1
|
Shoja A, Sani M, Mirzohreh ST, Ebrahimi MJ, Moafi M, Balaghirad N, Jafary H, Sagharichi M, Aalipour MA, Yassaghi Y, Nazerian Y, Moghaddam MH, Bayat AH, Ashraf H, Aliaghaei A, Olyayi PDB. Dental stem cells improve memory and reduce cell death in rat seizure model. Anat Sci Int 2025; 100:37-53. [PMID: 38782867 DOI: 10.1007/s12565-024-00781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Epilepsy is a common neurological disorder that significantly affects the quality of life of patients. In this study, we aim to evaluate the effectiveness of dental pulp stem cell (DPSC) transplantation in decreasing inflammation and cell death in brain cells, thus reducing seizure damage. We induced seizures in rats using intraperitoneal injections of pentylenetetrazole (PTZ). In the PTZ + DPSC group, we conducted bilateral hippocampal transplantation of DPSCs in PTZ-lesioned rat models. After 1 month, we performed post-graft analysis and measured some behavioral factors, such as working memory and long-term memory, using a T-maze test and passive avoidance test, respectively. We investigated the immunohistopathology and distribution of astrocyte cells through light microscopy and Sholl analysis. Additionally, we employed the Voronoi tessellation method to estimate the spatial distribution of the cells in the hippocampus. Compared to the control group, we observed a reduction in astrogliosis, astrocyte process length, the number of branches, and intersections distal to the soma in the hippocampus of the PTZ + DPSC group. Further analysis indicated that the grafted DPSCs decreased the expression of caspase-3 in the hippocampus of rats with induced seizures. Moreover, the DPSCs transplant protected hippocampal pyramidal neurons against PTZ toxicity and improved the spatial distribution of the hippocampal neurons. Our findings suggest that DPSCs transplant can be an effective modifier of astrocyte reactivation and inflammatory responses.
Collapse
Affiliation(s)
- Aliakbar Shoja
- Department of Endodontics, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Sani
- Integrative Brain Health and Wellness, Neuroscience, Neuronutrition, Psychology, Rehabilitation and Physiotherapy, Neurocognitive, Cognitive Enhancement, Brain Health Optimization, SNSI-Sanineurosapiens Institute, Hanover, Germany
| | | | - Mohammad Javad Ebrahimi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maral Moafi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nika Balaghirad
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hosein Jafary
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mastoore Sagharichi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Aalipour
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Younes Yassaghi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Nazerian
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Hassani Moghaddam
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| | - Amir-Hossein Bayat
- Department of Basic Sciences, Saveh University of Medical Sciences, Saveh, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hengameh Ashraf
- Department of Endodontics, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
2
|
Lisjak D, Alić I, Šimunić I, Mitrečić D. Transplantation of neural stem cells improves recovery of stroke-affected mice and induces cell-specific changes in GSDMD and MLKL expression. Front Mol Neurosci 2024; 17:1439994. [PMID: 39210936 PMCID: PMC11358122 DOI: 10.3389/fnmol.2024.1439994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Stroke, the second leading cause of death and disability in Europe, is primarily caused by interrupted blood supply, leading to ischemia-reperfusion (IR) injury and subsequent neuronal death. Current treatment options are limited, highlighting the need for novel therapies. Neural stem cells (NSCs) have shown promise in treating various neurological disorders, including stroke. However, the underlying mechanisms of NSC-mediated recovery remain unclear. Methods Eighty C57Bl/6-Tyrc-Brd mice underwent ischemic stroke induction and were divided into four groups: sham, stroke-affected, stroke-affected with basal cell medium injection, and stroke-affected with NSCs transplantation. NSCs, isolated from mouse embryos, were stereotaxically transplanted into the stroke-affected brains. Magnetic resonance imaging (MRI) and neurological scoring were used to assess recovery. Immunohistochemical analysis and gene expression assays were performed to evaluate pyroptosis and necroptosis markers. Results NSC transplantation significantly improved neurological recovery compared to control groups. In addition, although not statistically significant, NSCs reduced stroke volume. Immunohistochemical analysis revealed upregulation of Gasdermin D (GSDMD) expression post-stroke, predominantly in microglia and astrocytes. However, NSC transplantation led to a reduction in GSDMD signal intensity in astrocytes, suggesting an effect of NSCs on GSDMD activity. Furthermore, NSCs downregulated Mixed Lineage Kinase Domain-Like Protein (Mlkl) expression, indicating a reduction in necroptosis. Immunohistochemistry demonstrated decreased phosphorylated MLKL (pMLKL) signal intensity in neurons while stayed the same in astrocytes following NSC transplantation, along with increased distribution in microglia. Discussion NSC transplantation holds therapeutic potential in stroke recovery by targeting pyroptosis and necroptosis pathways. These findings shed light on the mechanisms underlying NSC-mediated neuroprotection and support their further exploration as a promising therapy for stroke patients.
Collapse
Affiliation(s)
- Damir Lisjak
- Laboratory for Stem Cells, Department for Regenerative Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Alić
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Iva Šimunić
- Laboratory for Stem Cells, Department for Regenerative Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dinko Mitrečić
- Laboratory for Stem Cells, Department for Regenerative Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
3
|
Li H, Sun H, Li S, Huang L, Zhang M, Wang S, Liu Q, Ying J, Zhao F, Su X, Mu D, Qu Y. Hydrogen alleviates hypoxic-ischaemic brain damage in neonatal rats by inhibiting injury of brain pericytes. J Cell Mol Med 2024; 28:e18505. [PMID: 39001579 PMCID: PMC11245570 DOI: 10.1111/jcmm.18505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024] Open
Abstract
Hypoxia-ischaemia (HI) can induce the death of cerebrovascular constituent cells through oxidative stress. Hydrogen is a powerful antioxidant which can activate the antioxidant system. A hypoxia-ischaemia brain damage (HIBD) model was established in 7-day-old SD rats. Rats were treated with different doses of hydrogen-rich water (HRW), and brain pericyte oxidative stress damage, cerebrovascular function and brain tissue damage were assessed. Meanwhile, in vitro-cultured pericytes were subjected to oxygen-glucose deprivation and treated with different concentrations of HRW. Oxidative injury was measured and the molecular mechanism of how HRW alleviated oxidative injury of pericytes was also examined. The results showed that HRW significantly attenuated HI-induced oxidative stress in the brain pericytes of neonatal rats, partly through the Nrf2-HO-1 pathway, further improving cerebrovascular function and reducing brain injury and dysfunction. Furthermore, HRW is superior to a single-cell death inhibitor for apoptosis, ferroptosis, parthanatos, necroptosis and autophagy and can better inhibit HI-induced pericyte death. The liver and kidney functions of rats were not affected by present used HRW dose. This study elucidates the role and mechanism of hydrogen in treating HIBD from the perspective of pericytes, providing new theoretical evidence and mechanistic references for the clinical application of hydrogen in neonatal HIE.
Collapse
Affiliation(s)
- Hui Li
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hao Sun
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shiping Li
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lingyi Huang
- Department of Orthodontics, West China College of Stomatology/State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Mingfu Zhang
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shaopu Wang
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qian Liu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Junjie Ying
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Fengyan Zhao
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaojuan Su
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yi Qu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Ren K, Pei J, Guo Y, Jiao Y, Xing H, Xie Y, Yang Y, Feng Q, Yang J. Regulated necrosis pathways: a potential target for ischemic stroke. BURNS & TRAUMA 2023; 11:tkad016. [PMID: 38026442 PMCID: PMC10656754 DOI: 10.1093/burnst/tkad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/24/2022] [Indexed: 12/01/2023]
Abstract
Globally, ischemic stroke causes millions of deaths per year. The outcomes of ischemic stroke are largely determined by the amount of ischemia-related and reperfusion-related neuronal death in the infarct region. In the infarct region, cell injuries follow either the regulated pathway involving precise signaling cascades, such as apoptosis and autophagy, or the nonregulated pathway, which is uncontrolled by any molecularly defined effector mechanisms such as necrosis. However, numerous studies have recently found that a certain type of necrosis can be regulated and potentially modified by drugs and is nonapoptotic; this type of necrosis is referred to as regulated necrosis. Depending on the signaling pathway, various elements of regulated necrosis contribute to the development of ischemic stroke, such as necroptosis, pyroptosis, ferroptosis, pathanatos, mitochondrial permeability transition pore-mediated necrosis and oncosis. In this review, we aim to summarize the underlying molecular mechanisms of regulated necrosis in ischemic stroke and explore the crosstalk and interplay among the diverse types of regulated necrosis. We believe that targeting these regulated necrosis pathways both pharmacologically and genetically in ischemia-induced neuronal death and protection could be an efficient strategy to increase neuronal survival and regeneration in ischemic stroke.
Collapse
Affiliation(s)
- Kaidi Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| | - Jinyan Pei
- Quality Management Department, Henan No. 3 Provincial People’s Hospital, Henan No. 3 Provincial People’s Hospital, Zhengzhou 450052, China
| | - Yuanyuan Guo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| | - Yuxue Jiao
- Quality Management Department, Henan No. 3 Provincial People’s Hospital, Henan No. 3 Provincial People’s Hospital, Zhengzhou 450052, China
| | - Han Xing
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| | - Yang Yang
- Research Center for Clinical System Biology, Translational Medicine Center, No. 1 Jianshe Dong Road, ErQi District, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qi Feng
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
5
|
Wang L, Wu Y, Yao R, Li Y, Wei Y, Cao Y, Zhang Z, Wu M, Zhu H, Yao Y, Kang H. The role of mesenchymal stem cell-derived extracellular vesicles in inflammation-associated programmed cell death. NANO TODAY 2023; 50:101865. [DOI: 10.1016/j.nantod.2023.101865] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Tan N, Xin W, Huang M, Mao Y. Mesenchymal stem cell therapy for ischemic stroke: Novel insight into the crosstalk with immune cells. Front Neurol 2022; 13:1048113. [PMID: 36425795 PMCID: PMC9679024 DOI: 10.3389/fneur.2022.1048113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/17/2022] [Indexed: 09/29/2023] Open
Abstract
Stroke, a cerebrovascular accident, is prevalent and the second highest cause of death globally across patient populations; it is as a significant cause of morbidity and mortality. Mesenchymal stem cell (MSC) transplantation is emerging as a promising treatment for alleviating neurological deficits, as indicated by a great number of animal and clinical studies. The potential of regulating the immune system is currently being explored as a therapeutic target after ischemic stroke. This study will discuss recent evidence that MSCs can harness the immune system by interacting with immune cells to boost neurologic recovery effectively. Moreover, a notion will be given to MSCs participating in multiple pathological processes, such as increasing cell survival angiogenesis and suppressing cell apoptosis and autophagy in several phases of ischemic stroke, consequently promoting neurological function recovery. We will conclude the review by highlighting the clinical opportunities for MSCs by reviewing the safety, feasibility, and efficacy of MSCs therapy.
Collapse
Affiliation(s)
- Nana Tan
- Department of Health Management, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenqiang Xin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Min Huang
- Department of Health Management, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuling Mao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Yan WT, Yang YD, Hu XM, Ning WY, Liao LS, Lu S, Zhao WJ, Zhang Q, Xiong K. Do pyroptosis, apoptosis, and necroptosis (PANoptosis) exist in cerebral ischemia? Evidence from cell and rodent studies. Neural Regen Res 2022; 17:1761-1768. [PMID: 35017436 PMCID: PMC8820688 DOI: 10.4103/1673-5374.331539] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/15/2021] [Accepted: 11/01/2021] [Indexed: 11/04/2022] Open
Abstract
Some scholars have recently developed the concept of PANoptosis in the study of infectious diseases where pyroptosis, apoptosis and necroptosis act in consort in a multimeric protein complex, PANoptosome. This allows all the components of PANoptosis to be regulated simultaneously. PANoptosis provides a new way to study the regulation of cell death, in that different types of cell death may be regulated at the same time. To test whether PANoptosis exists in diseases other than infectious diseases, we chose cerebral ischemia/reperfusion injury as the research model, collected articles researching cerebral ischemia/reperfusion from three major databases, obtained the original research data from these articles by bibliometrics, data mining and other methods, then integrated and analyzed these data. We selected papers that investigated at least two of the components of PANoptosis to check its occurrence in ischemia/reperfusion. In the cell model simulating ischemic brain injury, pyroptosis, apoptosis and necroptosis occur together and this phenomenon exists widely in different passage cell lines or primary neurons. Pyroptosis, apoptosis and necroptosis also occurred in rat and mouse models of ischemia/reperfusion injury. This confirms that PANoptosis is observed in ischemic brain injury and indicates that PANoptosis can be a target in the regulation of various central nervous system diseases.
Collapse
Affiliation(s)
- Wei-Tao Yan
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Yan-Di Yang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Wen-Ya Ning
- Department of Human Resources, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Lyu-Shuang Liao
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Shuang Lu
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Wen-Juan Zhao
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Qi Zhang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Kun Xiong
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
| |
Collapse
|
8
|
Molecular Mechanisms of Parthanatos and Its Role in Diverse Diseases. Int J Mol Sci 2022; 23:ijms23137292. [PMID: 35806303 PMCID: PMC9266317 DOI: 10.3390/ijms23137292] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Differential evolution of apoptosis, programmed necrosis, and autophagy, parthanatos is a form of cell death mediated by poly(ADP-ribose) polymerase 1 (PARP1), which is caused by DNA damage. PARP1 hyper-activation stimulates apoptosis-inducing factor (AIF) nucleus translocation, and accelerates nicotinamide adenine dinucleotide (NAD+) and adenosine triphosphate (ATP) depletion, leading to DNA fragmentation. The mechanisms of parthanatos mainly include DNA damage, PARP1 hyper-activation, PAR accumulation, NAD+ and ATP depletion, and AIF nucleus translocation. Now, it is reported that parthanatos widely exists in different diseases (tumors, retinal diseases, neurological diseases, diabetes, renal diseases, cardiovascular diseases, ischemia-reperfusion injury...). Excessive or defective parthanatos contributes to pathological cell damage; therefore, parthanatos is critical in the therapy and prevention of many diseases. In this work, the hallmarks and molecular mechanisms of parthanatos and its related disorders are summarized. The questions raised by the recent findings are also presented. Further understanding of parthanatos will provide a new treatment option for associated conditions.
Collapse
|
9
|
Tang C, Luo J, Yan X, Huang Q, Huang Z, Luo Q, Lan Y, Chen D, Zhang B, Chen M, Kong D. Melanin nanoparticles enhance the neuroprotection of mesenchymal stem cells against hypoxic-ischemic injury by inhibiting apoptosis and upregulating antioxidant defense. Cell Biol Int 2022; 46:933-946. [PMID: 35170135 PMCID: PMC9306961 DOI: 10.1002/cbin.11781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/30/2022] [Accepted: 02/09/2022] [Indexed: 11/09/2022]
Abstract
Polydopamine nanoparticles are artificial melanin nanoparticles (MNPs) that show strong antioxidant activity. The effects of MNPs on the neuroprotection of mesenchymal stem cells (MSCs) against hypoxic-ischemic injury and the underlying mechanism have not yet been revealed. In this study, an oxygen-glucose deprivation (OGD)-injured neuron model was used to mimic neuronal hypoxic-ischemic injury in vitro. MSCs pretreated with MNPs and then cocultured with OGD-injured neurons were used to investigate the potential effects of MNPs on the neuroprotection of MSCs and to elucidate the underlying mechanism. After coculturing with MNPs-pretreated MSCs, MSCs, and MNPs in a transwell coculture system, the OGD-injured neurons were rescued by 91.24%, 79.32% and 59.97%, respectively. Further data demonstrated that MNPs enhanced the neuroprotection against hypoxic-ischemic injury of MSCs by scavenging reactive oxygen species (ROS) and superoxide and attenuating neuronal apoptosis by deactivating caspase-3, downregulating the expression of proapoptotic Bax proteins and upregulating the expression of antiapoptotic Bcl-2 proteins. These findings suggest that MNPs enhance the neuroprotective effect of MSCs against hypoxic-ischemic injury by inhibiting apoptosis and upregulating antioxidant defense, which could provide some evidence for the potential application of combined MNPs and MSCs in the therapy for ischemic stroke. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chunliu Tang
- Guangxi Medical University, Nanning, 530000, Guangxi, China.,Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Jiefeng Luo
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Xianjia Yan
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, Guangxi, China
| | - Qiaojuan Huang
- Department of Cardiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Zhenhua Huang
- Department of Urology, National Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530001, Guangxi, China
| | - Qi Luo
- Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Yuan Lan
- Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Dingzhi Chen
- Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Baolin Zhang
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, Guangxi, China
| | - Menghua Chen
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Deyan Kong
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| |
Collapse
|
10
|
Liu Y, Luan Y, Guo Z, Liu Y, Liu C. Periostin attenuates oxygen and glucose deprivation-induced death of mouse neural stem cells via inhibition of p38 MAPK activation. Neurosci Lett 2022; 774:136526. [DOI: 10.1016/j.neulet.2022.136526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
|
11
|
Kaur H, Sarmah D, Veeresh P, Datta A, Kalia K, Borah A, Yavagal DR, Bhattacharya P. Endovascular Stem Cell Therapy Post Stroke Rescues Neurons from Endoplasmic Reticulum Stress-Induced Apoptosis by Modulating Brain-Derived Neurotrophic Factor/Tropomyosin Receptor Kinase B Signaling. ACS Chem Neurosci 2021; 12:3745-3759. [PMID: 34553602 DOI: 10.1021/acschemneuro.1c00506] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Ischemic stroke is devastating, with serious long-term disabilities affecting millions of people worldwide. Growing evidence has shown that mesenchymal stem cells (MSCs) administration after stroke provides neuroprotection and enhances the quality of life in stroke patients. Previous studies from our lab have shown that 1 × 105 MSCs administered intra-arterially (IA) at 6 h post stroke provide neuroprotection through the modulation of inflammasome and calcineurin signaling. Ischemic stroke induces endoplasmic reticulum (ER) stress, which exacerbates the pathology. The current study intends to understand the involvement of brain-derived neurotrophic factor/tropomyosin receptor kinase B (BDNF/TrkB) signaling in preventing apoptosis induced by ER stress post stroke following IA MSCs administration. Ischemic stroke was induced in ovariectomized female Sprague Dawley rats. The MSCs were administered IA, and animals were sacrificed at 24 h post stroke. Infarct area, neurological deficit score, motor coordination, and biochemical parameters were evaluated. The expression of various genes and proteins was assessed. An inhibition study was also carried out to confirm the involvement of BDNF/TrkB signaling in ER stress-induced apoptosis. IA-administered MSCs improved functional outcomes, reduced infarct area, increased neuronal survival, and normalized biochemical parameters. mRNA and protein expression of ER stress markers were reduced, while those of BDNF and TrkB were increased. Reduction in ER stress-mediated apoptosis was also observed. The present study shows that IA MSCs administration post stroke provides neuroprotection and can modulate ER stress-mediated apoptosis via the BDNF/TrkB signaling pathway.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382007, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382007, India
| | - Pabbala Veeresh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382007, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382007, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382007, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Dileep R. Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382007, India
| |
Collapse
|
12
|
Progress in Mesenchymal Stem Cell Therapy for Ischemic Stroke. Stem Cells Int 2021; 2021:9923566. [PMID: 34221026 PMCID: PMC8219421 DOI: 10.1155/2021/9923566] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke (IS) is a serious cerebrovascular disease with high morbidity and disability worldwide. Despite the great efforts that have been made, the prognosis of patients with IS remains unsatisfactory. Notably, recent studies indicated that mesenchymal stem cell (MSCs) therapy is becoming a novel research hotspot with large potential in treating multiple human diseases including IS. The current article is aimed at reviewing the progress of MSC treatment on IS. The mechanism of MSCs in the treatment of IS involved with immune regulation, neuroprotection, angiogenesis, and neural circuit reconstruction. In addition, nutritional cytokines, mitochondria, and extracellular vesicles (EVs) may be the main mediators of the therapeutic effect of MSCs. Transplantation of MSCs-derived EVs (MSCs-EVs) affords a better neuroprotective against IS when compared with transplantation of MSCs alone. MSC therapy can prolong the treatment time window of ischemic stroke, and early administration within 7 days after stroke may be the best treatment opportunity. The deliver routine consists of intraventricular, intravascular, intranasal, and intraperitoneal. Furthermore, several methods such as hypoxic preconditioning and gene technology could increase the homing and survival ability of MSCs after transplantation. In addition, MSCs combined with some drugs or physical therapy measures also show better neurological improvement. These data supported the notion that MSC therapy might be a promising therapeutic strategy for IS. And the application of new technology will promote MSC therapy of IS.
Collapse
|
13
|
Feng B, Meng L, Luan L, Fang Z, Zhao P, Zhao G. Upregulation of Extracellular Vesicles-Encapsulated miR-132 Released From Mesenchymal Stem Cells Attenuates Ischemic Neuronal Injury by Inhibiting Smad2/c-jun Pathway via Acvr2b Suppression. Front Cell Dev Biol 2021; 8:568304. [PMID: 33763412 PMCID: PMC7982537 DOI: 10.3389/fcell.2020.568304] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Ischemic cerebrovascular disease is a significant and common public health issue worldwide. The emerging roles of mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) in ischemic neuronal injury continue to be investigated. The current study aimed to investigate the role of EV-derived miR-132 from MSCs in ischemic neuronal injury. EVs were initially isolated from bone MSCs (BMSCs) and subsequently evaluated. A middle cerebral artery occlusion (MCAO) mouse model was constructed with the neurological function evaluated through a series of neurological scores, a pole test, and a foot fault test. Histopathological changes, neuron viability, and apoptosis, as well as cerebral infarction, were detected by hematoxylin and eosin (HE) staining and 2,3,5-triphenyltetrazolium hydrochloride (TTC) staining. The targeting relationship between microRNA (miR)-132 and Activin receptor type IIB (Acvr2b) was further confirmed based on dual-luciferase reporter gene assay results. Loss- and gain-of-function assays were conducted to elucidate the role of miR-132, EV-derived miR-132, Acvr2b, and Smad2 in oxygen-glucose deprivation (OGD)-treated neurons, and in mice models. Neuronal cell viability and apoptosis were evaluated via Cell Counting kit-8 (CCK-8) and flow cytometry. Our results indicated that Acvr2b was highly expressed, while miR-132 was poorly expressed in the MCAO mice and OGD-treated neurons. Acvr2b silencing or upregulation of miR-132 led to an elevation in neuronal activity, decreased neuronal apoptosis, reduced expression of Bax, and cleaved-caspase 3, as well as increased Bcl-2 expression. Acvr2b expression was targeted and inhibited by miR-132. EV-derived Acvr2b promoted activation of phosphorylated-Smad2 (p-Smad2)/c-jun signaling pathway, ultimately inducing neuronal injury. Our study provides evidence demonstrating that the overexpression of c-jun inhibits the protective role of MSCs-derived EV-miR-132 in neuronal injury. Upregulation of EV-derived miR-132 released from MSCs attenuates ischemic neuronal injury by inhibiting Smad2/c-jun pathways via the suppression of Acvr2b.
Collapse
Affiliation(s)
- Bin Feng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lei Meng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Liming Luan
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhihao Fang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Peng Zhao
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guangyu Zhao
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
14
|
Liu H, Reiter S, Zhou X, Chen H, Ou Y, Lenahan C, He Y. Insight Into the Mechanisms and the Challenges on Stem Cell-Based Therapies for Cerebral Ischemic Stroke. Front Cell Neurosci 2021; 15:637210. [PMID: 33732111 PMCID: PMC7959708 DOI: 10.3389/fncel.2021.637210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/03/2021] [Indexed: 01/01/2023] Open
Abstract
Strokes are the most common types of cerebrovascular disease and remain a major cause of death and disability worldwide. Cerebral ischemic stroke is caused by a reduction in blood flow to the brain. In this disease, two major zones of injury are identified: the lesion core, in which cells rapidly progress toward death, and the ischemic penumbra (surrounding the lesion core), which is defined as hypoperfusion tissue where cells may remain viable and can be repaired. Two methods that are approved by the Food and Drug Administration (FDA) include intravenous thrombolytic therapy and endovascular thrombectomy, however, the narrow therapeutic window poses a limitation, and therefore a low percentage of stroke patients actually receive these treatments. Developments in stem cell therapy have introduced renewed hope to patients with ischemic stroke due to its potential effect for reversing the neurological sequelae. Over the last few decades, animal tests and clinical trials have been used to treat ischemic stroke experimentally with various types of stem cells. However, several technical and ethical challenges must be overcome before stem cells can become a choice for the treatment of stroke. In this review, we summarize the mechanisms, processes, and challenges of using stem cells in stroke treatment. We also discuss new developing trends in this field.
Collapse
Affiliation(s)
- Huiyong Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sydney Reiter
- Department of Kinesiology, University of Texas at Austin, Austin, TX, United States
| | - Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanmin Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Bayat AH, Saeidikhoo S, Ebrahimi V, Mesgar S, Joneidi M, Soltani R, Aghajanpour F, Mohammadzadeh I, Torabi A, Abdollahifar MA, Bagher Z, Alizadeh R, Aliaghaei A. Bilateral striatal transplantation of human olfactory stem cells ameliorates motor function, prevents necroptosis-induced cell death and improves striatal volume in the rat model of Huntington's disease. J Chem Neuroanat 2020; 112:101903. [PMID: 33278568 DOI: 10.1016/j.jchemneu.2020.101903] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/27/2020] [Accepted: 11/30/2020] [Indexed: 01/02/2023]
Abstract
Cellular transplant therapy is one of the most common therapeutic strategies used to mitigate symptoms of neurodegenerative diseases such as Huntington's disease (HD). Briefly, the main goal of the present study was to investigate HD's motor deficits through the olfactory ecto-mesenchymals stem cells (OE-MSC) secretome. OE-MSCs were characterized immunophenotypically by the positive expression of CD73, CD90 and CD105. Also, three specific markers of OE-MSCs were obtained from the nasal cavity of human volunteers. The main features of OE-MSCs are their high proliferation, ease of harvesting and growth factor secretion. All animals were randomly assigned to three groups: control, 3-NP + vehicle treated and 3-NP + Cell groups. In both experimental groups, the subjects received intraperitoneal 3-NP (30 mg/kg) injections once a day for five consecutive days, followed by the bilateral intra-striatal implantation of OE-MSCs in the 3-NP + Cell group. Muscular function was assessed by electromyography and rotarod test, and the locomotor function was evaluated using the open field test. According to our findings, striatal transplants of OE-MSCs reduced microglial inflammatory factor, the tumor necrosis factor (TNFα) in the 3-NP + Cell group, with a significant reduction in RIP3, the markers of necroptosis in striatum. In addition to the remarkable recovery of the striatal volume after engraftment, the motor activities were enhanced in the 3-NP + cell group compared to the 3-NP + vehicle group. Taken together, our results demonstrated the in vivo advantages of OE-MSCs treatment in an HD rat model with numerous positive paracrine effects including behavioral and anatomical recovery.
Collapse
Affiliation(s)
- Amir-Hossein Bayat
- Department of Neuroscience, Saveh University of Medical Sciences, Saveh, Iran.
| | - Sara Saeidikhoo
- Neuroscience Lab, Anatomy and Cell Biology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Vahid Ebrahimi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Somaye Mesgar
- Neuroscience Lab, Anatomy and Cell Biology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammadjavad Joneidi
- Neuroscience Lab, Anatomy and Cell Biology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Soltani
- Neuroscience Lab, Anatomy and Cell Biology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fakhroddin Aghajanpour
- Neuroscience Lab, Anatomy and Cell Biology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ibrahim Mohammadzadeh
- Neuroscience Lab, Anatomy and Cell Biology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abolfazl Torabi
- Neuroscience Lab, Anatomy and Cell Biology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Amin Abdollahifar
- Neuroscience Lab, Anatomy and Cell Biology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zohreh Bagher
- ENT and Head and Neck Research Center and Department, Hazrat Rasoul Akram Hospital, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran.
| | - Rafieh Alizadeh
- ENT and Head and Neck Research Center and Department, Hazrat Rasoul Akram Hospital, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran.
| | - Abbas Aliaghaei
- Neuroscience Lab, Anatomy and Cell Biology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Therapeutic Effects of Human Mesenchymal Stem Cells in a Mouse Model of Cerebellar Ataxia with Neuroinflammation. J Clin Med 2020; 9:jcm9113654. [PMID: 33202913 PMCID: PMC7698164 DOI: 10.3390/jcm9113654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cerebellar ataxias (CAs) are neurological diseases characterized by loss of muscle coordination that is a result of damage and inflammation to the cerebellum. Despite considerable efforts in basic and clinical research, most CAs are currently incurable. In this study, we evaluated the therapeutic potential of human mesenchymal stem cells (hMSCs) against CAs associated with neuroinflammation. We observed that hMSC treatment significantly inhibited the symptoms of ataxia in lipopolysaccharide (LPS)-induced inflammatory CA (ICA) mice, which were recently reported as a potential animal model of ICA, through the anti-inflammatory effect of hMSC-derived TNFα-stimulated gene-6 (TSG-6), the protection of Purkinje cells by inhibition of apoptosis, and the modulatory effect for microglial M2 polarization. Thus, our results suggest that hMSC treatment may be an effective therapeutic approach for preventing or improving ataxia symptoms.
Collapse
|
17
|
Wang X, Ge P. Parthanatos in the pathogenesis of nervous system diseases. Neuroscience 2020; 449:241-250. [DOI: 10.1016/j.neuroscience.2020.09.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
|
18
|
In Vitro Oxygen-Glucose Deprivation-Induced Stroke Models with Human Neuroblastoma Cell- and Induced Pluripotent Stem Cell-Derived Neurons. Stem Cells Int 2020; 2020:8841026. [PMID: 33178286 PMCID: PMC7647751 DOI: 10.1155/2020/8841026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022] Open
Abstract
Stroke is a devastating neurological disorder and one of the leading causes of mortality and disability. To understand the cellular and molecular mechanisms of stroke and to develop novel therapeutic approaches, two different in vitro human cell-based stroke models were established using oxygen-glucose deprivation (OGD) conditions. In addition, the effect of adipose stem cells (ASCs) on OGD-induced injury was studied. In the present study, SH-SY5Y human neuroblastoma cells and human induced pluripotent stem cells (hiPSCs) were differentiated into neurons, cultured under OGD conditions (1% O2) for 24 h, and subjected to a reperfusion period for 24 or 72 h. After OGD, ASCs were cocultured with neurons on inserts for 24 or 72 h to study the neuroprotective potential of ASCs. The effect of OGD and ASC coculture on the viability, apoptosis, and proliferation of and axonal damage to neuronal cells was studied. The results showed that OGD conditions induced cytotoxicity and apoptosis of SH-SY5Y- and hiPSC-derived neurons, although more severe damage was detected in SH-SY5Y-derived neurons than in hiPSC-derived neurons. Coculture with ASCs was protective for neurons, as the number of dead ASC-cocultured neurons was lower than that of control cells, and coculture increased the proliferation of both cell types. To conclude, we developed in vitro human cell-based stroke models in SH-SY5Y- and hiPSC-derived neurons. This was the first time hiPSCs were used to model stroke in vitro. Since OGD had different effects on the studied cell types, this study highlights the importance of using several cell types in in vitro studies to confirm the outcomes of the study. Here, ASCs exerted a neuroprotective effect by increasing the proliferation and decreasing the death of SH-SY5Y- and hiPSC-derived neurons after OGD.
Collapse
|
19
|
Bagheri HS, Bani F, Tasoglu S, Zarebkohan A, Rahbarghazi R, Sokullu E. Mitochondrial donation in translational medicine; from imagination to reality. J Transl Med 2020; 18:367. [PMID: 32977804 PMCID: PMC7517067 DOI: 10.1186/s12967-020-02529-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
The existence of active crosstalk between cells in a paracrine and juxtacrine manner dictates specific activity under physiological and pathological conditions. Upon juxtacrine interaction between the cells, various types of signaling molecules and organelles are regularly transmitted in response to changes in the microenvironment. To date, it has been well-established that numerous parallel cellular mechanisms participate in the mitochondrial transfer to modulate metabolic needs in the target cells. Since the conception of stem cells activity in the restoration of tissues’ function, it has been elucidated that these cells possess a unique capacity to deliver the mitochondrial package to the juxtaposed cells. The existence of mitochondrial donation potentiates the capacity of modulation in the distinct cells to achieve better therapeutic effects. This review article aims to scrutinize the current knowledge regarding the stem cell’s mitochondrial transfer capacity and their regenerative potential.
Collapse
Affiliation(s)
- Hesam Saghaei Bagheri
- School of Medicine, Biophysics Department, Koç University, Rumeli Fener, Sarıyer, Istanbul, Turkey.,Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer, Istanbul, Turkey
| | - Farhad Bani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Savas Tasoglu
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer, Istanbul, Turkey.,Faculty of Engineering, Mechanical Engineering Department, Koç University, Rumeli Feneri Yolu, Sarıyer, Istanbul, Turkey
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Imam Reza St., Daneshgah St., 51666-14756, Tabriz, Iran.
| | - Emel Sokullu
- School of Medicine, Biophysics Department, Koç University, Rumeli Fener, Sarıyer, Istanbul, Turkey. .,Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer, Istanbul, Turkey.
| |
Collapse
|
20
|
Wang M, Wan H, Wang S, Liao L, Huang Y, Guo L, Liu F, Shang L, Huang J, Ji D, Xia X, Jiang B, Chen D, Xiong K. RSK3 mediates necroptosis by regulating phosphorylation of RIP3 in rat retinal ganglion cells. J Anat 2020; 237:29-47. [PMID: 32162697 PMCID: PMC7309291 DOI: 10.1111/joa.13185] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
Receptor-interacting protein 3 (RIP3) plays an important role in the necroptosis signaling pathway. Our previous studies have shown that the RIP3/mixed lineage kinase domain-like protein (MLKL)-mediated necroptosis occurs in retinal ganglion cell line 5 (RGC-5) following oxygen-glucose deprivation (OGD). However, upstream regulatory pathways of RIP3 are yet to be uncovered. The purpose of the present study was to investigate the role of p90 ribosomal protein S6 kinase 3 (RSK3) in the phosphorylation of RIP3 in RGC-5 cell necroptosis following OGD. Our results showed that expression of RSK3, RIP3, and MLKL was upregulated in necroptosis of RGC-5 after OGD. A computer simulation based on our preliminary results indicated that RSK3 might interact with RIP3, which was subsequently confirmed by co-immunoprecipitation. Further, we found that the application of a specific RSK inhibitor, LJH685, or rsk3 small interfering RNA (siRNA), downregulated the phosphorylation of RIP3. However, the overexpression of rip3 did not affect the expression of RSK3, thereby indicating that RSK3 could be a possible upstream regulator of RIP3 phosphorylation in OGD-induced necroptosis of RGC-5 cells. Moreover, our in vivo results showed that pretreatment with LJH685 before acute high intraocular pressure episodes could reduce the necroptosis of retinal neurons and improve recovery of impaired visual function. Taken together, our findings suggested that RSK3 might work as an upstream regulator of RIP3 phosphorylation during RGC-5 necroptosis.
Collapse
Affiliation(s)
- Mi Wang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Hao Wan
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Shuchao Wang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Lvshuang Liao
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Yanxia Huang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Limin Guo
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Fengxia Liu
- Department of Human AnatomySchool of Basic Medical ScienceXinjiang Medical UniversityUrumqiChina
| | - Lei Shang
- Jiangxi Research Institute of Ophthalmology and Visual SciencesAffiliated Eye Hospital of Nanchang UniversityNanchangChina
| | - Jufang Huang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Hunan Key Laboratory of OphthalmologyChangshaChina
| | - Dan Ji
- Hunan Key Laboratory of OphthalmologyChangshaChina
- Department of OphthalmologyXiangya HospitalCentral South UniversityChangshaChina
| | - Xiaobo Xia
- Hunan Key Laboratory of OphthalmologyChangshaChina
- Department of OphthalmologyXiangya HospitalCentral South UniversityChangshaChina
| | - Bin Jiang
- Department of OphthalmologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Dan Chen
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Hunan Key Laboratory of OphthalmologyChangshaChina
| | - Kun Xiong
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Hunan Key Laboratory of OphthalmologyChangshaChina
| |
Collapse
|
21
|
Zhang Y, Deng Z, Li Y, Yuan R, Yang M, Zhao Y, Wang L, Zhou F, Kang H. Mesenchymal Stem Cells Provide Neuroprotection by Regulating Heat Stroke-Induced Brain Inflammation. Front Neurol 2020; 11:372. [PMID: 32477247 PMCID: PMC7232542 DOI: 10.3389/fneur.2020.00372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/14/2020] [Indexed: 01/01/2023] Open
Abstract
Heat stroke (HS) is the most acute type of heat illness accompanied with serious central nervous system (CNS) dysfunction. Despite the pathological process being clearly studied, effective treatment is deficient. Currently, mesenchymal stem cells (MSCs) have been demonstrated to have neuroprotective effects as there are no old ones. Thus, the purpose of the present study was to explore the neuroprotective effects and mechanisms of MSCs against HS-induced CNS injury. HS in rat models was induced by a high-temperature environment and treated with MSCs via the tail vein. The results demonstrated that MSC injection significantly reduced the mortality and inhibited the circulation inflammatory response. Moreover, the HS-induced neurological deficit and neuronic damage of the hippocampus were significantly ameliorated by MSC administration. In addition, MSC administration significantly restored astrocytes and inhibited cerebral inflammatory response. These results indicate that MSC infusion has therapeutic effects in HS of rats by regulating the circulation and cerebral inflammatory response. Moreover, astrocytes increased in MSC-treated HS rats when compared with the untreated ones. This may suggest a potential mechanism for HS prevention and therapy through MSC administration.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Critical Care Medicine, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Zihui Deng
- Biochemistry Department of Graduate School, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Yun Li
- Department of Critical Care Medicine, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Rui Yuan
- Department of Critical Care Medicine, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Mengmeng Yang
- Department of Critical Care Medicine, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Yan Zhao
- Department of Critical Care Medicine, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Lu Wang
- Department of Critical Care Medicine, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Feihu Zhou
- Department of Critical Care Medicine, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Hongjun Kang
- Department of Critical Care Medicine, General Hospital of the Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
22
|
Bonsack B, Corey S, Shear A, Heyck M, Cozene B, Sadanandan N, Zhang H, Gonzales-Portillo B, Sheyner M, Borlongan CV. Mesenchymal stem cell therapy alleviates the neuroinflammation associated with acquired brain injury. CNS Neurosci Ther 2020; 26:603-615. [PMID: 32356605 PMCID: PMC7248547 DOI: 10.1111/cns.13378] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/28/2020] [Accepted: 03/29/2020] [Indexed: 01/01/2023] Open
Abstract
Ischemic stroke and traumatic brain injury (TBI) comprise two particularly prevalent and costly examples of acquired brain injury (ABI). Following stroke or TBI, primary cell death and secondary cell death closely model disease progression and worsen outcomes. Mounting evidence indicates that long‐term neuroinflammation extensively exacerbates the secondary deterioration of brain structure and function. Due to their immunomodulatory and regenerative properties, mesenchymal stem cell transplants have emerged as a promising approach to treating this facet of stroke and TBI pathology. In this review, we summarize the classification of cell death in ABI and discuss the prominent role of inflammation. We then consider the efficacy of bone marrow–derived mesenchymal stem/stromal cell (BM‐MSC) transplantation as a therapy for these injuries. Finally, we examine recent laboratory and clinical studies utilizing transplanted BM‐MSCs as antiinflammatory and neurorestorative treatments for stroke and TBI. Clinical trials of BM‐MSC transplants for stroke and TBI support their promising protective and regenerative properties. Future research is needed to allow for better comparison among trials and to elaborate on the emerging area of cell‐based combination treatments.
Collapse
Affiliation(s)
- Brooke Bonsack
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Sydney Corey
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Alex Shear
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Matt Heyck
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Blaise Cozene
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Nadia Sadanandan
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Henry Zhang
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | | | - Michael Sheyner
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| |
Collapse
|
23
|
Corey S, Bonsack B, Heyck M, Shear A, Sadanandan N, Zhang H, Borlongan CV. Harnessing the anti-inflammatory properties of stem cells for transplant therapy in hemorrhagic stroke. BRAIN HEMORRHAGES 2020; 1:24-33. [PMID: 34056567 PMCID: PMC8158660 DOI: 10.1016/j.hest.2019.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hemorrhagic stroke is a global health crisis plagued by neuroinflammation in the acute and chronic phases. Neuroinflammation approximates secondary cell death, which in turn robustly contributes to stroke pathology. Both the physiological and behavioral symptoms of stroke correlate with various inflammatory responses in animal and human studies. That slowing the secondary cell death mediated by this inflammation may attenuate stroke pathology presents a novel treatment strategy. To this end, experimental therapies employing stem cell transplants support their potential for neuroprotection and neuroregeneration after hemorrhagic stroke. In this review, we evaluate experiments using different types of stem cell transplants as treatments for stroke-induced neuroinflammation. We also update this emerging area by examining recent preclinical and clinical trials that have deployed these therapies. While further investigations are warranted to solidify their therapeutic profile, the reviewed studies largely posit stem cells as safe and potent biologics for stroke, specifically owing to their mode of action for sequestering neuroinflammation and promoting neuroregenerative processes.
Collapse
Affiliation(s)
- Sydney Corey
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Brooke Bonsack
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Matt Heyck
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Alex Shear
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Nadia Sadanandan
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Henry Zhang
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| |
Collapse
|
24
|
Zhou XB, Lai LF, Xie GB, Ding C, Xu X, Wang Y. LncRNA GAS5 sponges miRNA-221 to promote neurons apoptosis by up-regulated PUMA under hypoxia condition. Neurol Res 2019; 42:8-16. [PMID: 31878844 DOI: 10.1080/01616412.2019.1672382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Objectives: Long noncoding RNAs (lncRNAs) play substantial roles in cerebral ischemia. Growth arrest-specific 5 (GAS5) was reported to be involved in stroke. In the present study, we aimed to investigate the roles of GAS5 in cerebral condition and unveil the underlying mechanism.Method: Transient focal ischemia was induced by intraluminal occlusion of the right Middle cerebral artery occlusion (MCAO) and 2,3,5-triphenyltetrazolium chloride (TTC) staining was used to evaluate the volume of cerebral infarction. RT-qPCR was applied to evaluate the level of GAS5 and miR-221. Fluorescence activated Cell Sorting (FACS) and Terminal deoxynucleotidyl transferased (TUNEL) were used for detection of apoptosis. Western blotting was applied for protein level. Luciferase assay was applied to reveal the underlying relationship between GAS5 and miR-221 or p53-upregulated modulator of apoptosis (PUMA) and miR-221.Results: The results indicated that GAS5 was up-regulated in MCAO rats and in vitro hypoxia cell model while miR-221 expression was decreased in vitro hypoxia cell model. GAS5 promoted cells apoptosis, while miR-221 inhibited cell apoptosis through regulation of PUMA and downstream JNK/H2AX signaling. Moreover, GAS5 and miR-221 have direct interaction and PUMA was the target of miR-221, indicating that GAS5 regulated PUMA through sponging miR-221.Conclusions: the present study revealed that GAS5 aggravated cell apoptosis in hypoxia condition via miR-221/PUMA axis, which may provide potential targets for the treatment of stroke.
Collapse
Affiliation(s)
- Xiao-Bing Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Ling-Feng Lai
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Guang-Bin Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Cong Ding
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Xiang Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Yang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| |
Collapse
|
25
|
Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N. Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci 2019; 76:3323-3348. [PMID: 31055643 PMCID: PMC11105258 DOI: 10.1007/s00018-019-03125-1] [Citation(s) in RCA: 357] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are isolated from multiple biological tissues-adult bone marrow and adipose tissues and neonatal tissues such as umbilical cord and placenta. In vitro, MSCs show biological features of extensive proliferation ability and multipotency. Moreover, MSCs have trophic, homing/migration and immunosuppression functions that have been demonstrated both in vitro and in vivo. A number of clinical trials are using MSCs for therapeutic interventions in severe degenerative and/or inflammatory diseases, including Crohn's disease and graft-versus-host disease, alone or in combination with other drugs. MSCs are promising for therapeutic applications given the ease in obtaining them, their genetic stability, their poor immunogenicity and their curative properties for tissue repair and immunomodulation. The success of MSC therapy in degenerative and/or inflammatory diseases might depend on the robustness of the biological functions of MSCs, which should be linked to their therapeutic potency. Here, we outline the fundamental and advanced concepts of MSC biological features and underline the biological functions of MSCs in their basic and translational aspects in therapy for degenerative and/or inflammatory diseases.
Collapse
Affiliation(s)
- Abderrahim Naji
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan.
| | - Masamitsu Eitoku
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Benoit Favier
- CEA, DRF-IBFJ, IDMIT, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, Paris-Sud University, Fontenay-aux-Roses, France
| | - Frédéric Deschaseaux
- STROMALab, Etablissement Français du Sang Occitanie, UMR 5273 CNRS, INSERM U1031, Université de Toulouse, Toulouse, France
| | - Nathalie Rouas-Freiss
- CEA, DRF-Francois Jacob Institute, Research Division in Hematology and Immunology (SRHI), Saint-Louis Hospital, IRSL, UMRS 976, Paris, France
| | - Narufumi Suganuma
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
26
|
Han F, Guan X, Guo W, Lu B. Therapeutic potential of a TrkB agonistic antibody for ischemic brain injury. Neurobiol Dis 2019; 127:570-581. [DOI: 10.1016/j.nbd.2019.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022] Open
|
27
|
Hu C, Zhao L, Wu D, Li L. Modulating autophagy in mesenchymal stem cells effectively protects against hypoxia- or ischemia-induced injury. Stem Cell Res Ther 2019; 10:120. [PMID: 30995935 PMCID: PMC6471960 DOI: 10.1186/s13287-019-1225-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In mammals, a basal level of autophagy, a self-eating cellular process, degrades cytosolic proteins and subcellular organelles in lysosomes to provide energy, recycles the cytoplasmic components, and regenerates cellular building blocks; thus, autophagy maintains cellular and tissue homeostasis in all eukaryotic cells. In general, adaptive autophagy increases when cells confront stressful conditions to improve the survival rate of the cells, while destructive autophagy is activated when the cellular stress is not manageable and elicits the regenerative capacity. Hypoxia-reoxygenation (H/R) injury and ischemia-reperfusion (I/R) injury initiate excessive autophagy and endoplasmic reticulum (ER) stress and consequently induce a string of damage in mammalian tissues or organs. Mesenchymal stem cell (MSC)-based therapy has yielded promising results in repairing H/R- or I/R-induced injury in various tissues. However, MSC transplantation in vivo must overcome the barriers including the low survival rate of transplanted stem cells, limited targeting capacity, and low grafting potency; therefore, much effort is needed to increase the survival and activity of MSCs in vivo. Modulating autophagy regulates the stemness and the anti-oxidative stress, anti-apoptosis, and pro-survival capacity of MSCs and can be applied to MSC-based therapy for repairing H/R- or I/R-induced cellular or tissue injury.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lingfei Zhao
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Daxian Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
28
|
Naji A, Favier B, Deschaseaux F, Rouas-Freiss N, Eitoku M, Suganuma N. Mesenchymal stem/stromal cell function in modulating cell death. Stem Cell Res Ther 2019; 10:56. [PMID: 30760307 PMCID: PMC6374902 DOI: 10.1186/s13287-019-1158-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) delivered as cell therapy to individuals with degenerative and/or inflammatory disorders can help improve organ features and resolve inflammation, as demonstrated in preclinical studies and to some extent in clinical studies. MSCs have trophic, homing/migration, and immunosuppression functions, with many benefits in therapeutics. MSC functions are thought to depend on the paracrine action of soluble factors and/or the expression of membrane-bound molecules, mostly belonging to the molecular class of adhesion molecules, chemokines, enzymes, growth factors, and interleukins. Cutting-edge studies underline bioactive exchanges, including that of ions, nucleic acids, proteins, and organelles transferred from MSCs to stressed cells, thereby improving the cells' survival and function. From this aspect, MSC death modulation function appears as a decisive biological function that could carry a significant part of the therapeutic effects of MSCs. Identifying the function and modes of actions of MSCs in modulating cell death may be exploited to enhance consistency and efficiency of cell therapy that is based on MSCs as medical treatment for degenerative and/or inflammatory diseases. Here, we review the essentials of MSC functions in modulating cell death in unfit cells, and its modes of actions based on current advances and outline the clinical implications.
Collapse
Affiliation(s)
- Abderrahim Naji
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School (KMS), Kochi University, Kohasu, Oko-Cho, Nankoku City, Kochi Prefecture, 783-8505, Japan.
| | - Benoit Favier
- CEA-Université Paris Sud INSERM U1184, IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Frédéric Deschaseaux
- STROMALab, UMR 5273 CNRS, INSERM U1031, Etablissement Français du Sang (EFS) Occitanie, Université de Toulouse, Toulouse, France
| | - Nathalie Rouas-Freiss
- CEA, DRF-Institut Francois Jacob, Division de recherche en hématologie et immunologie (SRHI), Hôpital Saint-Louis, Paris, France
| | - Masamitsu Eitoku
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School (KMS), Kochi University, Kohasu, Oko-Cho, Nankoku City, Kochi Prefecture, 783-8505, Japan
| | - Narufumi Suganuma
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School (KMS), Kochi University, Kohasu, Oko-Cho, Nankoku City, Kochi Prefecture, 783-8505, Japan.
| |
Collapse
|
29
|
Wang S, Huang Y, Yan Y, Zhou H, Wang M, Liao L, Wang Z, Chen D, Ji D, Xia X, Liu F, Huang J, Xiong K. Calpain2 but not calpain1 mediated by calpastatin following glutamate-induced regulated necrosis in rat retinal neurons. Ann Anat 2019; 221:57-67. [PMID: 30240910 DOI: 10.1016/j.aanat.2018.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 12/12/2022]
Abstract
The purpose of this study is to investigate whether calpastatin (CAST) plays an important role in the regulated necrosis (RN) in rat retinal neurons under an excessive glutamate condition and furthermore to investigate whether this process is regulated by calapin1 and calpain2. In the present study, glutamate triggered CAST inhibition, calpain2 activation and retinal neuronal RN after injury. The application of CAST active peptide could provide protective effects against activated calpain2 mediated RN. However, the calpain1 activity was not changed in these processes. Finally, in vivo studies further confirmed the role of the CAST-calpain2 pathway in cellular RN in the rat retinal ganglion cell layer and inner nuclear layer after glutamate excitation. In addition, flash electroretinogram results provided evidence that the impaired visual function induced by glutamate could recover after CAST peptide treatment. This research indicated that excessive glutamate may lead to CAST inhibition and activated calpain2, but not calpain1 activation, resulting in RN.
Collapse
Affiliation(s)
- Shuchao Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Yanxia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Yuhan Yan
- Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Hongkang Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Mi Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Lvshuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Zhen Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Dan Ji
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Fengxia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi 830001, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China.
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
30
|
Synaptic Plasticity of Human Umbilical Cord Mesenchymal Stem Cell Differentiating into Neuron-like Cells In Vitro Induced by Edaravone. Stem Cells Int 2018; 2018:5304279. [PMID: 30510585 PMCID: PMC6230402 DOI: 10.1155/2018/5304279] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/02/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
Objective The human umbilical cord mesenchymal stem cells (hUMSCs) are characterized with the potential ability to differentiate to several types of cells. Edaravone has been demonstrated to prevent the hUMSCs from the oxidative damage, especially its ability in antioxidative stress. We hypothesized that Edaravone induces the hUMSCs into the neuron-like cells. Methods The hUMSCs were obtained from the human umbilical cord tissue. The differentiation of hUMSCs was induced by Edaravone with three different doses: 0.65 mg/ml, 1.31 mg/ml, and 2.62 mg/ml. Flow cytometry was used to detect the cell markers. Protein and mRNA levels of nestin, neuron-specific enolase (NSE), and glial fibrillary acidic protein (GFAP) were detected by Western blot and RT-PCR. The expression of synaptophysin (SYN), growth-associated protein 43 (GAP43), and postsynaptic density 95 (PSD95) was detected by Real-Time PCR. Results As long as the prolongation of the culture, the hUMSCs displayed with the long strips or long fusiform to fat and then characterized with the radial helix growth. By using flow cytometry, the cultured hUMSCs at the 3rd, 5th, and 10th passages were expressed with CD73, CD90, and CD105 but not CD11b, CD19, CD34, CD45, and HLA-DR. Most of the hUMSCs cultured with Edaravone exhibited typical nerve-immediately characters including the cell body contraction, increased refraction, and protruding one or more elongated protrusions, which were not found in the control group without addition of Edaravone. NSE, nestin, and GFAP were positive in these neuron-like cells. Edaravone dose-dependently increased expression levels of NSE, nestin, and GFAP. After replacement of maintenance fluid, neuron-like cells continued to be cultured for five days. These neuron-like cells were positive for SYN, PSD95, and GAP43. Conclusion Edaravone can dose-dependently induce hUMSCs to differentiate into neuron-like cells that expressed the neuronal markers including NSE, nestin, and GFAP and synaptic makers such as SYN, PSD95, and GAP43.
Collapse
|
31
|
Liu C, Zhang W, Peradze N, Lang L, Straetener J, Feilen PJ, Alt M, Jäger C, Laubner K, Perakakis N, Seufert J, Päth G. Mesenchymal stem cell (MSC)-mediated survival of insulin producing pancreatic β-cells during cellular stress involves signalling via Akt and ERK1/2. Mol Cell Endocrinol 2018; 473:235-244. [PMID: 29421520 DOI: 10.1016/j.mce.2018.01.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 11/24/2017] [Accepted: 01/29/2018] [Indexed: 01/08/2023]
Abstract
Mesenchymal stem cells (MSC) are of interest for cell therapy since their secreted factors mediate immunomodulation and support tissue regeneration. This study investigated the direct humoral interactions between MSC and pancreatic β-cells using human telomerase-immortalized MSC (hMSC-TERT) and rat insulinoma-derived INS-1E β-cells. hMSC-TERT supported survival of cocultured INS-1E β-cells during cellular stress by alloxan (ALX) and streptozotocin (STZ), but not in response to IL-1β. Accordingly, hMSC-TERT had no effect on inflammatory cytokine-related signalling via NF-kB and p-JNK but maintained p-Akt and upregulated p-ERK1/2. Inhibition of either p-Akt or p-ERK1/2 did not abolish protection by hMSC-TERT but activated the respective non-inhibited pathway. This suggests that one pathway compensates for the other. Main results were confirmed in mouse islets except hMSC-TERT-mediated upregulation of p-ERK1/2. Therefore, MSC promote β-cell survival by preservation of p-Akt signalling and further involve p-ERK1/2 activation in certain conditions such as loss of p-Akt or insulinoma background.
Collapse
Affiliation(s)
- Chune Liu
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Divisions of Endocrinology and Metabolism, Pediatrics, Johns Hopkins University, Baltimore, USA
| | - Weiwei Zhang
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Natia Peradze
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Leonie Lang
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jan Straetener
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Peter J Feilen
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Marcus Alt
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Christina Jäger
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Katharina Laubner
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Nikolaos Perakakis
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jochen Seufert
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Günter Päth
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
32
|
Fang C, Xie L, Liu C, Fu C, Ye W, Liu H, Zhang B. Tanshinone IIA improves hypoxic ischemic encephalopathy through TLR‑4‑mediated NF‑κB signal pathway. Mol Med Rep 2018; 18:1899-1908. [PMID: 29956801 PMCID: PMC6072156 DOI: 10.3892/mmr.2018.9227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/30/2018] [Indexed: 12/23/2022] Open
Abstract
Hypoxic ischemic encephalopathy (HIE) is the most common brain injury following hypoxia and/or ischemia caused by various factors during the perinatal period, resulting in detrimental neurological deficits in the nervous system. Tanshinone IIA (Tan‑IIA) is a potential agent for the treatment of cardiovascular and cerebrovascular diseases. In this study, the efficacy of Tan‑IIA was investigated in a newborn mouse model of HIE. The dynamic mechanism of Tan‑IIA was also investigated in the central nervous system of neonate mice. Intravenous injection of Tan‑IIA (5 mg/kg) was administered and changes in oxidative stress, inflammation and apoptosis‑associated proteins in neurons. Histology and immunohistochemistry was used to determine infarct volume and the number of damaged neurons by Fluoro‑Jade C staining. The effects of Tan‑IIA on mice with HIE were evaluated by body weight, brain water content, neurobehavioral tests and blood‑brain barrier permeability. The results demonstrated that the apoptosis rate was decreased following Tan‑IIA administration. Expression levels of pro‑apoptotic proteins, caspase‑3 and caspase‑9 and P53 were downregulated. Expression of Bcl‑2 anti‑apoptotic proteins was upregulated by Tan‑IIA treatment in neuro. Results also found that Tan‑IIA treatment decreased production of inflammatory cytokines such as interleukin‑1, tumor necrosis factor‑α, C‑X‑C motif chemokine 10, and chemokine (C‑C motif) ligand 12. Oxidative stress was also reduced by Tan‑IIA in neurons, as determined by the expression levels of superoxide dismutase, glutathione and catalase, and the production of reactive oxygen species. The results demonstrated that Tan‑IIA treatment reduced the infarct volume and the number of damaged neurons. Furthermore, body weight, brain water content and blood‑brain barrier permeability were markedly improved by Tan‑IIA treatment of newborn mice following HIE. Furthermore, the results indicated that Tan‑IIA decreased Toll‑like receptor‑4 (TLR‑4) and nuclear factor‑κB (NF‑κB) expression in neurons. TLR‑4 treatment of neuronal cell in vitro addition stimulated NF‑κB activity, and further enhanced the production of inflammatory cytokines and oxidative stress levels in neurons. In conclusion, these results suggest that Tan‑IIA treatment is beneficial for improvement of HIE through TLR‑4‑mediated NF‑κB signaling.
Collapse
Affiliation(s)
- Chengzhi Fang
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lili Xie
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chunmei Liu
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chunhua Fu
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Ye
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hong Liu
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Binghong Zhang
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
33
|
Wang J, Li H, Yao Y, Zhao T, Chen YY, Shen YL, Wang LL, Zhu Y. Stem cell-derived mitochondria transplantation: a novel strategy and the challenges for the treatment of tissue injury. Stem Cell Res Ther 2018; 9:106. [PMID: 29653590 PMCID: PMC5899391 DOI: 10.1186/s13287-018-0832-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Damage of mitochondria in the initial period of tissue injury aggravates the severity of injury. Restoration of mitochondria dysfunction and mitochondrial-based therapeutics represent a potentially effective therapeutic strategy. Recently, mitochondrial transfer from stem cells has been demonstrated to play a significant role in rescuing injured tissues. The possible mechanisms of mitochondria released from stem cells, the pathways of mitochondria transfer between the donor stem cells and recipient cells, and the internalization of mitochondria into recipient cells are discussed. Moreover, a novel strategy for tissue injury based on the concept of stem cell-derived mitochondrial transplantation is pointed out, and the advantages and challenges are summarized.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Heyangzi Li
- Department of Basic Medicine Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Ying Yao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Tengfei Zhao
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Ying-Ying Chen
- Department of Basic Medicine Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yue-Liang Shen
- Department of Basic Medicine Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Lin-Lin Wang
- Department of Basic Medicine Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Yongjian Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
34
|
Wang P, Shao BZ, Deng Z, Chen S, Yue Z, Miao CY. Autophagy in ischemic stroke. Prog Neurobiol 2018; 163-164:98-117. [DOI: 10.1016/j.pneurobio.2018.01.001] [Citation(s) in RCA: 310] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 12/04/2017] [Accepted: 01/10/2018] [Indexed: 02/07/2023]
|
35
|
Wang S, Liao L, Wang M, Zhou H, Huang Y, Wang Z, Chen D, Ji D, Xia X, Wang Y, Liu F, Huang J, Xiong K. Pin1 Promotes Regulated Necrosis Induced by Glutamate in Rat Retinal Neurons via CAST/Calpain2 Pathway. Front Cell Neurosci 2018; 11:425. [PMID: 29403356 PMCID: PMC5786546 DOI: 10.3389/fncel.2017.00425] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022] Open
Abstract
The purpose of the current study was to investigate whether peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (Pin1) can interact with calpastatin (CAST) and regulate CAST/calpain2, under excessive glutamate conditions, and subsequently regulate necrosis in rat retinal neurons. Glutamate triggered CAST/calpain2-mediated necrosis regulation in primary cultured retinal neurons, as demonstrated by propidium iodide-staining and lactate dehydrogenase assay. Co-IP results and a computer simulation suggested that Pin1 could bind to CAST. Western blot, real-time quantitative polymerase chain reaction, immunofluorescence, and phosphorylation analysis results demonstrated that CAST was regulated by Pin1, as proven by the application of juglone (i.e., a Pin1 specific inhibitor). The retinal ganglion cell 5 cell line, combined with siRNA approach and flow cytometry, was then used to verify the regulatory pathway of Pin1 in CAST/calpain2-modulated neuronal necrosis that was induced by glutamate. Finally, in vivo studies further confirmed the role of Pin1 in CAST/calpain2-modulated necrosis following glutamate excitation, in the rat retinal ganglion cell and inner nuclear layers. In addition, a flash electroretinogram study provided evidence for the recovery of impaired visual function, which was induced by glutamate, with juglone treatment. Our work aims to investigate the involvement of the Pin1-CAST/calpain2 pathway in glutamate-mediated excitotoxicity.
Collapse
Affiliation(s)
- Shuchao Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lvshuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Mi Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Hongkang Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yanxia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhen Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Dan Ji
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Wang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Fengxia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Ürümqi, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
36
|
Mesenchymal Stem Cells Protect Nucleus Pulposus Cells from Compression-Induced Apoptosis by Inhibiting the Mitochondrial Pathway. Stem Cells Int 2017; 2017:9843120. [PMID: 29387092 PMCID: PMC5745742 DOI: 10.1155/2017/9843120] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/21/2017] [Accepted: 11/09/2017] [Indexed: 01/07/2023] Open
Abstract
Objective Excessive apoptosis of nucleus pulposus cells (NPCs) induced by various stresses, including compression, contributes to the development of intervertebral disc degeneration (IVDD). Mesenchymal stem cells (MSCs) can benefit the regeneration of NPCs and delay IVDD, but the underlying molecular mechanism is poorly understood. This study aimed to evaluate the antiapoptosis effects of bone marrow-derived MSC (BMSC) on rat NPCs exposed to compression and investigate whether the mitochondrial pathway was involved. Methods BMSCs and NPCs were cocultured in the compression apparatus at 1.0 MPa for 36 h. Cell viability, apoptosis, mitochondrial function, and the expression of apoptosis-related proteins were evaluated. Results The results showed that coculturing with BMSCs increased the cell viability and reduced apoptosis of NPCs exposed to compression. Meanwhile, BMSCs could relieve the compression-induced mitochondrial damage of NPCs by decreasing reactive oxygen species level and maintaining mitochondrial membrane potential as well as mitochondrial integrity. Furthermore, coculturing with BMSCs suppressed the activated caspase-3 and activated caspase-9, decreased the expressions of cytosolic cytochrome c and Bax, and increased the expression of Bcl-2. Conclusions Our results suggest that BMSCs can protect against compression-induced apoptosis of NPCs by inhibiting the mitochondrial pathway and thus enhance our understanding on the MSC-based therapy for IVDD.
Collapse
|
37
|
Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog Neurobiol 2017; 158:94-131. [PMID: 28743464 DOI: 10.1016/j.pneurobio.2017.07.004] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022]
Abstract
Ischemic stroke is a leading cause of death worldwide. A key secondary cell death mechanism mediating neurological damage following the initial episode of ischemic stroke is the upregulation of endogenous neuroinflammatory processes to levels that destroy hypoxic tissue local to the area of insult, induce apoptosis, and initiate a feedback loop of inflammatory cascades that can expand the region of damage. Stem cell therapy has emerged as an experimental treatment for stroke, and accumulating evidence supports the therapeutic efficacy of stem cells to abrogate stroke-induced inflammation. In this review, we investigate clinically relevant stem cell types, such as hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), very small embryonic-like stem cells (VSELs), neural stem cells (NSCs), extraembryonic stem cells, adipose tissue-derived stem cells, breast milk-derived stem cells, menstrual blood-derived stem cells, dental tissue-derived stem cells, induced pluripotent stem cells (iPSCs), teratocarcinoma-derived Ntera2/D1 neuron-like cells (NT2N), c-mycER(TAM) modified NSCs (CTX0E03), and notch-transfected mesenchymal stromal cells (SB623), comparing their potential efficacy to sequester stroke-induced neuroinflammation and their feasibility as translational clinical cell sources. To this end, we highlight that MSCs, with a proven track record of safety and efficacy as a transplantable cell for hematologic diseases, stand as an attractive cell type that confers superior anti-inflammatory effects in stroke both in vitro and in vivo. That stem cells can mount a robust anti-inflammatory action against stroke complements the regenerative processes of cell replacement and neurotrophic factor secretion conventionally ascribed to cell-based therapy in neurological disorders.
Collapse
|
38
|
Yang XS, Yi TL, Zhang S, Xu ZW, Yu ZQ, Sun HT, Yang C, Tu Y, Cheng SX. Hypoxia-inducible factor-1 alpha is involved in RIP-induced necroptosis caused by in vitro and in vivo ischemic brain injury. Sci Rep 2017; 7:5818. [PMID: 28724891 PMCID: PMC5517428 DOI: 10.1038/s41598-017-06088-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/07/2017] [Indexed: 12/22/2022] Open
Abstract
Necroptosis, a novel type of programmed cell death, is involved in stroke-induced ischemic brain injury. Although studies have sought to explore the mechanisms of necroptosis, its signaling pathway has not yet to be completely elucidated. Thus, we used oxygen-glucose deprivation (OGD) and middle cerebral artery occlusion (MCAO) models mimicking ischemic stroke (IS) conditions to investigate mechanisms of necroptosis. We found that OGD and MCAO induced cell death, local brain ischemia and neurological deficit, while zVAD-fmk (zVAD, an apoptotic inhibitor), GSK’872 (a receptor interacting protein kinase-3 (RIP3) inhibitor), and combined treatment alleviated cell death and ischemic brain injury. Moreover, OGD and MCAO upregulated protein expression of the triggers of necroptosis: receptor interacting protein kinase-1 (RIP1), RIP3 and mixed lineage kinase domain-like protein (MLKL). The upregulation of these proteins was inhibited by GSK’872, combination treatments and RIP3 siRNA but not zVAD treatment. Intriguingly, hypoxia-inducible factor-1 alpha (HIF-1α), an important transcriptional factor under hypoxic conditions, was upregulated by OGD and MCAO. Similar to their inhibitory effects on aforementioned proteins upregulation, GSK’872, combination treatments and RIP3 siRNA decreased HIF-1α protein level. These findings indicate that necroptosis contributes to ischemic brain injury induced by OGD and MCAO and implicate HIF-1α, RIP1, RIP3, and MLKL in necroptosis.
Collapse
Affiliation(s)
- Xiao-Sa Yang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital of the Logistics University of Chinese People's Armed Police Force (PAP), No. 220 ChengLin Road, HeDong District, Tianjin, 300162, China
| | - Tai-Long Yi
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital of the Logistics University of Chinese People's Armed Police Force (PAP), No. 220 ChengLin Road, HeDong District, Tianjin, 300162, China
| | - Sai Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital of the Logistics University of Chinese People's Armed Police Force (PAP), No. 220 ChengLin Road, HeDong District, Tianjin, 300162, China
| | - Zhong-Wei Xu
- Central Laboratory of Logistics University of PAP, No. 1 Huizhi Huan Road, DongLi District, Tianjin, 300393, China
| | - Ze-Qi Yu
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital of the Logistics University of Chinese People's Armed Police Force (PAP), No. 220 ChengLin Road, HeDong District, Tianjin, 300162, China
| | - Hong-Tao Sun
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital of the Logistics University of Chinese People's Armed Police Force (PAP), No. 220 ChengLin Road, HeDong District, Tianjin, 300162, China
| | - Cheng Yang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital of the Logistics University of Chinese People's Armed Police Force (PAP), No. 220 ChengLin Road, HeDong District, Tianjin, 300162, China
| | - Yue Tu
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital of the Logistics University of Chinese People's Armed Police Force (PAP), No. 220 ChengLin Road, HeDong District, Tianjin, 300162, China.
| | - Shi-Xiang Cheng
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital of the Logistics University of Chinese People's Armed Police Force (PAP), No. 220 ChengLin Road, HeDong District, Tianjin, 300162, China.
| |
Collapse
|
39
|
Gnanasegaran N, Govindasamy V, Mani V, Abu Kasim NH. Neuroimmunomodulatory properties of DPSCs in anin vitromodel of Parkinson's disease. IUBMB Life 2017; 69:689-699. [DOI: 10.1002/iub.1655] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/16/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Nareshwaran Gnanasegaran
- Department of Restorative Dentistry; Faculty of Dentistry, University of Malaya; Kuala Lumpur Malaysia
| | - Vijayendran Govindasamy
- Department of Restorative Dentistry; Faculty of Dentistry, University of Malaya; Kuala Lumpur Malaysia
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology; College of Pharmacy, Qassim University; Buraidah Kingdom of Saudi Arabia
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry; Faculty of Dentistry, University of Malaya; Kuala Lumpur Malaysia
| |
Collapse
|
40
|
PARP-1 overexpression contributes to Cadmium-induced death in rat proximal tubular cells via parthanatos and the MAPK signalling pathway. Sci Rep 2017; 7:4331. [PMID: 28659599 PMCID: PMC5489486 DOI: 10.1038/s41598-017-04555-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/16/2017] [Indexed: 12/13/2022] Open
Abstract
Parthanatos is a newly discovered form of PARP-1-dependent programmed cell death. It has been reported to play an important role in several cancer or tumour cells; however, few studies have been performed in normal cells. Cadmium is a highly toxic pollutant and is reported to induce autophagy and apoptosis in multiple cell types. Although cadmium toxicity induces cell death, the underlying mechanism is not fully understood. Therefore, in this study we aimed to investigate the mechanism of Cadmium -induced cell damage using rat proximal tubular cell line NRK-52E and primary rat proximal tubular (rPT) cells. Our results indicated that parthanatos and the MAPK signalling pathway contribute to Cadmium-induced cell death, and that oxidative stress and mitochondrial damage play key roles in this process. In addition, parthanatos with oxidative stress has a synergistic effect on apoptosis, and JNK1/2 and p38 contribute to parthanatos.
Collapse
|
41
|
Shao S, Xu M, Zhou J, Ge X, Chen G, Guo L, Luo L, Li K, Zhu Z, Zhang F. Atorvastatin Attenuates Ischemia/Reperfusion-Induced Hippocampal Neurons Injury Via Akt-nNOS-JNK Signaling Pathway. Cell Mol Neurobiol 2017; 37:753-762. [PMID: 27488855 PMCID: PMC11482104 DOI: 10.1007/s10571-016-0412-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/29/2016] [Indexed: 12/29/2022]
Abstract
Ischemia-induced brain damage leads to apoptosis like delayed neuronal death in selectively vulnerable regions, which could further result in irreversible damages. Previous studies have demonstrated that neurons in the CA1 area of hippocampus are particularly sensitive to ischemic damage. Atorvastatin (ATV) has been reported to attenuate cognitive deficits after stroke, but precise mechanism for neuroprotection remains unknown. Therefore, the aims of this study were to investigate the neuroprotective mechanisms of ATV against ischemic brain injury induced by cerebral ischemia reperfusion. In this study, four-vessel occlusion model was established in rats with cerebral ischemia. Rats were divided into five groups: sham group, I/R group, I/R+ATV group, I/R+ATV+LY, and I/R+SP600125 group. Cresyl violet staining was carried out to examine the neuronal death of hippocampal CA1 region. Immunoblotting was used to detect the expression of the related proteins. Results showed that ATV significantly protected hippocampal CA1 pyramidal neurons against cerebral I/R. ATV could increase the phosphorylation of protein kinase B (Akt1) and nNOS, diminished the phosphorylation of JNK3 and c-Jun, and further inhibited the activation of caspase-3. Whereas, all of the aforementioned effects of ATV were reversed by LY294002 (an inhibitor of Akt1). Furthermore, pretreatment with SP600125 (an inhibitor of JNK) diminished the phosphorylation of JNK3 and c-Jun, and further inhibited the activation of caspase-3 after cerebral I/R. Taken together, our results implied that Akt-mediated phosphorylation of nNOS is involved in the neuroprotection of ATV against ischemic brain injury via suppressing JNK3 signaling pathway that provide a new experimental foundation for stroke therapy.
Collapse
Affiliation(s)
- Sen Shao
- The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310023, People's Republic of China.
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China.
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China.
| | - Mingwei Xu
- The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Jiajun Zhou
- The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310023, People's Republic of China
| | - Xiaoling Ge
- The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310023, People's Republic of China
| | - Guanfeng Chen
- The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310023, People's Republic of China
| | - Lili Guo
- The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310023, People's Republic of China
| | - Lian Luo
- The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310023, People's Republic of China
| | - Kun Li
- The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310023, People's Republic of China
| | - Zhou Zhu
- The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310023, People's Republic of China
| | - Fayong Zhang
- Department of Neurosurgery, Huashan Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
42
|
Shao L, Yu S, Ji W, Li H, Gao Y. The Contribution of Necroptosis in Neurodegenerative Diseases. Neurochem Res 2017; 42:2117-2126. [PMID: 28382594 DOI: 10.1007/s11064-017-2249-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 03/06/2017] [Accepted: 03/25/2017] [Indexed: 12/29/2022]
Abstract
Over the past decades, cell apoptosis has been significantly reputed as an accidental, redundant and alternative manner of cell demise which partakes in homeostasis in the development of extensive diseases. Nevertheless, necroptosis, another novel manner of cell death through a caspase-independent way, especially in neurodegenerative diseases remains ambiguous. The cognition of this form of cell demise is helpful to understand other forms of morphological resemblance of necrosis. Additionally, the concrete signal mechanism in the regulation of necroptosis is beneficial to the diagnosis and treatment of neurodegenerative diseases. Recent studies have demonstrated that necroptotic inhibitor, 24(S)-Hydroxycholesterol and partial specific histone deacetylase inhibitors could alleviate pathogenetic conditions of neurodegenerative diseases via necroptosis pathway. In this review, we summarize recent researches about mechanisms and modulation of necroptotic signaling pathways and probe into the role of programmed necroptotic cell demise in neurodegenerative diseases such as Parkinson's disease, Multiple sclerosis, Amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Lifei Shao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Medical College, Nantong University, Nantong, 226001, Jiangsu, China
| | - Shuping Yu
- Department of Blood Transfusion, The Forth Affiliated Hospital of Nantong University, Yancheng, 224006, Jiangsu, China.,Center of Laboratory Medicine, Affiliate Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Wei Ji
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Medical College, Nantong University, Nantong, 226001, Jiangsu, China
| | - Haizhen Li
- Medical College, Nantong University, Nantong, 226001, Jiangsu, China.,Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yilu Gao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
43
|
Inhibition of HSP90 Promotes Neural Stem Cell Survival from Oxidative Stress through Attenuating NF- κB/p65 Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3507290. [PMID: 27818721 PMCID: PMC5080492 DOI: 10.1155/2016/3507290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 01/19/2023]
Abstract
Stem cell survival after transplantation determines the efficiency of stem cell treatment, which develops as a novel potential therapy for several central nervous system (CNS) diseases in recent decades. The engrafted stem cells face the damage of oxidative stress, inflammation, and immune response at the lesion point in host. Among the damaging pathologies, oxidative stress directs stem cells to apoptosis and even death through several signalling pathways and DNA damage. However, the in-detail mechanism of stem cell survival from oxidative stress has not been revealed clearly. Here, in this study, we used hydrogen peroxide (H2O2) to induce the oxidative damage on neural stem cells (NSCs). The damage was in consequence demonstrated involving the activation of heat shock protein 90 (HSP90) and NF-κB/p65 signalling pathways. Further application of the pharmacological inhibitors, respectively, targeting at each signalling indicated an upper-stream role of HSP90 upon NF-κB/p65 on NSCs survival. Preinhibition of HSP90 with the specific inhibitor displayed a significant protection on NSCs against oxidative stress. In conclusion, inhibition of HSP90 would attenuate NF-κB/p65 activation by oxidative induction and promote NSCs survival from oxidative damage. The HSP90/NF-κB mechanism provides a new evidence on rescuing NSCs from oxidative stress and also promotes the stem cell application on CNS pathologies.
Collapse
|
44
|
Naji A, Suganuma N, Espagnolle N, Yagyu K, Baba N, Sensebé L, Deschaseaux F. Rationale for Determining the Functional Potency of Mesenchymal Stem Cells in Preventing Regulated Cell Death for Therapeutic Use. Stem Cells Transl Med 2016; 6:713-719. [PMID: 28297565 PMCID: PMC5442793 DOI: 10.5966/sctm.2016-0289] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/19/2016] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stem (stromal) cells (MSCs) are being investigated for treating degenerative and inflammatory disorders because of their reparative and immunomodulatory properties. Intricate mechanisms relate cell death processes with immune responses, which have implications for degenerative and inflammatory conditions. We review the therapeutic value of MSCs in terms of preventing regulated cell death (RCD). When cells identify an insult, specific intracellular pathways are elicited for execution of RCD processes, such as apoptosis, necroptosis, and pyroptosis. To some extent, exacerbated RCD can provoke an intense inflammatory response and vice versa. Emerging studies are focusing on the molecular mechanisms deployed by MSCs to ameliorate the survival, bioenergetics, and functions of unfit immune or nonimmune cells. Given these aspects, and in light of MSC actions in modulating cell death processes, we suggest the use of novel functional in vitro assays to ensure the potency of MSCs for preventing RCD. Such analyses should be associated with existing functional assays measuring the anti‐inflammatory capabilities of MSCs in vitro. MSCs selected on the basis of two in vitro functional criteria (i.e., prevention of inflammation and RCD) could possess optimal therapeutic efficacy in vivo. In addition, we underline the implications of these perspectives in clinical studies of MSC therapy, with particular focus on acute respiratory distress syndrome. Stem Cells Translational Medicine2017;6:713–719
Collapse
Affiliation(s)
- Abderrahim Naji
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| | - Narufumi Suganuma
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| | - Nicolas Espagnolle
- STROMALab, INSERM U1031, EFS Pyrénées‐Méditerranée, Université de Toulouse, Toulouse, France
| | - Ken‐ichi Yagyu
- Science Research Center, Division of Biological Research, Life Sciences and Functional Materials, Kochi Medical School, Kochi University, Kochi, Japan
| | - Nobuyasu Baba
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| | - Luc Sensebé
- STROMALab, INSERM U1031, EFS Pyrénées‐Méditerranée, Université de Toulouse, Toulouse, France
| | - Frédéric Deschaseaux
- STROMALab, INSERM U1031, EFS Pyrénées‐Méditerranée, Université de Toulouse, Toulouse, France
| |
Collapse
|