Y, Lv P, Teng Z, Dong Y, Qi Q, Liu Z. Edaravone attenuates oxidative stress induced by chronic cerebral hypoperfusion injury: role of ERK/Nrf2/HO-1 signaling pathway. Neurol Res 2017; 40:1-10. [PMID: 29125058 DOI: 10.1080/01616412.2017.1376457] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Objectives The potential protective effects and mechanisms of edaravone have not been well elucidated in vascular dementia (VaD) induced by chronic cerebral hypoperfusion (CCH). The aim of this study was to investigate whether edaravone could improve cognitive damage in rats induced by CCH, and whether the effects of edaravone were associated with ERK/Nrf2/HO-1 signaling pathway. Methods CCH was induced by bilateral common carotid arteries occlusion (BCCAO). Sprague-Dawley (SD) rats were randomly divided into four groups: sham (sham-operated) group, vehicle (BCCAO + normal saline) group, edaravone3.0 group and edaravone6.0 group. The edaravone3.0 and edaravone6.0 group rats were provided 3.0 mg/kg and 6.0 mg/kg of edaravone, respectively, intraperitoneal (i.p.) injection twice daily following the first day after BCCAO. In this experiment, the spatial learning and memory were assessed using the Morris water maze. The malondialdehyde (MDA) contents and superoxide dismutase (SOD) activities in the hippocampus were measured biochemically. And, the levels of total ERK1/2 (t-ERK1/2), Phospho-ERK1/2 (p-ERK1/2), total Nrf2 (t-Nrf2), nuclear Nrf2 (n-Nrf2), and HO-1 were assessed by western blot. Results The results showed that the treatment with edaravone significantly improved CCH-induced cognitive damage, and boosted endogenous antioxidants SOD activity and HO-1 level, decreased MDA contents in the hippocampus by activating Nrf2 signaling pathway which was related to ERK1/2. We also found that the neuronal morphology of the hippocampal CA1 area significantly improved and the number of Nrf2 positive cells markedly increased in the edaravone treatment groups. Conclusion Our results demonstrated a neuroprotective effect of edaravone on hippocampus against oxidative stress and cognitive deficit induced by CCH. The mechanism may be related to the enhancement of antioxidant defense system by activating ERK/Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Dandan Zhang
- a Hebei Medical University , Shijiazhuang , China.,b Department of Neurology , Hebei General Hospital , Shijiazhuang , China
| | - Yining Xiao
- b Department of Neurology , Hebei General Hospital , Shijiazhuang , China
| | - Peiyuan Lv
- a Hebei Medical University , Shijiazhuang , China.,b Department of Neurology , Hebei General Hospital , Shijiazhuang , China
| | - Zhenjie Teng
- a Hebei Medical University , Shijiazhuang , China.,b Department of Neurology , Hebei General Hospital , Shijiazhuang , China
| | - Yanhong Dong
- b Department of Neurology , Hebei General Hospital , Shijiazhuang , China
| | - Qianqian Qi
- b Department of Neurology , Hebei General Hospital , Shijiazhuang , China
| | - Zhijuan Liu
- b Department of Neurology , Hebei General Hospital , Shijiazhuang , China
| |
Collapse
|
34
|
Tan D, Yu X, Chen M, Chen J, Xu J. Lutein protects against severe traumatic brain injury through anti‑inflammation and antioxidative effects via ICAM‑1/Nrf‑2. Mol Med Rep 2017; 16:4235-4240. [PMID: 28731190 DOI: 10.3892/mmr.2017.7040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 03/16/2017] [Indexed: 02/05/2023] Open
Abstract
Many studies have reported that lutein may exert its biological activities, including anti‑inflammation, anti‑oxidase and anti‑apoptosis, through effects on reactive oxygen species (ROS). Thus, lutein may prevent the damaging activities of ROS in cells. The current study investigated the effect of lutein against severe traumatic brain injury (STBI) and examined the mechanism of this protective effect. Sprague‑Dawley rats were randomly divided into 5 groups: Control group, STBI model group, 40 mg/kg lutein‑treated group, 80 mg/kg lutein‑treated group and 160 mg/kg lutein‑treated group. In this study, lutein protects against STBI, suppressed, interleukin (IL)‑1β, IL‑6 and monocyte chemoattractant protein‑1 expression, reduced serum ROS levels, and reduced superoxide dismutase and glutathione peroxidase activities in STBI rats. Treatment with lutein effectively downregulated the expression of NF‑κB p65 and cyclooxygenase‑2, intercellular adhesion molecule (ICAM)‑1 protein, and upregulated nuclear factor erythroid 2 like 2 (Nrf‑2) and endothelin‑1 protein levels in STBI rats. These findings demonstrated that lutein protects against STBI, has anti‑inflammation and antioxidative effects and alters ICAM‑1/Nrf‑2 expression, which may be a novel therapeutic for STBI the clinic.
Collapse
Affiliation(s)
- Dianhui Tan
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Xiaoping Yu
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Moran Chen
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Junchen Chen
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Jincheng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| |
Collapse
|
35
|
Targeting the NF-E2-Related Factor 2 Pathway: a Novel Strategy for Traumatic Brain Injury. Mol Neurobiol 2017; 55:1773-1785. [PMID: 28224478 DOI: 10.1007/s12035-017-0456-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/13/2017] [Indexed: 12/30/2022]
Abstract
As an essential component of cellular defense against a variety of endogenous and exogenous stresses, nuclear factor erythroid 2-related factor 2 (Nrf2) has received increased attention in the past decades. Multiple studies indicate that Nrf2 acts not only as an important protective factor in injury models but also as a downstream target of therapeutic agents. Activation of Nrf2 has increasingly been linked to many human diseases, especially in central nervous system (CNS) injury such as traumatic brain injury (TBI). Several researches have deciphered that activation of Nrf2 exerts antioxidative stress, antiapoptosis, and antiinflammation influence in TBI via different molecules and pathways including heme oxygenase-1 (HO-1), NADPH:quinine oxidoreductase-1 (NQO-1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2). Hence, Nrf2 shows great promise as a molecular target in TBI. In the present article, we provide an updated review of the current state of our knowledge about relationship between Nrf2 and TBI, highlighting the specific roles of Nrf2 in TBI.
Collapse
|
36
|
Wei G, Chen B, Lin Q, Li Y, Luo L, He H, Fu H. Tetrahydrocurcumin Provides Neuroprotection in Experimental Traumatic Brain Injury and the Nrf2 Signaling Pathway as a Potential Mechanism. Neuroimmunomodulation 2017; 24:348-355. [PMID: 29669346 DOI: 10.1159/000487998] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/22/2018] [Indexed: 01/10/2023] Open
Abstract
The protective effect of tetrahydrocurcumin (THC) after experimental traumatic brain injury (TBI) has been demonstrated, as demonstrated by the inhibition of oxidative stress, mitochondrial dysfunction, and apoptosis. However, the mechanisms underlying this effect are still not well understood. This study was to investigate the neuroprotective effects of THC, and its potential mechanisms, in a rat model of TBI. To this end, rats were divided into 4 groups: the sham group, the TBI group, the TBI + vehicle (V) group, and the TBI + THC group. THC or V was administered via intraperitoneal injection to rats in the TBI + V and TBI + THC groups 30 min after TBI. After euthanasia (24 h after TBI), neurological scores, brain water content, and neuronal cell death in the cerebral cortex were recorded. Brain samples were collected after neurological scoring for further analysis. THC treatment alleviated brain edema, attenuated TBI-induced neuronal cell apoptosis, and improved neurobehavioral function. In addition, NFE2-related factor 2 (Nrf2) expression was upregulated following TBI. These results suggest that THC improves neurological outcome after TBI, possibly by activating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Guan Wei
- Emergency Department, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Bingji Chen
- Emergency Department, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Qingjiang Lin
- Emergency Department, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Yasong Li
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Liangqin Luo
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Hefan He
- Department of Anesthesia, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Huangde Fu
- Department of Neurosurgery, Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, China
| |
Collapse
|
37
|
Chiu CC, Liao YE, Yang LY, Wang JY, Tweedie D, Karnati HK, Greig NH, Wang JY. Neuroinflammation in animal models of traumatic brain injury. J Neurosci Methods 2016; 272:38-49. [PMID: 27382003 PMCID: PMC5201203 DOI: 10.1016/j.jneumeth.2016.06.018] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and morbidity worldwide. Neuroinflammation is prominent in the short and long-term consequences of neuronal injuries that occur after TBI. Neuroinflammation involves the activation of glia, including microglia and astrocytes, to release inflammatory mediators within the brain, and the subsequent recruitment of peripheral immune cells. Various animal models of TBI have been developed that have proved valuable to elucidate the pathophysiology of the disorder and to assess the safety and efficacy of novel therapies prior to clinical trials. These models provide an excellent platform to delineate key injury mechanisms that associate with types of injury (concussion, contusion, and penetration injuries) that occur clinically for the investigation of mild, moderate, and severe forms of TBI. Additionally, TBI modeling in genetically engineered mice, in particular, has aided the identification of key molecules and pathways for putative injury mechanisms, as targets for development of novel therapies for human TBI. This Review details the evidence showing that neuroinflammation, characterized by the activation of microglia and astrocytes and elevated production of inflammatory mediators, is a critical process occurring in various TBI animal models, provides a broad overview of commonly used animal models of TBI, and overviews representative techniques to quantify markers of the brain inflammatory process. A better understanding of neuroinflammation could open therapeutic avenues for abrogation of secondary cell death and behavioral symptoms that may mediate the progression of TBI.
Collapse
Affiliation(s)
- Chong-Chi Chiu
- Department of General Surgery, Chi Mei Medical Center, Tainan and Liouying, Taiwan
| | - Yi-En Liao
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ling-Yu Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jing-Ya Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Hanuma K Karnati
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
38
|
Wei Y, Gong J, Xu Z, Duh EJ. Nrf2 promotes reparative angiogenesis through regulation of NADPH oxidase-2 in oxygen-induced retinopathy. Free Radic Biol Med 2016; 99:234-243. [PMID: 27521459 PMCID: PMC8565612 DOI: 10.1016/j.freeradbiomed.2016.08.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/01/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
Abstract
Revascularization of ischemic tissue is a highly desirable outcome in multiple diseases, including cardiovascular diseases and ischemic retinopathies. Oxidative stress and inflammation are both known to play a role in suppressing reparative angiogenesis in ischemic disease models including oxygen-induced retinopathy (OIR), but the regulatory molecules governing these pathophysiologic processes in retinal ischemia are largely unknown. Nrf2 is a major stress-response transcription factor that has been implicated in regulating ischemic angiogenesis in the retina and other tissue beds. Using Nrf2-deficient mice, we investigated the effects of Nrf2 in regulating revascularization and modulating the retinal tissue milieu during ischemia. Strikingly, Nrf2's beneficial effect on reparative angiogenesis only became manifested in the later phase of ischemia in OIR, from postnatal day 14 (P14) to P17. This was temporally associated with a reduction in both oxidative stress and inflammatory mediators in wild-type compared to Nrf2-/- mice. Nrf2-/- retinas exhibited an increase in VEGF but also induction of anti-angiogenic Dll4/Notch signaling. NADPH oxidase (NOX), and especially NOX2, is a major pathogenic molecule and a particularly important contributor to oxidative stress in multiple retinal disease processes. Nrf2-/- mice exhibited a significant exacerbation of NOX2 induction in OIR that manifested in the later phases of ischemia. Pharmacologic inhibition of NADPH oxidase abrogated the adverse effect of Nrf2 deficiency on reparative angiogenesis. Taken together, this suggests that Nrf2 is an important regulator of the retinal milieu during tissue ischemia, and that the Nrf2/NOX2 balance may play a critical role in determining the fate of ischemic revascularization.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Animals, Newborn
- Calcium-Binding Proteins
- Gene Expression Regulation
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Ischemia/genetics
- Ischemia/metabolism
- Ischemia/pathology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NADPH Oxidase 2/genetics
- NADPH Oxidase 2/metabolism
- NF-E2-Related Factor 2/deficiency
- NF-E2-Related Factor 2/genetics
- Neovascularization, Pathologic/chemically induced
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Oxidative Stress
- Oxygen/adverse effects
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Retina/drug effects
- Retina/metabolism
- Retina/pathology
- Retinitis/chemically induced
- Retinitis/genetics
- Retinitis/metabolism
- Retinitis/pathology
- Signal Transduction
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Yanhong Wei
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Junsong Gong
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhenhua Xu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elia J Duh
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
39
|
Polito F, Cicciu' M, Aguennouz M, Cucinotta M, Cristani M, Lauritano F, Sindoni A, Gioffre'-Florio M, Fama F. Prognostic value of HMGB1 and oxidative stress markers in multiple trauma patients: A single-centre prospective study. Int J Immunopathol Pharmacol 2016; 29:504-9. [PMID: 27343243 DOI: 10.1177/0394632016656187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/01/2016] [Indexed: 11/15/2022] Open
Abstract
Serious multiple traumatic injuries may rapidly become fatal or be complicated by a life-threatening sequelae leading to a significant increase of the mortality rate. Trauma scoring systems are used to evaluate the critical status of the patient and recently many different biomarkers have been taken into account to better estimate the potential clinical outcome. The aim of the present study is to analyse the expression pattern of high-mobility group box-1 (HMGB1), oxidative stress markers and nuclear factor erythroid 2-related (Nrf2) in critically ill traumatic patients (at hospital admittance and after 6 and 24 h), in order to find out their potential role as early post-traumatic predictors markers. Forty-seven patients admitted for multiple trauma and 15 healthy participants were prospectively recruited. Eight patients (17%) died within 92 h of admission; this subgroup of patients presented the highest severity scores and their HMGB1 expression levels were significantly correlated with ISS, whereas patients with higher ISS exhibited higher levels of HMGB1 (P <0.001). Our study suggests the role of HMGB1 as a predictive biomarker of outcome in injured patients and hypothesizes the protective role of Nrf2 in bringing down the oxidative stress and HMGB1 release; measuring HMGB1 in combination with Nrf2 might represent a potentially useful tool in the early detection of post-trauma complications.
Collapse
Affiliation(s)
- Francesca Polito
- Department of Biomedical and Dental Sciences and of Morphological and Functional Images, University Hospital of Messina, Messina, Italy
| | - Marco Cicciu'
- Department of Human Pathology, University Hospital of Messina, Messina, Italy
| | - Mohammed Aguennouz
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
| | - Maria Cucinotta
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
| | - Mariateresa Cristani
- Department of Drug Sciences and Health Products, University of Messina, Messina, Italy
| | - Floriana Lauritano
- Department of Biomedical and Dental Sciences and of Morphological and Functional Images, University Hospital of Messina, Messina, Italy
| | - Alessandro Sindoni
- Department of Biomedical and Dental Sciences and of Morphological and Functional Images, University Hospital of Messina, Messina, Italy
| | | | - Fausto Fama
- Department of Human Pathology, University Hospital of Messina, Messina, Italy
| |
Collapse
|
40
|
Martín-Hernández D, Bris ÁG, MacDowell KS, García-Bueno B, Madrigal JLM, Leza JC, Caso JR. Modulation of the antioxidant nuclear factor (erythroid 2-derived)-like 2 pathway by antidepressants in rats. Neuropharmacology 2015; 103:79-91. [PMID: 26686388 DOI: 10.1016/j.neuropharm.2015.11.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/11/2015] [Accepted: 11/28/2015] [Indexed: 12/30/2022]
Abstract
Patients with major depression who are otherwise medically healthy have activated inflammatory pathways in their organism. It has been described that depression is not only escorted by inflammation but also by induction of multiple oxidative/nitrosative stress pathways. Nevertheless, there are finely regulated mechanisms involved in preserving cells from damage, such as the antioxidant nuclear transcription factor Nrf2. We aim to explore in a depression-like model the Nrf2 pathway in the prefrontal cortex (PFC) and the hippocampus of rats and to analyze whether antidepressants affect the antioxidant activity of the Nrf2 pathway. Male Wistar rats were exposed to chronic mild stress (CMS) and some of them were treated with desipramine, escitalopram or duloxetine. We studied the expression of upstream and downstream elements of the Nrf2 pathway and the oxidative damage induced by the CMS. After CMS, there is an inhibition of upstream and downstream elements of the Nrf2 pathway in the PFC (e.g. PI3K/Akt, GPx…). Moreover, antidepressant treatments, particularly desipramine and duloxetine, are able to recover some of these elements and to reduce the oxidative damage induced by the CMS. However, in the hippocampus, Nrf2 pathways are not that affected and antidepressants do not have many actions. In conclusion, Nrf2 pathway is differentially regulated by antidepressants in the PFC and hippocampus. The Nrf2 pathway is involved in the oxidative/nitrosative damage detected in the PFC and antidepressants have a therapeutic action through this pathway. However, it seems that Nrf2 is not involved in the effects caused by CMS in the hippocampus.
Collapse
Affiliation(s)
- David Martín-Hernández
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (UCM), Avda. Complutense s/n, 28040, Madrid, Spain
| | - Álvaro G Bris
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (UCM), Avda. Complutense s/n, 28040, Madrid, Spain
| | - Karina S MacDowell
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (UCM), Avda. Complutense s/n, 28040, Madrid, Spain
| | - Borja García-Bueno
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (UCM), Avda. Complutense s/n, 28040, Madrid, Spain
| | - José L M Madrigal
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (UCM), Avda. Complutense s/n, 28040, Madrid, Spain
| | - Juan C Leza
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (UCM), Avda. Complutense s/n, 28040, Madrid, Spain.
| | - Javier R Caso
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (UCM), Avda. Complutense s/n, 28040, Madrid, Spain; Department of Psychiatry, School of Medicine, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (UCM), Avda. Complutense s/n, 28040, Madrid, Spain.
| |
Collapse
|
41
|
SOD2 Mediates Amifostine-Induced Protection against Glutamate in PC12 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:4202437. [PMID: 26770652 PMCID: PMC4685138 DOI: 10.1155/2016/4202437] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 12/31/2022]
Abstract
Background. Cytoprotectant amifostine attenuates radiation-induced oxidative injury by increasing intracellular manganese superoxide dismutase (SOD2) in peripheral tissue. However, whether amifostine could protect neuronal cells against oxidative injury has not been reported. The purpose of this study is to explore the protection of amifostine in PC12 cells. Methods. PC12 cells exposed to glutamate were used to mimic neuronal oxidative injury. SOD assay kit was taken to evaluate intracellular Cu/Zn SOD (SOD1) and SOD2 activities; western blot analysis and immunofluorescence staining were performed to investigate SOD2 protein expression; MTT, lactate dehydrogenase (LDH), release and cell morphology were used to evaluate cell injury degree, and apoptotic rate and cleaved caspase-3 expression were taken to assess apoptosis; mitochondrial superoxide production, intracellular reactive oxygen species (ROS), and glutathione (GSH) and catalase (CAT) levels were evaluated by reagent kits. Results. Amifostine increased SOD2 activity and expression, decreased cell injury and apoptosis, reduced mitochondrial superoxide production and intracellular ROS generation, and restored intracellular GSH and CAT levels in PC12 cells exposed to glutamate. SOD2-siRNA, however, significantly reversed the amifostine-induced cytoprotective and antioxidative actions. Conclusion. SOD2 mediates amifostine-induced protection in PC12 cells exposed to glutamate.
Collapse
|