1
|
Li Y, Zhang B, Yang Y, Su P, Samsom JN, Wong AHC, Liu F. Sex and Age Differences in Glucocorticoid Signaling After an Aversive Experience in Mice. Cells 2024; 13:2041. [PMID: 39768133 PMCID: PMC11674875 DOI: 10.3390/cells13242041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND glucocorticoids may play an important role in the formation of fear memory, which is relevant to the neurobiology of post-traumatic stress disorder (PTSD). In our previous study, we showed the glucocorticoid receptor (GR) forms a protein complex with FKBP51, which prevents translocation of GR into the nucleus to affect gene expression; this complex is elevated in PTSD patients and by fear-conditioned learning in mice, and disrupting this complex blocks the storage and retrieval of fear-conditioned memories. The timing of release of glucocorticoid relative to the formation of a traumatic memory could be important in this process, and remains poorly understood. METHODS AND RESULTS we mapped serum corticosterone over time after fear conditioning in cardiac blood samples from male and female mice, as well as adult and aged mice using ELISA. We show a significant alteration in serum corticosterone after conditioning; notably, levels spike after 30 min but drop lower than unconditioned controls after 24 h. We further investigate the effect of glucocorticoid on GR phosphorylation and localization in HEK 293T cells by Western blot. Hydrocortisone treatment promotes phosphorylation and nuclear translocation of GR. CONCLUSIONS these data contribute to our understanding of the processes linking stress responses to molecular signals and fear memory, which is relevant to understanding the shared mechanisms related to PTSD.
Collapse
Affiliation(s)
- Yun Li
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100054, China; (Y.L.); (P.S.)
| | - Bin Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Institute of Mental Health and Drug Discovery, School of Mental Health, Wenzhou Medical University, Ouhai District, Wenzhou 325000, China; (B.Z.); (Y.Y.)
| | - Youhua Yang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Institute of Mental Health and Drug Discovery, School of Mental Health, Wenzhou Medical University, Ouhai District, Wenzhou 325000, China; (B.Z.); (Y.Y.)
| | - Ping Su
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100054, China; (Y.L.); (P.S.)
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON M5T 1R8, Canada; (J.N.S.); (A.H.C.W.)
| | - James Nicholas Samsom
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON M5T 1R8, Canada; (J.N.S.); (A.H.C.W.)
| | - Albert H. C. Wong
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON M5T 1R8, Canada; (J.N.S.); (A.H.C.W.)
- Department of Pharmacology & Toxicology, University of Toronto, 250 College St., Toronto, ON M5T 1R8, Canada
- Institutes of Medical Science, University of Toronto, 1 King’s College Cir., Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, 250 College St., Toronto, ON M5T 1R8, Canada
| | - Fang Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Institute of Mental Health and Drug Discovery, School of Mental Health, Wenzhou Medical University, Ouhai District, Wenzhou 325000, China; (B.Z.); (Y.Y.)
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON M5T 1R8, Canada; (J.N.S.); (A.H.C.W.)
- Department of Pharmacology & Toxicology, University of Toronto, 250 College St., Toronto, ON M5T 1R8, Canada
- Institutes of Medical Science, University of Toronto, 1 King’s College Cir., Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, 250 College St., Toronto, ON M5T 1R8, Canada
- Department of Physiology, University of Toronto, 1 King’s College Cir., Toronto, ON M5S 1A8, Canada
| |
Collapse
|
2
|
Iftikhar A, Shepherd S, Jones S, Ellis I. Effect of Mifepristone on Migration and Proliferation of Oral Cancer Cells. Int J Mol Sci 2024; 25:8777. [PMID: 39201464 PMCID: PMC11354386 DOI: 10.3390/ijms25168777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Glucocorticoid receptor (GR) overexpression has been linked to increased tumour aggressiveness and treatment resistance. GR antagonists have been shown to enhance treatment effectiveness. Emerging research has investigated mifepristone, a GR antagonist, as an anticancer agent with limited research in the context of oral cancer. This study investigated the effect of mifepristone at micromolar (µM) concentrations of 1, 5, 10 and 20 on the proliferation and migration of oral cancer cells, at 24 and 48 h. Scratch and scatter assays were utilised to assess cell migration, MTT assays were used to measure cell proliferation, Western blotting was used to investigate the expression of GR and the activation of underlying Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) signalling pathways, and immunofluorescence (IF) was used to determine the localisation of proteins in HaCaT (immortalised human skin keratinocytes), TYS (oral adeno squamous cell carcinoma), and SAS-H1 cells (squamous cell carcinoma of human tongue). Mifepristone resulted in a dose-dependent reduction in the proliferation of HaCaT, TYS, and SAS-H1 cells. Mifepristone at a concentration of 20 µM effectively reduced collective migration and scattering of oral cancer cells, consistent with the suppression of the PI3K-Akt and MAPK signalling pathways, and reduced expression of N-Cadherin. An elongated cell morphology was, however, observed, which may be linked to the localisation pattern of E-Cadherin in response to mifepristone. Overall, this study found that a high concentration of mifepristone was effective in the suppression of migration and proliferation of oral cancer cells via the inhibition of PI3K-Akt and MAPK signalling pathways. Further investigation is needed to define its impact on epithelial-mesenchymal transition (EMT) markers.
Collapse
Affiliation(s)
| | | | | | - Ian Ellis
- School of Dentistry, University of Dundee, Dundee DD1 4HR, UK; (A.I.); (S.S.); (S.J.)
| |
Collapse
|
3
|
van Minnen A, Vos L, Bet PM, de Jongh A, Linsen F, van Marle HJF, Meijer OC, Otte WM, Russcher M, Vinkers CH. Three Prospective Case Studies Examining Mifepristone's Efficacy in Patients with Treatment-Resistant PTSD. Case Rep Psychiatry 2024; 2024:4768647. [PMID: 38706512 PMCID: PMC11068447 DOI: 10.1155/2024/4768647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Despite the availability of various treatment approaches for patients with posttraumatic stress disorder (PTSD), some patients do not respond to these therapies, and novel treatment approaches are needed. This study investigated the efficacy of mifepristone, a glucocorticoid receptor antagonist, in treatment-resistant PTSD patients. Three patients with PTSD who were resistant to standard psychological and pharmacological treatments were prescribed mifepristone (600-1,200 mg/day) for 1 week. A baseline-controlled single-case design was used, involving a 2-week baseline phase (no intervention), a 1-week intervention phase (mifepristone), and a 2-week postintervention phase. The primary outcome measure, self-reported PTSD symptom severity (PCL-5), was assessed daily, with participants providing their own control condition. Two of the three patients experienced a significant reduction in PTSD symptom severity after the intervention phase and no longer met the diagnostic criteria for PTSD. These positive results were maintained during long-term follow-up. These findings support the potential effectiveness of mifepristone in the treatment of patients with treatment-resistant PTSD. However, our findings must be interpreted with caution, and further studies with larger sample sizes and more rigorous designs are necessary to confirm the promising results.
Collapse
Affiliation(s)
- Agnes van Minnen
- Psychotrauma Expertise Centre (PSYTREC) Bilthoven, Bilthoven, Netherlands
- Behavioural Science Institute (BSI), Radboud University, Nijmegen, Netherlands
| | - Lizelotte Vos
- Psychotrauma Expertise Centre (PSYTREC) Bilthoven, Bilthoven, Netherlands
| | - Pierre M. Bet
- Department of Clinical Pharmacology and Pharmacy, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ad de Jongh
- Psychotrauma Expertise Centre (PSYTREC) Bilthoven, Bilthoven, Netherlands
- Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, Netherlands
- School of Health Sciences, Salford University, Salford, Manchester, UK
- Institute of Health and Society, University of Worcester, Worcester, UK
- School of Psychology, Queen's University, Belfast, UK
| | - Felix Linsen
- Department of Psychiatry, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam, Neuroscience, Mood, Anxiety, Psychosis, Sleep and Stress Program, Amsterdam, Netherlands
| | - Hein J. F. van Marle
- Department of Psychiatry, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam, Neuroscience, Mood, Anxiety, Psychosis, Sleep and Stress Program, Amsterdam, Netherlands
- ARQ National Psychotrauma Center, Diemen, Netherlands
- GGZ inGeest Mental Health Care, Amsterdam, Netherlands
| | - Onno C. Meijer
- Department of Medicine, Division Endocrinology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Willem M. Otte
- Department of Child Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marije Russcher
- Department of Hospital Pharmacy, Meander Medical Center, Amersfoort, Netherlands
| | - Christiaan H. Vinkers
- Department of Psychiatry, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam, Neuroscience, Mood, Anxiety, Psychosis, Sleep and Stress Program, Amsterdam, Netherlands
- GGZ inGeest Mental Health Care, Amsterdam, Netherlands
| |
Collapse
|
4
|
Deuter CE, Kaczmarczyk M, Hellmann-Regen J, Kuehl LK, Wingenfeld K, Otte C. The influence of pharmacological mineralocorticoid and glucocorticoid receptor blockade on the cortisol response to psychological stress. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110905. [PMID: 38043634 DOI: 10.1016/j.pnpbp.2023.110905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
The glucocorticoid cortisol is the end product of the hypothalamic-pituitary-adrenal (HPA) axis and crucial for the stress response in humans. Cortisol regulates numerous biological functions by binding to two different types of receptors: the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). Both receptors are found in the brain where they are crucially involved in various mental functions and in feedback inhibition of cortisol release. The precise role of both receptors in the human stress response is not completely understood. In this study, we examined the effects of pharmacological blockade of the MR or the GR on stress-induced cortisol release in a sample of 318 healthy young men (M = 25.42, SD = 5.01). Participants received the MR antagonist spironolactone (300 mg), the GR antagonist mifepristone (600 mg), or a placebo and were subjected 90 min later to a social-evaluative stressor (Trier Social Stress Test) or a non-stressful control condition. We found significantly higher stress-induced cortisol release in the spironolactone group, whereas participants after mifepristone administration did not differ from the control groups. These results suggest that MR blockade results in attenuated fast negative feedback processes and emphasize the important role of the MR during the early phase of the stress response.
Collapse
Affiliation(s)
- Christian E Deuter
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany.
| | - Michael Kaczmarczyk
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany
| | - Julian Hellmann-Regen
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany; DZPG (German Center for Mental Health), Germany
| | | | - Katja Wingenfeld
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany; DZPG (German Center for Mental Health), Germany
| | - Christian Otte
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany; DZPG (German Center for Mental Health), Germany
| |
Collapse
|
5
|
de Kloet ER, Joëls M. The cortisol switch between vulnerability and resilience. Mol Psychiatry 2024; 29:20-34. [PMID: 36599967 DOI: 10.1038/s41380-022-01934-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023]
Abstract
In concert with neuropeptides and transmitters, the end products of the hypothalamus-pituitary-adrenal (HPA) axis, the glucocorticoid hormones cortisol and corticosterone (CORT), promote resilience: i.e., the ability to cope with threats, adversity, and trauma. To exert this protective action, CORT activates mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) that operate in a complementary manner -as an on/off switch- to coordinate circadian events, stress-coping, and adaptation. The evolutionary older limbic MR facilitates contextual memory retrieval and supports an on-switch in the selection of stress-coping styles at a low cost. The rise in circulating CORT concentration after stress subsequently activates a GR-mediated off-switch underlying recovery of homeostasis by providing the energy for restraining the primary stress reactions and promoting cognitive control over emotional reactivity. GR activation facilitates contextual memory storage of the experience to enable future stress-coping. Such complementary MR-GR-mediated actions involve rapid non-genomic and slower gene-mediated mechanisms; they are time-dependent, conditional, and sexually dimorphic, and depend on genetic background and prior experience. If coping fails, GR activation impairs cognitive control and promotes emotional arousal which eventually may compromise resilience. Such breakdown of resilience involves a transition to a chronic stress construct, where information processing is crashed; it leads to an imbalanced MR-GR switch and hence increased vulnerability. Novel MR-GR modulators are becoming available that may reset a dysregulated stress response system to reinstate the cognitive flexibility required for resilience.
Collapse
Affiliation(s)
- E Ronald de Kloet
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, The Netherlands.
- Leiden/Amsterdam Center of Drug Research, Leiden University, Leiden, The Netherlands.
| | - Marian Joëls
- Dept. Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Gazorpak M, Hugentobler KM, Paul D, Germain PL, Kretschmer M, Ivanova I, Frei S, Mathis K, Rudolf R, Mompart Barrenechea S, Fischer V, Xue X, Ptaszek AL, Holzinger J, Privitera M, Hierlemann A, Meijer OC, Konrat R, Carreira EM, Bohacek J, Gapp K. Harnessing PROTAC technology to combat stress hormone receptor activation. Nat Commun 2023; 14:8177. [PMID: 38071198 PMCID: PMC10710461 DOI: 10.1038/s41467-023-44031-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Counteracting the overactivation of glucocorticoid receptors (GR) is an important therapeutic goal in stress-related psychiatry and beyond. The only clinically approved GR antagonist lacks selectivity and induces unwanted side effects. To complement existing tools of small-molecule-based inhibitors, we present a highly potent, catalytically-driven GR degrader, KH-103, based on proteolysis-targeting chimera technology. This selective degrader enables immediate and reversible GR depletion that is independent of genetic manipulation and circumvents transcriptional adaptations to inhibition. KH-103 achieves passive inhibition, preventing agonistic induction of gene expression, and significantly averts the GR's genomic effects compared to two currently available inhibitors. Application in primary-neuron cultures revealed the dependency of a glucocorticoid-induced increase in spontaneous calcium activity on GR. Finally, we present a proof of concept for application in vivo. KH-103 opens opportunities for a more lucid interpretation of GR functions with translational potential.
Collapse
Affiliation(s)
- Mahshid Gazorpak
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, 8057, Zürich, Switzerland
| | - Karina M Hugentobler
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Dominique Paul
- Lab of Statistical Bioinformatics, University of Zürich, 8057, Zürich, Switzerland
| | - Pierre-Luc Germain
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
- Lab of Statistical Bioinformatics, University of Zürich, 8057, Zürich, Switzerland
- Computational Neurogenomics, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
| | - Miriam Kretschmer
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, 8057, Zürich, Switzerland
| | - Iryna Ivanova
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
| | - Selina Frei
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
| | - Kei Mathis
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
| | - Remo Rudolf
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
| | - Sergio Mompart Barrenechea
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
| | - Vincent Fischer
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, 8057, Zürich, Switzerland
| | - Xiaohan Xue
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, 4056, Basel, Switzerland
| | - Aleksandra L Ptaszek
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Max Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Julian Holzinger
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Max Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Mattia Privitera
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
| | - Andreas Hierlemann
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, 4056, Basel, Switzerland
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2300, RA, Leiden, the Netherlands
| | - Robert Konrat
- Department of Structural and Computational Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Erick M Carreira
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Johannes Bohacek
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, 8057, Zürich, Switzerland
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
| | - Katharina Gapp
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland.
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, 8057, Zürich, Switzerland.
| |
Collapse
|
7
|
Yalin N, Kempton MJ, Mazibuko N, Mehta MA, Young AH, Stokes PRA. Acute effects of mifepristone on emotional processing related brain activity: A functional MRI study. Eur Neuropsychopharmacol 2023; 77:93-102. [PMID: 37742397 DOI: 10.1016/j.euroneuro.2023.08.500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
The Hypothalamic-pituitary-adrenal (HPA) axis plays an important role in the pathophysiology of mood disorders, and preliminary data suggests that glucocorticoid receptor (GR) antagonism may be an important therapeutic mechanism. The effects of modulating HPA axis function on emotional processing related brain activity, which may be abnormal in depressed mood, is poorly understood. This study used a pharmacological functional magnetic resonance imaging (fMRI) design to determine the effects of the GR and progesterone receptor antagonist mifepristone on emotional faces processing task related brain activations in 19 right-handed healthy male participants. Each participant received 600 mg mifepristone or placebo on two separate imaging days and then performed an emotional processing fMRI task four hours later. The effect of mifepristone on task related brain activations was determined using Region-of-Interest (ROI) analyses and an exploratory whole brain voxel-wise analyses. No significant changes were observed in the defined ROIs (amygdala, anterior cingulate cortex, insula) or in the exploratory whole brain analyses that was associated with mifepristone administration in either the angry vs happy faces or angry and happy faces vs implicit baseline contrasts. Task reaction times and accuracy were similar in both mifepristone and placebo conditions (all p > 0.05). Our study failed to show significant evidence of modulation of emotional processing related brain activity associated with acute mifepristone administration. Future research should use fMRI to investigate the longer-term administration effects of mifepristone on mood in healthy participants and people with mood disorders to provide a deeper understanding of the potential effects on depressive symptoms.
Collapse
Affiliation(s)
- Nefize Yalin
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry & Psychology and Neuroscience, King's College of London, UK.
| | - Matthew J Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology &Neuroscience, King's College London, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Ndaba Mazibuko
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Allan H Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry & Psychology and Neuroscience, King's College of London, UK
| | - Paul R A Stokes
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry & Psychology and Neuroscience, King's College of London, UK
| |
Collapse
|
8
|
de Kloet ER. Glucocorticoid feedback paradox: a homage to Mary Dallman. Stress 2023; 26:2247090. [PMID: 37589046 DOI: 10.1080/10253890.2023.2247090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023] Open
Abstract
As the end product of the hypothalamus-pituitary-adrenal (HPA) axis, the glucocorticoid hormones cortisol and corticosterone coordinate circadian activities, stress-coping, and adaptation to change. For this purpose, the hormone promotes energy metabolism and controls defense reactions in the body and brain. This life-sustaining action exerted by glucocorticoids occurs in concert with the autonomic nervous and immune systems, transmitters, growth factors/cytokines, and neuropeptides. The current contribution will focus on the glucocorticoid feedback paradox in the HPA-axis: the phenomenon that stress responsivity remains resilient if preceded by stress-induced secretion of glucocorticoid hormone, but not if this hormone is previously administered. Furthermore, in animal studies, the mixed progesterone/glucocorticoid antagonist RU486 or mifepristone switches to an apparent partial agonist upon repeated administration. To address these enigmas several interesting phenomena are highlighted. These include the conditional nature of the excitation/inhibition balance in feedback regulation, the role of glucose as a determinant of stress responsivity, and the potential of glucocorticoids in resetting the stress response system. The analysis of the feedback paradox provides also a golden opportunity to review the progress in understanding the role of glucocorticoid hormone in resilience and vulnerability during stress, the science that was burned deeply in Mary Dallman's emotions.
Collapse
Affiliation(s)
- Edo Ronald de Kloet
- Department of Clinical Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Gulyaeva NV. Glucocorticoids Orchestrate Adult Hippocampal Plasticity: Growth Points and Translational Aspects. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:565-589. [PMID: 37331704 DOI: 10.1134/s0006297923050012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 06/20/2023]
Abstract
The review analyzes modern concepts about the control of various mechanisms of the hippocampal neuroplasticity in adult mammals and humans by glucocorticoids. Glucocorticoid hormones ensure the coordinated functioning of key components and mechanisms of hippocampal plasticity: neurogenesis, glutamatergic neurotransmission, microglia and astrocytes, systems of neurotrophic factors, neuroinflammation, proteases, metabolic hormones, neurosteroids. Regulatory mechanisms are diverse; along with the direct action of glucocorticoids through their receptors, there are conciliated glucocorticoid-dependent effects, as well as numerous interactions between various systems and components. Despite the fact that many connections in this complex regulatory scheme have not yet been established, the study of the factors and mechanisms considered in the work forms growth points in the field of glucocorticoid-regulated processes in the brain and primarily in the hippocampus. These studies are fundamentally important for the translation into the clinic and the potential treatment/prevention of common diseases of the emotional and cognitive spheres and respective comorbid conditions.
Collapse
Affiliation(s)
- Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, 115419, Russia
| |
Collapse
|
10
|
Golier JA, Li X, Bizien M, Hurley RA, Bechard BW, Kimbrell T, Flory JD, Baker DG, Yehuda R, Reda DJ. Efficacy and Safety of Mifepristone in the Treatment of Male US Veterans With Posttraumatic Stress Disorder: A Phase 2a Randomized Clinical Trial. JAMA Netw Open 2023; 6:e2310223. [PMID: 37159200 PMCID: PMC10170341 DOI: 10.1001/jamanetworkopen.2023.10223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Importance To date, no psychopharmacologic treatment has been found to be uniformly effective in veterans with posttraumatic stress disorder (PTSD); novel targets and approaches are needed to treat this disabling disorder. Objective To examine whether treatment with the glucocorticoid receptor antagonist mifepristone yields a signal for clinical efficacy in male veterans with PTSD. Design, Setting, and Participants This phase 2a, double-blind, parallel-group randomized clinical trial was conducted from November 19, 2012 (accrual started), through November 16, 2016 (final follow-up), within the US Department of Veterans Affairs. Participants were male veterans with chronic PTSD and a screening Clinician-Administered PTSD Scale score of 50 or higher. A total of 181 veterans consented to participation. Statistical analysis was conducted between August 2014 and May 2017. Interventions Participants were randomized in a 1:1 ratio to mifepristone (600 mg) or matched placebo taken orally for 7 days. Main Outcomes and Measures The clinical outcome was whether a veteran achieved a clinical response status (a reduction of ≥30% of total Clinician-Administered PTSD Scale score from baseline) at 4- and 12-week follow-up. On the basis of a binary statistical selection rule, a difference in the proportion of treatment vs control group responders of 15% would be a clinically relevant difference. Self-report measures of PTSD and associated symptoms were also obtained. Neuroendocrine outcomes and plasma levels of mifepristone were measured. Safety was assessed throughout the study. The primary analysis was based on a multiple imputation technique to address missing outcome data; thus, some participant numbers may not appear as whole numbers. Results A total of 81 veterans were enrolled and randomized. Excluding 1 participant randomized in error, 80 were included in the modified intention-to-treat analysis (41 randomized to mifepristone and 39 to placebo). The mean (SD) age was 43.1 (13.7) years. A total of 15.6 (38.1%) in the mifepristone group and 12.1 (31.1%) in the placebo group were clinical responders at 4 weeks in the analysis using the multiple imputation technique. The group difference in the proportion of clinical responders (7.0%) was less than the predefined margin of 15% indicating signal for clinical efficacy. In an exploratory analysis, the difference in response to mifepristone vs placebo in the subgroup with no lifetime history of traumatic brain injury (TBI) (7.0 [50.0%] vs 3.0 [27.3%]; difference, 22.7%) exceeded the efficacy margin at 4 weeks and was sustained at 12 weeks. In contrast, in veterans with PTSD and lifetime TBI, the response rate to mifepristone was lower than placebo at 12 weeks (7.4 [27.4%] vs 13.5 [48.3%]; difference, -20.9%). Conclusions and Relevance This study did not detect a signal for efficacy for mifepristone at 600 mg/d for 1 week in male veterans with chronic PTSD. Thus, this study does not support a phase 3 trial in this population. Future studies of mifepristone for the treatment of PTSD may be of interest in those without a history of TBI or in samples with a low base rate of lifetime head trauma. Trial Registration ClinicalTrials.gov Identifier: NCT01946685.
Collapse
Affiliation(s)
- Julia A Golier
- Veterans Affairs (VA) Medical Center, Bronx, New York
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York
| | - Xue Li
- VA Cooperative Studies Program, Hines, Illinois
| | - Marcel Bizien
- VA Cooperative Studies Program Clinical Research Coordinating Center, Albuquerque, New Mexico
| | - Robin A Hurley
- VA Medical Center, Salisbury, North Carolina
- Department of Psychiatry and Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Brendan W Bechard
- Veterans Affairs (VA) Medical Center, Bronx, New York
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York
| | - Timothy Kimbrell
- Central Arkansas VA Healthcare, University of Arkansas, Fayetteville
| | - Janine D Flory
- Veterans Affairs (VA) Medical Center, Bronx, New York
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York
| | - Dewleen G Baker
- VA San Diego Healthcare System, University of California, San Diego, San Diego
| | - Rachel Yehuda
- Veterans Affairs (VA) Medical Center, Bronx, New York
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York
| | | |
Collapse
|
11
|
Nayana J, Shankaranarayana Rao BS, Srikumar BN. Mifepristone's effects on depression- and anxiety-like behavior in rodents. Steroids 2022; 184:109058. [PMID: 35679911 DOI: 10.1016/j.steroids.2022.109058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/17/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
Mifepristone is a non-selective progesterone (PR), glucocorticoid (GR), and androgen receptor (AR) antagonist with antidepressant and anxiolytic effects. The dose and duration of mifepristone administration vary in rodent preclinical studies to evaluate depression-like and anxiety-like behavior. This review summarizes the findings so far and attempts to reconcile some of the differences in the results. While a few studies assessed basal depression- and anxiety-like behavior, several studies have used mifepristone in conjunction with stress, corticosterone/dexamethasone (after adrenalectomy), or progesterone administration. The effect of mifepristone on depression-like behavior appears to depend not only on the dose and duration of administration but also on the intensity or type of stress. In addition, the anxiolytic effects may depend on the species and strain of the experimental animals. More reports assess antidepressant-like or anxiolytic-like effects following acute than chronic administration. These effects are dependent on the paradigms and the nature of stressors. Most mifepristone studies implicate the role of GRs, yet only two reports have confirmed its role using a genetic approach, whereas none implicate the role of PRs/ARs. There are several novel selective GR antagonists whose effects on depression- and anxiety-like behavior are yet to be studied. Future studies could aim to confirm the role of GRs and evaluate the contribution of PRs/ARs to the effects of mifepristone. Such studies will contribute to a better understanding of depression, anxiety, and other mood disorders and develop novel strategies, particularly for treatment-resistant conditions.
Collapse
Affiliation(s)
- J Nayana
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India
| | - B N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India.
| |
Collapse
|
12
|
Zhong C, Lu Y, Li Y, Xie H, Zhou G, Jia L. Similarities and differences between embryonic implantation and CTC invasion: Exploring the roles of abortifacients in cancer metastasis chemoprevention. Eur J Med Chem 2022; 237:114416. [DOI: 10.1016/j.ejmech.2022.114416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 11/03/2022]
|
13
|
Zhao J, Shi W, Lu Y, Gao X, Wang A, Zhang S, Du Y, Wang Y, Li L. Alterations of monoamine neurotransmitters, HPA-axis hormones, and inflammation cytokines in reserpine-induced hyperalgesia and depression comorbidity rat model. BMC Psychiatry 2022; 22:419. [PMID: 35733107 PMCID: PMC9214971 DOI: 10.1186/s12888-022-04065-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/15/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Pain and depression often occur simultaneously, but the mechanism of this condition is still unclear. METHODS The aim of this study was to examine the alterations of monoamine neurotransmitters, hypothalamic-pituitary-adrenal (HPA) axis hormones, and inflammation cytokines in hyperalgesia and depression comorbidities. The reserpine-induced "Sprague Dawley" (SD) rat models were used, and the concentrations of monoamine neurotransmitters serotonin (5-HT), norepinephrine (NE), dopamine (DA), and their metabolic products 5-hydroxyindoleacetic acid (5-HIAA), Homovanillic acid (HVA), 3,4-Dihydroxyphenylacetic acid (DOPAC) in raphe nucleus region were tested by High Performance Liquid Chromatography (HPLC). Serum levels of Adrenocorticotropic Hormone (ACTH), Cortisol (CORT), and inflammatory cytokines interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, IL-4, IL-10 were assessed by enzyme linked immunosorbent assay. RESULTS Repeated reserpine injection induced hyperalgesia and depressive behaviors with decreased sucrose preference and horizontal movement distance, and increased immobility time in forced swimming test. The concentrations of 5-HT and NE in raphe nucleus, and ACTH and CORT in serum were elevated in the model group. And the model group showed increases in serum IL-1β and IL-6, and decrease in serum IL-10. CONCLUSION More research in these areas is needed to understand the pathogenesis of the disease, so as to find more and better therapeutic targets.
Collapse
Affiliation(s)
- Jingjie Zhao
- grid.24696.3f0000 0004 0369 153XDepartment of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Beijing, 100050 China ,grid.24696.3f0000 0004 0369 153XDepartment of Integrated Traditional and Western Medicine, Capital Medical University, Beijing, 100050 China
| | - Wei Shi
- grid.24696.3f0000 0004 0369 153XDepartment of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Beijing, 100050 China ,grid.411609.b0000 0004 1758 4735Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, 100045 China
| | - Yujia Lu
- grid.24696.3f0000 0004 0369 153XDepartment of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Beijing, 100050 China
| | - Xuesong Gao
- grid.24696.3f0000 0004 0369 153XDepartment of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Beijing, 100050 China
| | - Anna Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Beijing, 100050 China
| | - Shan Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Beijing, 100050 China
| | - Yi Du
- grid.24696.3f0000 0004 0369 153XDepartment of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Beijing, 100050 China
| | - Yongzhi Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Beijing, 100050 China
| | - Li Li
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Beijing, 100050, China. .,Department of Integrated Traditional and Western Medicine, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
14
|
de Kloet ER. Brain mineralocorticoid and glucocorticoid receptor balance in neuroendocrine regulation and stress-related psychiatric etiopathologies. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 24:100352. [PMID: 38037568 PMCID: PMC10687720 DOI: 10.1016/j.coemr.2022.100352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Cortisol and corticosterone (CORT) coordinate circadian events and manage the stress response by differential activation of two complementary brain receptor systems, i.e., the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR), which mediate rapid non-genomic and slow genomic actions. Several recent discoveries are highlighted from molecular fine-tuning of the MR/GR balance by FKBP5 to CORTs role in neural network regulation underlying stress adaptation in emotional, cognitive, and social domains of behavior. The data suggest that MR mediates CORT action on risk assessment, social interaction, and response selection, while GR activation promotes memory consolidation and behavioral adaptation; there are also sex differences in CORT action. New evidence suggests that targeting the MR/GR balance resets a dysregulated stress response system and promotes resilience.
Collapse
Affiliation(s)
- Edo Ronald de Kloet
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, University of Leiden, Leiden, the Netherlands
| |
Collapse
|
15
|
Daskalakis NP, Meijer OC, de Kloet ER. Mineralocorticoid receptor and glucocorticoid receptor work alone and together in cell-type-specific manner: Implications for resilience prediction and targeted therapy. Neurobiol Stress 2022; 18:100455. [PMID: 35601687 PMCID: PMC9118500 DOI: 10.1016/j.ynstr.2022.100455] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
'You can't roll the clock back and reverse the effects of experiences' Bruce McEwen used to say when explaining how allostasis labels the adaptive process. Here we will for once roll the clock back to the times that the science of the glucocorticoid hormone was honored with a Nobel prize and highlight the discovery of their receptors in the hippocampus as inroad to its current status as master regulator in control of stress coping and adaptation. Glucocorticoids operate in concert with numerous neurotransmitters, neuropeptides, and other hormones with the aim to facilitate processing of information in the neurocircuitry of stress, from anticipation and perception of a novel experience to behavioral adaptation and memory storage. This action, exerted by the glucocorticoids, is guided by two complementary receptor systems, mineralocorticoid receptors (MR) and glucocorticoid receptors (GR), that need to be balanced for a healthy stress response pattern. Here we discuss the cellular, neuroendocrine, and behavioral studies underlying the MR:GR balance concept, highlight the relevance of hypothalamic-pituitary-adrenal (HPA) -axis patterns and note the limited understanding yet of sexual dimorphism in glucocorticoid actions. We conclude with the prospect that (i) genetically and epigenetically regulated receptor variants dictate cell-type-specific transcriptome signatures of stress-related neuropsychiatric symptoms and (ii) selective receptor modulators are becoming available for more targeted treatment. These two new developments may help to 'restart the clock' with the prospect to support resilience.
Collapse
Affiliation(s)
| | - Onno C. Meijer
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - E. Ron de Kloet
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
16
|
Carmack SA, Vendruscolo JCM, Adrienne McGinn M, Miranda-Barrientos J, Repunte-Canonigo V, Bosse GD, Mercatelli D, Giorgi FM, Fu Y, Hinrich AJ, Jodelka FM, Ling K, Messing RO, Peterson RT, Rigo F, Edwards S, Sanna PP, Morales M, Hastings ML, Koob GF, Vendruscolo LF. Corticosteroid sensitization drives opioid addiction. Mol Psychiatry 2022; 27:2492-2501. [PMID: 35296810 PMCID: PMC10406162 DOI: 10.1038/s41380-022-01501-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 11/09/2022]
Abstract
The global crisis of opioid overdose fatalities has led to an urgent search to discover the neurobiological mechanisms of opioid use disorder (OUD). A driving force for OUD is the dysphoric and emotionally painful state (hyperkatifeia) that is produced during acute and protracted opioid withdrawal. Here, we explored a mechanistic role for extrahypothalamic stress systems in driving opioid addiction. We found that glucocorticoid receptor (GR) antagonism with mifepristone reduced opioid addiction-like behaviors in rats and zebrafish of both sexes and decreased the firing of corticotropin-releasing factor neurons in the rat amygdala (i.e., a marker of brain stress system activation). In support of the hypothesized role of glucocorticoid transcriptional regulation of extrahypothalamic GRs in addiction-like behavior, an intra-amygdala infusion of an antisense oligonucleotide that blocked GR transcriptional activity reduced addiction-like behaviors. Finally, we identified transcriptional adaptations of GR signaling in the amygdala of humans with OUD. Thus, GRs, their coregulators, and downstream systems may represent viable therapeutic targets to treat the "stress side" of OUD.
Collapse
Affiliation(s)
- Stephanie A Carmack
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, Baltimore, MD, USA
- Center for Adaptive Systems of Brain-Body Interactions, George Mason University, Fairfax, VA, USA
| | - Janaina C M Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, Baltimore, MD, USA
| | - M Adrienne McGinn
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, Baltimore, MD, USA
| | - Jorge Miranda-Barrientos
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, Baltimore, MD, USA
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Gabriel D Bosse
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Yu Fu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Anthony J Hinrich
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Francine M Jodelka
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Karen Ling
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Robert O Messing
- Waggoner Center for Alcohol and Addiction Research, Department of Neuroscience and Neurology, University of Texas, Austin, TX, USA
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Scott Edwards
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Pietro P Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Marisela Morales
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, Baltimore, MD, USA
| | - Michelle L Hastings
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - George F Koob
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, Baltimore, MD, USA.
| |
Collapse
|
17
|
de Azevedo Camin N, Andrey Ariza Traslaviña G, Cleber Gama de Barcellos Filho P, Rodrigues Franci C. Early post-stress administration of MR or GR antagonist in adolescent female rats restored anxiogenic-like behavior and modified the HPA axis response in the adulthood. Brain Res 2022; 1782:147833. [DOI: 10.1016/j.brainres.2022.147833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/09/2022] [Accepted: 02/10/2022] [Indexed: 11/28/2022]
|
18
|
Khom S, Rodriguez L, Gandhi P, Kirson D, Bajo M, Oleata CS, Vendruscolo LF, Mason BJ, Roberto M. Alcohol dependence and withdrawal increase sensitivity of central amygdalar GABAergic synapses to the glucocorticoid receptor antagonist mifepristone in male rats. Neurobiol Dis 2022; 164:105610. [PMID: 34995754 PMCID: PMC9301881 DOI: 10.1016/j.nbd.2022.105610] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/21/2022] Open
Abstract
Aberrant glucocorticoid signaling via glucocorticoid receptors (GR) plays a critical role in alcohol use disorder (AUD). Acute alcohol withdrawal and protracted abstinence in dependent rats are associated with increased GR signaling and changes in GR-mediated transcriptional activity in the rat central nucleus of the amygdala (CeA). The GR antagonist mifepristone decreases alcohol consumption in dependent rats during acute withdrawal and protracted abstinence. Regulation of CeA synaptic activity by GR is currently unknown. Here, we utilized mifepristone and the selective GR antagonist CORT118335 (both at 10 μM) as pharmacological tools to dissect the role of GR on GABA transmission in male, adult Sprague-Dawley rats using slice electrophysiology. We subjected rats to chronic intermittent alcohol vapor exposure for 5–7 weeks to induce alcohol dependence. A subset of dependent rats subsequently underwent protracted alcohol withdrawal for 2 weeks, and air-exposed rats served as controls. Mifepristone reduced the frequency of pharmacologically-isolated spontaneous inhibitory postsynaptic currents (sIPSC) in the CeA (medial subdivision) without affecting postsynaptic measures in all groups, suggesting decreased GABA release with the largest effect in dependent rats. CORT118335 did not significantly alter GABA transmission in naive, but decreased sIPSC frequency in dependent rats. Similarly, mifepristone decreased amplitudes of evoked inhibitory postsynaptic potentials only in dependent rats and during protracted withdrawal. Collectively, our study provides insight into regulation of CeA GABAergic synapses by GR. Chronic ethanol enhances the efficiency of mifepristone and CORT118335, thus highlighting the potential of drugs targeting GR as a promising pharmacological avenue for the treatment of AUD.
Collapse
Affiliation(s)
- Sophia Khom
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, United States of America; Department of Pharmaceutical Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Larry Rodriguez
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, United States of America
| | - Pauravi Gandhi
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, United States of America
| | - Dean Kirson
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, United States of America; Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, 71 S Manassas, Memphis, TN 38163, United States of America
| | - Michal Bajo
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, United States of America
| | - Christopher S Oleata
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, United States of America
| | - Leandro F Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 251 Bayview Blvd., Baltimore, MD 21224, United States of America
| | - Barbara J Mason
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, United States of America
| | - Marisa Roberto
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, United States of America.
| |
Collapse
|
19
|
McGinn MA, Tunstall BJ, Schlosburg JE, Gregory-Flores A, George O, de Guglielmo G, Mason BJ, Hunt HJ, Koob GF, Vendruscolo LF. Glucocorticoid receptor modulators decrease alcohol self-administration in male rats. Neuropharmacology 2021; 188:108510. [PMID: 33647278 PMCID: PMC8099171 DOI: 10.1016/j.neuropharm.2021.108510] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 02/09/2023]
Abstract
Alcohol use disorder (AUD) is associated with the dysregulation of brain stress and reward systems, including glucocorticoid receptors (GRs). The mixed glucocorticoid/progesterone receptor antagonist mifepristone and selective GR antagonist CORT113176 have been shown to selectively reduce alcohol consumption in alcohol-dependent rats. Mifepristone has also been shown to decrease alcohol consumption and craving for alcohol in humans with AUD. The present study tested the effects of the GR modulators CORT118335, CORT122928, CORT108297, and CORT125134 on alcohol self-administration in nondependent (air-exposed) and alcohol-dependent (alcohol vapor-exposed) adult male rats. Different GR modulators recruit different GR-associated transcriptional cofactors. Thus, we hypothesized that these GR modulators would vary in their effects on alcohol drinking. CORT118335, CORT122928, and CORT125134 significantly reduced alcohol self-administration in both alcohol-dependent and nondependent rats. CORT108297 had no effect on alcohol self-administration in either group. The present results support the potential of GR modulators for the development of treatments for AUD. Future studies that characterize genomic and nongenomic effects of these GR modulators will elucidate potential molecular mechanisms that underlie alcohol drinking in alcohol-dependent and nondependent states.
Collapse
Affiliation(s)
- M Adrienne McGinn
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| | - Brendan J Tunstall
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, USA
| | - Joel E Schlosburg
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Olivier George
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Giordano de Guglielmo
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Barbara J Mason
- Department of Molecular Medicine and Pearson Center for Alcoholism and Addiction Research, The Scripps Research Institute, La Jolla, CA, USA
| | | | - George F Koob
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
20
|
Molendijk ML, de Kloet ER. Forced swim stressor: Trends in usage and mechanistic consideration. Eur J Neurosci 2021; 55:2813-2831. [PMID: 33548153 PMCID: PMC9291081 DOI: 10.1111/ejn.15139] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 12/12/2022]
Abstract
The acquired immobility response during the “forced swim test (FST)” is not a rodent model of depression, but the test has some validity in predicting a compound's antidepressant potential. Nevertheless, 60% of the about 600 papers that were published annually the past 2 years label the rodent's immobility response as depression‐like behaviour, but the relative contribution per country is changing. When the Editors‐in‐Chief of 5 journals publishing most FST papers were asked for their point of view on labelling immobility as depression‐like behaviour and despair, they responded that they primarily rely on the reviewers regarding scientific merit of the submission. One Editor informs authors of the recent NIMH notice (https://grants.nih.gov/grants/guide/notice‐files/NOT‐MH‐19‐053.html) which encourages investigators to use animal models “for” addressing neurobiological questions rather than as model “of” specific mental disorders. The neurobiological questions raised by use of the FST fall in two categories. First, research on the role of endocrine and metabolic factors, with roots in the 1980s, and with focus on the bottom‐up action of glucocorticoids on circuits processing salient information, executive control and memory consolidation. Second, recent findings using novel technological and computational advances that have allowed great progress in charting top‐down control in the switch from active to passive coping with the inescapable stressor executed by neuronal ensembles of the medial prefrontal cortex via the peri‐aquaductal grey. It is expected that combining neural top‐down and endocrine bottom‐up approaches will provide new insights in the role of stress‐coping and adaptation in pathogenesis of mental disorders.
Collapse
Affiliation(s)
- Marc L Molendijk
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden, The Netherlands
| | - E Ronald de Kloet
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
21
|
Melief J, Huitinga I, Gold SM. The stress-axis in multiple sclerosis: Clinical, cellular, and molecular aspects. HANDBOOK OF CLINICAL NEUROLOGY 2021; 181:119-126. [PMID: 34238451 DOI: 10.1016/b978-0-12-820683-6.00008-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Altered activity of the hypothalamus-pituitary-adrenal (HPA) stress-axis has been implicated in the pathogenesis and progression of multiple sclerosis (MS) and linked to the development of specific symptoms and comorbidities such as mood disorders, fatigue, or cognitive dysfunction. Overall the HPA-axis is activated or hyperresponsive in MS, though a hyporesponsive HPA-axis has been observed in a subgroup of MS patients that has a more severe course of the disease. Here we provide an overview of the possible causes of HPA-axis activation, sex- and subtype dependent differences, pathological, cellular, and molecular effects, and the clinical correlates of HPA-axis activity in MS.
Collapse
Affiliation(s)
- Jeroen Melief
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Inge Huitinga
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | - Stefan M Gold
- Department of Psychiatry and Medical Department, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany; Institute for Neuroimmunology and Multiple Sclerosis, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
22
|
Ding J, Chen X, da Silva MS, Lingeman J, Han F, Meijer OC. Effects of RU486 treatment after single prolonged stress depend on the post-stress interval. Mol Cell Neurosci 2020; 108:103541. [PMID: 32858150 DOI: 10.1016/j.mcn.2020.103541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/23/2022] Open
Abstract
The Single Prolonged Stress protocol is considered a model for PTSD, as it induces long lasting changes in rat behaviour and endocrine regulation. Previous work demonstrated that some of these changes can be prevented by treatment with the glucocorticoid receptor antagonist RU486, administered a week after the stressor. The current study evaluated the effects of an earlier intervention with RU486, as evaluated 1 week after SPS-exposure. Most RU486 effects occurred independent of prior stress, except for the reversal of a stress-induced increase in locomotor behaviour. The accompanying changes in gene expression depended on gene, brain region, and time. DNA methylation of the robustly down-regulated Fkbp5 gene was dissociated of changes in mRNA expression. The findings reinforce the long term effects of GR antagonist treatment, but also emphasize the need to evaluate changes over time to allow the identification of robust correlates between gene expression and behavioural/endocrine outcome of stressful experiences.
Collapse
Affiliation(s)
- Jinlan Ding
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands; PTSD Lab, Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, PR China
| | - Xinzhao Chen
- PTSD Lab, Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, PR China
| | - Marcia Santos da Silva
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | - Jolanthe Lingeman
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | - Fang Han
- PTSD Lab, Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, PR China.
| | - Onno C Meijer
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
23
|
Koorneef LL, Kroon J, Viho EMG, Wahl LF, Heckmans KML, van Dorst MMAR, Hoekstra M, Houtman R, Hunt H, Meijer OC. The selective glucocorticoid receptor antagonist CORT125281 has tissue-specific activity. J Endocrinol 2020; 246:79-92. [PMID: 32369774 PMCID: PMC7274539 DOI: 10.1530/joe-19-0486] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022]
Abstract
Glucocorticoids mediate numerous essential processes in the human body via binding to the glucocorticoid receptor (GR). Excessive GR signaling can cause disease, and GR antagonists can be used to treat many symptoms of glucocorticoid-induced pathology. The purpose of this study was to characterize the tissue-specific properties of the selective GR antagonist CORT125281. We evaluated the antagonistic effects of CORT125281 upon acute and subchronic corticosterone exposure in mice. In the acute corticosterone setting, hypothalamus-pituitary-adrenal-axis activity was investigated by measurement of basal- and stress-induced corticosterone levels, adrenocorticotropic hormone levels and pituitary proopiomelanocortin expression. GR signaling was evaluated by RT-PCR analysis of GR-responsive transcripts in liver, muscle, brown adipose tissue (BAT), white adipose tissue (WAT) and hippocampus. Pretreatment with a high dose of CORT125281 antagonized GR activity in a tissue-dependent manner. We observed complete inhibition of GR-induced target gene expression in the liver, partial blockade in muscle and BAT and no antagonism in WAT and hippocampus. Tissue distribution only partially explained the lack of effective antagonism. CORT125281 treatment did not disinhibit the hypothalamus-pituitary-adrenal neuroendocrine axis. In the subchronic corticosterone setting, CORT125281 partially prevented corticosterone-induced hyperinsulinemia, but not hyperlipidemia and immune suppression. In conclusion, CORT125281 antagonizes GR transcriptional activity in a tissue-dependent manner and improves corticosterone-induced hyperinsulinemia. Tailored dosing of CORT125281 may allow tissue-specific inhibition of GR transcriptional activity.
Collapse
Affiliation(s)
- Lisa L Koorneef
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Kroon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Eva M G Viho
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lucas F Wahl
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Kim M L Heckmans
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Marloes M A R van Dorst
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - René Houtman
- Pamgene International, Den Bosch, The Netherlands
| | - Hazel Hunt
- Corcept Therapeutics, Menlo Park, California, USA
| | - Onno C Meijer
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Correspondence should be addressed to O C Meijer:
| |
Collapse
|
24
|
Insights into the Therapeutic Potential of Glucocorticoid Receptor Modulators for Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21062137. [PMID: 32244957 PMCID: PMC7139912 DOI: 10.3390/ijms21062137] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids are crucial for stress-coping, resilience, and adaptation. However, if the stress hormones become dysregulated, the vulnerability to stress-related diseases is enhanced. In this brief review, we discuss the role of glucocorticoids in the pathogenesis of neurodegenerative disorders in both human and animal models, and focus in particular on amyotrophic lateral sclerosis (ALS). For this purpose, we used the Wobbler animal model, which mimics much of the pathology of ALS including a dysfunctional hypothalamic–pituitary–adrenal axis. We discuss recent studies that demonstrated that the pathological cascade characteristic for motoneuron degeneration of ALS is mimicked in the genetically selected Wobbler mouse and can be attenuated by treatment with the selective glucocorticoid receptor antagonist (GRA) CORT113176. In long-term treatment (3 weeks) GRA attenuated progression of the behavioral, inflammatory, excitatory, and cell-death-signaling pathways while increasing the survival signal of serine–threonine kinase (pAkt). The action mechanism of the GRA may be either by interfering with GR deactivation or by restoring the balance between pro- and anti-inflammatory signaling pathways driven by the complementary mineralocorticoid receptor (MR)- and GR-mediated actions of corticosterone. Accordingly, GR antagonism may have clinical relevance for the treatment of neurodegenerative diseases.
Collapse
|
25
|
Stress-induced plasticity and functioning of ventral tegmental dopamine neurons. Neurosci Biobehav Rev 2020; 108:48-77. [DOI: 10.1016/j.neubiorev.2019.10.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022]
|
26
|
Frank MG, Annis JL, Watkins LR, Maier SF. Glucocorticoids mediate stress induction of the alarmin HMGB1 and reduction of the microglia checkpoint receptor CD200R1 in limbic brain structures. Brain Behav Immun 2019; 80:678-687. [PMID: 31078691 PMCID: PMC6662571 DOI: 10.1016/j.bbi.2019.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/29/2019] [Accepted: 05/08/2019] [Indexed: 02/02/2023] Open
Abstract
Exposure to stressors primes neuroinflammatory responses to subsequent immune challenges and stress-induced glucocorticoids (GCs) play a mediating role in this phenomenon of neuroinflammatory priming. Recent evidence also suggests that the alarmin high-mobility group box-1 (HMGB1) and the microglial checkpoint receptor CD200R1 serve as proximal mechanisms of stress-induced neuroinflammatory priming. However, it is unclear whether stress-induced GCs play a causal role in these proximal mechanisms of neuroinflammatory priming; this forms the focus of the present investigation. Here, we found that exposure to a severe acute stressor (inescapable tailshock) induced HMGB1 and reduced CD200R1 expression in limbic brain regions and pharmacological blockade of GC signaling (RU486) mitigated these effects of stress. To confirm these effects of RU486, adrenalectomy (ADX) with basal corticosterone (CORT) replacement was used to block the stress-induced increase in GCs as well as effects on HMGB1 and CD200R1. As with RU486, ADX mitigated the effects of stress on HMGB1 and CD200R1. Subsequently, exogenous CORT was administered to determine whether GCs are sufficient to recapitulate the effects of stress. Indeed, exogenous CORT induced expression of HMGB1 and reduced expression of CD200R1. In addition, exposure of primary microglia to CORT also recapitulated the effects of stress on CD200R1 suggesting that CORT acts directly on microglia to reduce expression of CD200R1. Taken together, these findings suggest that GCs mediate the effects of stress on these proximal mechanisms of neuroinflammatory priming.
Collapse
Affiliation(s)
- Matthew G. Frank
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA,Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA,Corresponding Author: Department of Psychology and Neuroscience, Center for Neuroscience, 2860 Wilderness Place, Campus Box 603, University of Colorado Boulder, Boulder, CO 80301, USA, Tel: +1-303-919-8116,
| | - Jessica L. Annis
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA,Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA
| | - Steven F. Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA,Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA
| |
Collapse
|
27
|
Knox-Concepcion KR, Figueroa JD, Hartman RE, Li Y, Zhang L. Repression of the Glucocorticoid Receptor Increases Hypoxic-Ischemic Brain Injury in the Male Neonatal Rat. Int J Mol Sci 2019; 20:ijms20143493. [PMID: 31315247 PMCID: PMC6678481 DOI: 10.3390/ijms20143493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) resulting from asphyxia is the most common cause of neonatal brain damage and results in significant neurological sequelae, including cerebral palsy. The current therapeutic interventions are extremely limited in improving neonatal outcomes. The present study tests the hypothesis that the suppression of endogenous glucocorticoid receptors (GRs) in the brain increases hypoxic-ischemic (HI) induced neonatal brain injury and worsens neurobehavioral outcomes through the promotion of increased inflammation. A mild HI treatment of P9 rat pups with ligation of the right common carotid artery followed by the treatment of 8% O2 for 60 min produced more significant brain injury with larger infarct size in female than male pups. Intracerebroventricular injection of GR siRNAs significantly reduced GR protein and mRNA abundance in the neonatal brain. Knockdown of endogenous brain GRs significantly increased brain infarct size after HI injury in male, but not female, rat pups. Moreover, GR repression resulted in a significant increase in inflammatory cytokines TNF-α and IL-10 at 6 h after HI injury in male pups. Male pups treated with GR siRNAs showed a significantly worsened reflex response and exhibited significant gait disturbances. The present study demonstrates that endogenous brain GRs play an important role in protecting the neonatal brain from HI induced injury in male pups, and suggests a potential role of glucocorticoids in sex differential treatment of HIE in the neonate.
Collapse
Affiliation(s)
- Katherine R Knox-Concepcion
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Johnny D Figueroa
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Richard E Hartman
- Department of Psychology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Yong Li
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
28
|
De Nicola AF, Gonzalez Deniselle MC. Introduction to the Special Issue "Neuroactive Steroids". Cell Mol Neurobiol 2019; 39:471-472. [PMID: 30941611 PMCID: PMC11469856 DOI: 10.1007/s10571-019-00657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
Abstract
Steroids are complex molecules, exerting known and still unknown effects in the nervous system. Throughout this volume, the reader will find a wide spectrum of articles, giving an up-to-date account of the molecular, physiological, pharmacological, and clinical aspects of steroid action on the nervous system.
Collapse
Affiliation(s)
- Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Obligado 2490, 1428, Buenos Aires, Argentina.
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1121, Buenos Aires, Argentina.
| | - Maria Claudia Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Obligado 2490, 1428, Buenos Aires, Argentina
- Department of Physiological Sciences, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1121, Buenos Aires, Argentina
| |
Collapse
|
29
|
Molendijk ML, de Kloet ER. Coping with the forced swim stressor: Current state-of-the-art. Behav Brain Res 2019; 364:1-10. [DOI: 10.1016/j.bbr.2019.02.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022]
|
30
|
de Kloet ER, de Kloet SF, de Kloet CS, de Kloet AD. Top-down and bottom-up control of stress-coping. J Neuroendocrinol 2019; 31:e12675. [PMID: 30578574 PMCID: PMC6519262 DOI: 10.1111/jne.12675] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/17/2022]
Abstract
In this 30th anniversary issue review, we focus on the glucocorticoid modulation of limbic-prefrontocortical circuitry during stress-coping. This action of the stress hormone is mediated by mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) that are co-expressed abundantly in these higher brain regions. Via both receptor types, the glucocorticoids demonstrate, in various contexts, rapid nongenomic and slower genomic actions that coordinate consecutive stages of information processing. MR-mediated action optimises stress-coping, whereas, in a complementary fashion, the memory storage of the selected coping strategy is promoted via GR. We highlight the involvement of adipose tissue in the allocation of energy resources to central regulation of stress reactions, point to still poorly understood neuronal ensembles in the prefrontal cortex that underlie cognitive flexibility critical for effective coping, and evaluate the role of cortisol as a pleiotropic regulator in vulnerability to, and treatment of, trauma-related psychiatric disorders.
Collapse
Affiliation(s)
- Edo R. de Kloet
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Sybren F. de Kloet
- Department of Integrative NeurophysiologyCenter for Neurogenomics and Cognitive ResearchVU‐University of AmsterdamAmsterdamThe Netherlands
| | | | - Annette D. de Kloet
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleFlorida
| |
Collapse
|