1
|
Tidwell JP, Bendele KG, Bodine DM, Holmes VR, Johnston JS, Saelao P, Lohmeyer KH, Teel PD, Tarone AM. Identifying the sex chromosome and sex determination genes in the cattle tick, Rhipicephalus (Boophilus) microplus. G3 (BETHESDA, MD.) 2024; 14:jkae234. [PMID: 39344017 PMCID: PMC11631522 DOI: 10.1093/g3journal/jkae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/26/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Rhipicephalus (Boophilus) microplus is globally one of the most economically important ectoparasites of cattle costing the agriculture industry billions of dollars annually. Resistance to chemical control measures has prompted the development of novel methods of control. Recent advancements in genetic control measures for human and other animal vectors have utilized sex determination research to manipulate sex ratios, which have shown promising results in mosquitoes namely Aedes aegypti and Anopheles stephensi. Here, we use R. (B.) microplus as a model to provide foundational research to allow similar avenues of investigation in ticks using R. (B.) microplus as a model. Karyotypes for R. (B.) microplus show an XX:XO sex determining system with the largest chromosome being the sex chromosome. Using flow cytometric methods, the size of the sex chromosome was estimated at 526.91 Mb. All measures to identify the sex chromosome within the cattle tick genome assembly associated sex chromosomal characteristics to two chromosomes. This discrepancy between the assembly and karyotypes of the tick led to generating a new genome assembly with a single adult male specimen. The two chromosomes in question aligned with a single scaffold within the new genome that had a length of 513.29 Mb and was the first time the sex chromosome was identified in an Ixodid genome assembly.
Collapse
Affiliation(s)
- Jason P Tidwell
- Cattle Fever Tick Research Laboratory, United States Department of Agriculture—Agricultural Research Service, Edinburg, TX 78541, USA
- Department of Entomology, Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - Kylie G Bendele
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture—Agricultural Research Service, Kerrville, TX 78028, USA
| | - Deanna M Bodine
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture—Agricultural Research Service, Kerrville, TX 78028, USA
| | - V Renee Holmes
- Department of Entomology, Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - J Spencer Johnston
- Department of Entomology, Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - Perot Saelao
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture—Agricultural Research Service, Kerrville, TX 78028, USA
| | - Kimberly H Lohmeyer
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture—Agricultural Research Service, Kerrville, TX 78028, USA
| | - Pete D Teel
- Department of Entomology, Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - Aaron M Tarone
- Department of Entomology, Texas A&M AgriLife Research, College Station, TX 77843, USA
| |
Collapse
|
2
|
Reyes Lerma AC, Šťáhlavský F, Seiter M, Carabajal Paladino LZ, Divišová K, Forman M, Sember A, Král J. Insights into the Karyotype Evolution of Charinidae, the Early-Diverging Clade of Whip Spiders (Arachnida: Amblypygi). Animals (Basel) 2021; 11:3233. [PMID: 34827965 PMCID: PMC8614469 DOI: 10.3390/ani11113233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Whip spiders (Amblypygi) represent an ancient order of tetrapulmonate arachnids with a low diversity. Their cytogenetic data are confined to only a few reports. Here, we analyzed the family Charinidae, a lineage almost at the base of the amblypygids, providing an insight into the ancestral traits and basic trajectories of amblypygid karyotype evolution. We performed Giemsa staining, selected banding techniques, and detected 18S ribosomal DNA and telomeric repeats by fluorescence in situ hybridization in four Charinus and five Sarax species. Both genera exhibit a wide range of diploid chromosome numbers (2n = 42-76 and 22-74 for Charinus and Sarax, respectively). The 2n reduction was accompanied by an increase of proportion of biarmed elements. We further revealed a single NOR site (probably an ancestral condition for charinids), the presence of a (TTAGG)n telomeric motif localized mostly at the chromosome ends, and an absence of heteromorphic sex chromosomes. Our data collectively suggest a high pace of karyotype repatterning in amblypygids, with probably a high ancestral 2n and its subsequent gradual reduction by fusions, and the action of pericentric inversions, similarly to what has been proposed for neoamblypygids. The possible contribution of fissions to charinid karyotype repatterning, however, cannot be fully ruled out.
Collapse
Affiliation(s)
- Azucena Claudia Reyes Lerma
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic; (A.C.R.L.); (K.D.); (M.F.); (J.K.)
| | - František Šťáhlavský
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague, Czech Republic;
| | - Michael Seiter
- Unit Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria;
- Natural History Museum Vienna, 3. Zoology (Invertebrates), Burgring 7, 1010 Vienna, Austria
| | - Leonela Zusel Carabajal Paladino
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic;
- Arthropod Genetics Group, The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK
| | - Klára Divišová
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic; (A.C.R.L.); (K.D.); (M.F.); (J.K.)
| | - Martin Forman
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic; (A.C.R.L.); (K.D.); (M.F.); (J.K.)
| | - Alexandr Sember
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic; (A.C.R.L.); (K.D.); (M.F.); (J.K.)
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Jiří Král
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic; (A.C.R.L.); (K.D.); (M.F.); (J.K.)
| |
Collapse
|
3
|
Rar V, Livanova N, Sabitova Y, Igolkina Y, Tkachev S, Tikunov A, Babkin I, Golovljova I, Panov V, Tikunova N. Ixodes persulcatus/pavlovskyi natural hybrids in Siberia: Occurrence in sympatric areas and infection by a wide range of tick-transmitted agents. Ticks Tick Borne Dis 2019; 10:101254. [PMID: 31327746 DOI: 10.1016/j.ttbdis.2019.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/06/2019] [Accepted: 05/28/2019] [Indexed: 01/24/2023]
Abstract
Ixodes persulcatus and Ixodes pavlovskyi ticks, two closely related species of the I. ricinus - I. persulcatus group, are widely distributed in the southern part of Western Siberia. Recently, the existence of natural hybrids of I. persulcatus and I. pavlovskyi ticks has been demonstrated. The aim of this study was to evaluate the abundance of I. persulcatus/pavlovskyi hybrids in several locations with different ratios of parental tick species and to investigate the prevalence and genetic variability of a wide range of infectious agents in these hybrids compared to the parental tick species. Natural hybrids of I. persulcatus and I. pavlovskyi ticks were identified in all examined locations in Altai and Novosibirsk, Western Siberia, Russia. The abundance of hybrids varied from 7% to 40% in different locations and was maximal in a location with similar proportions of I. persulcatus and I. pavlovskyi ticks. For the first time, it was shown that hybrids can be infected with the same agents as their parental tick species: tick-borne encephalitis and Kemerovo viruses, Borrelia afzelii, Borrelia bavariensis, Borrelia garinii, Borrelia miyamotoi, Rickettsia helvetica, Rickettsia raoultii, Rickettsia sibirica, "Candidatus Rickettsia tarasevichiae", Anaplasma phagocytophilum, Ehrlichia muris, "Candidatus Neoehrlichia mikurensis", and Babesia microti. The prevalence of most bacterial agents in hybrids was intermediate compared to their parental tick species. Most genetic variants of the identified agents have been previously found in the parental tick species. Wide distribution of I. persulcatus/pavlovskyi natural hybrids implies that I. persulcatus, I. pavlovskyi and their hybrids coexist in all I. persulcatus - I. pavlovskyi sympatric areas.
Collapse
Affiliation(s)
- Vera Rar
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Natalia Livanova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation; Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russian Federation
| | - Yuliya Sabitova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Yana Igolkina
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Sergey Tkachev
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Artem Tikunov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Igor Babkin
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Irina Golovljova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation; Department of Virology, National Institute for Health Development, Tallinn, Estonia
| | - Victor Panov
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russian Federation
| | - Nina Tikunova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation.
| |
Collapse
|
4
|
Grabowski JM, Hill CA. A Roadmap for Tick-Borne Flavivirus Research in the "Omics" Era. Front Cell Infect Microbiol 2017; 7:519. [PMID: 29312896 PMCID: PMC5744076 DOI: 10.3389/fcimb.2017.00519] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/05/2017] [Indexed: 12/30/2022] Open
Abstract
Tick-borne flaviviruses (TBFs) affect human health globally. Human vaccines provide protection against some TBFs, and antivirals are available, yet TBF-specific control strategies are limited. Advances in genomics offer hope to understand the viral complement transmitted by ticks, and to develop disruptive, data-driven technologies for virus detection, treatment, and control. The genome assemblies of Ixodes scapularis, the North American tick vector of the TBF, Powassan virus, and other tick vectors, are providing insights into tick biology and pathogen transmission and serve as nucleation points for expanded genomic research. Systems biology has yielded insights to the response of tick cells to viral infection at the transcript and protein level, and new protein targets for vaccines to limit virus transmission. Reverse vaccinology approaches have moved candidate tick antigenic epitopes into vaccine development pipelines. Traditional drug and in silico screening have identified candidate antivirals, and target-based approaches have been developed to identify novel acaricides. Yet, additional genomic resources are required to expand TBF research. Priorities include genome assemblies for tick vectors, “omic” studies involving high consequence pathogens and vectors, and emphasizing viral metagenomics, tick-virus metabolomics, and structural genomics of TBF and tick proteins. Also required are resources for forward genetics, including the development of tick strains with quantifiable traits, genetic markers and linkage maps. Here we review the current state of genomic research on ticks and tick-borne viruses with an emphasis on TBFs. We outline an ambitious 10-year roadmap for research in the “omics era,” and explore key milestones needed to accomplish the goal of delivering three new vaccines, antivirals and acaricides for TBF control by 2030.
Collapse
Affiliation(s)
- Jeffrey M Grabowski
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Catherine A Hill
- Department of Entomology, Purdue University, West Lafayette, IN, United States.,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
5
|
Do holocentric chromosomes represent an evolutionary advantage? A study of paired analyses of diversification rates of lineages with holocentric chromosomes and their monocentric closest relatives. Chromosome Res 2017; 26:139-152. [PMID: 29043597 DOI: 10.1007/s10577-017-9566-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022]
Abstract
Despite most of the cytogenetic research is focused on monocentric chromosomes, chromosomes with kinetochoric activity localized in a single centromere, several studies have been centered on holocentric chromosomes which have diffuse kinetochoric activity along the chromosomes. The eukaryotic organisms that present this type of chromosomes have been relatively understudied despite they constitute rather diversified species lineages. On the one hand, holocentric chromosomes may present intrinsic benefits (chromosome mutations such as fissions and fusions are potentially neutral in holocentrics). On the other hand, they present restrictions to the spatial separation of the functions of recombination and segregation during meiotic divisions (functions that may interfere), separation that is found in monocentric chromosomes. In this study, we compare the diversification rates of all known holocentric lineages in animals and plants with their most related monocentric lineages in order to elucidate whether holocentric chromosomes constitute an evolutionary advantage in terms of diversification and species richness. The results showed that null hypothesis of equal mean diversification rates cannot be rejected, leading us to surmise that shifts in diversification rates between holocentric and monocentric lineages might be due to other factors, such as the idiosyncrasy of each lineage or the interplay of evolutionary selections with the benefits of having either monocentric or holocentric chromosomes.
Collapse
|
6
|
Almeida BRRD, Milhomem-Paixão SSR, Noronha RCR, Nagamachi CY, Costa MJRD, Pardal PPDO, Coelho JS, Pieczarka JC. Karyotype diversity and chromosomal organization of repetitive DNA in Tityus obscurus (Scorpiones, Buthidae). BMC Genet 2017; 18:35. [PMID: 28412934 PMCID: PMC5392961 DOI: 10.1186/s12863-017-0494-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 03/25/2017] [Indexed: 01/22/2023] Open
Abstract
Background Holocentric chromosomes occur in approximately 750 species of eukaryotes. Among them, the genus Tityus (Scorpiones, Buthidae) has a labile karyotype that shows complex multivalent associations during male meiosis. Thus, taking advantage of the excellent model provided by the Buthidae scorpions, here we analyzed the chromosomal distribution of several repetitive DNA classes on the holocentric chromosomes of different populations of the species Tityus obscurus Gervais, 1843, highlighting their involvement in the karyotypic differences found among them. Results This species shows inter- and intrapopulational karyotype variation, with seven distinct cytotypes: A (2n = 16), B (2n = 14), C (2n = 13), D (2n = 13), E (2n = 12), F (2n = 12) and G (2n = 11). Furthermore, exhibits achiasmatic male meiosis and lacks heteromorphic sex chromosomes. Trivalent and quadrivalent meiotic associations were found in some cytotypes. In them, 45S rDNAs were found in the terminal portions of two pairs, while TTAGG repeats were found only at the end of the chromosomes. In the cytotype A (2n = 16), the U2 snRNA gene mapped to pair 1, while the H3 histone cluster and C0t-1 DNA fraction was terminally distributed on all pairs. Mariner transposons were found throughout the chromosomes, with the exception of one individual of cytotype A (2n = 16), in which it was concentrated in heterochromatic regions. Conclusions Chromosomal variability found in T. obscurus are due to rearrangements of the type fusion/fission and reciprocal translocations in heterozygous. These karyotype differences follow a geographical pattern and may be contributing to reproductive isolation between populations analyzed. Our results also demonstrate high mobility of histone H3 genes. In contrast, other multigene families (45S rDNA and U2 snRNA) have conserved distribution among individuals. The accumulation of repetitive sequences in distal regions of T. obscurus chromosomes, suggests that end of chromosome are not covered by the kinetochore.
Collapse
Affiliation(s)
- Bruno Rafael Ribeiro de Almeida
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Avenida Augusto Corrêa, n°01, Av. Perimetral, s/n. Guamá, 66075-900, Belém, Pará, Brazil
| | - Susana Suely Rodrigues Milhomem-Paixão
- Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Valparaíso de Goiás, BR-040, km 6, Avenida Saia Velha, S/N, Área 8, Parque Esplanada V, 72876-601, Valparaíso de Goiás, Goiás, Brazil
| | - Renata Coelho Rodrigues Noronha
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Avenida Augusto Corrêa, n°01, Av. Perimetral, s/n. Guamá, 66075-900, Belém, Pará, Brazil
| | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Avenida Augusto Corrêa, n°01, Av. Perimetral, s/n. Guamá, 66075-900, Belém, Pará, Brazil
| | - Marlyson Jeremias Rodrigues da Costa
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Avenida Augusto Corrêa, n°01, Av. Perimetral, s/n. Guamá, 66075-900, Belém, Pará, Brazil
| | - Pedro Pereira de Oliveira Pardal
- Laboratório de Entomologia Médica e Artrópodes Peçonhentos, Núcleo de Medicina Tropical, Universidade Federal do Pará, Avenida Generalíssimo Deodoro, 92, 66055-240, Belém, Pará, Brazil
| | - Johne Souza Coelho
- Laboratório de Entomologia Médica e Artrópodes Peçonhentos, Núcleo de Medicina Tropical, Universidade Federal do Pará, Avenida Generalíssimo Deodoro, 92, 66055-240, Belém, Pará, Brazil
| | - Julio Cesar Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Avenida Augusto Corrêa, n°01, Av. Perimetral, s/n. Guamá, 66075-900, Belém, Pará, Brazil.
| |
Collapse
|
7
|
Van Zee JP, Schlueter JA, Schlueter S, Dixon P, Sierra CAB, Hill CA. Paralog analyses reveal gene duplication events and genes under positive selection in Ixodes scapularis and other ixodid ticks. BMC Genomics 2016; 17:241. [PMID: 26984180 PMCID: PMC4793754 DOI: 10.1186/s12864-015-2350-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/21/2015] [Indexed: 11/12/2022] Open
Abstract
Background Hard ticks (family Ixodidae) are obligatory hematophagous ectoparasites of worldwide medical and veterinary importance. The haploid genomes of multiple species of ixodid ticks exceed 1 Gbp, prompting questions regarding gene, segmental and whole genome duplication in this phyletic group. The availability of the genome assembly for the black legged tick, Ixodes scapularis, and transcriptome datasets for multiple species of ticks offers an opportunity to assess the contribution of gene duplication to the genome. Here we developed a bioinformatics pipeline to identify and analyze duplicated genes (paralogs) using gene models from the prostriate tick, I. scapularis IscaW1.1 annotation and expressed sequence tags (ESTs) from I. scapularis and the metastriate ticks, Rhipicephalus microplus (southern cattle tick), R. appendiculatus (brown ear tick) and Amblyomma variegatum (tropical bont tick). Results Approximately 1-2 % of I. scapularis gene models and 2-14 % of ESTs from the four species represent duplicated genes. The ratio of non-synonymous to synonymous nucleotide substitution rates suggests ~ 25 % of duplicated genes are under positive selection pressure in each species. Analyses of synonymous substitution rates provide evidence for two duplication events in I. scapularis and R. microplus involving several hundred genes. Conservative molecular clock estimates based on synonymous substitution rates for species of Anopheles mosquitoes and the fruit fly, Drosophila melanogaster, suggest these events occurred within the last 50 MYA. Mapping of paralogs to the I. scapularis genome assembly supports tandem, or possibly segmental duplication events. Conclusions The present study marks the first genome-level analyses of gene duplication for the Ixodidae and provides insights into mechanisms shaping genome evolution in this group. At least two duplication events involving hundreds of genes may have occurred independently in the lineages prostriata and metastriata, with tandem and segmental duplication the most likely mechanisms for paralog generation. Duplicated genes under positive selection pressure may be linked to emerging functions in the tick and represent important candidates for further study. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2350-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janice P Van Zee
- Department of Entomology, Purdue University, 901 W. State Street, West Lafayette, IN, 47907-2089, USA
| | - Jessica A Schlueter
- Department of Bioinformatics and Genomics, University of North Carolina Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Shannon Schlueter
- Department of Bioinformatics and Genomics, University of North Carolina Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Philip Dixon
- Department of Statistics, Iowa State University, 2121 Snedecor Hall, Ames, IA, 50011, USA
| | - Carlos A Brito Sierra
- Department of Entomology, Purdue University, 901 W. State Street, West Lafayette, IN, 47907-2089, USA
| | - Catherine A Hill
- Department of Entomology, Purdue University, 901 W. State Street, West Lafayette, IN, 47907-2089, USA.
| |
Collapse
|
8
|
Mans BJ, de Klerk D, Pienaar R, de Castro MH, Latif AA. Next-generation sequencing as means to retrieve tick systematic markers, with the focus on Nuttalliella namaqua (Ixodoidea: Nuttalliellidae). Ticks Tick Borne Dis 2015; 6:450-62. [DOI: 10.1016/j.ttbdis.2015.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/06/2015] [Accepted: 03/08/2015] [Indexed: 10/23/2022]
|
9
|
Manicardi GC, Mandrioli M, Blackman RL. The cytogenetic architecture of the aphid genome. Biol Rev Camb Philos Soc 2014; 90:112-25. [PMID: 24593177 DOI: 10.1111/brv.12096] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 02/04/2014] [Accepted: 02/07/2014] [Indexed: 12/28/2022]
Abstract
In recent years aphids, with their well-defined polyphenism, have become favoured as model organisms for the study of epigenetic processes. The availability of the pea aphid (Acyrthosiphon pisum) genome sequence has engendered much research aimed at elucidating the mechanisms by which the phenotypic plasticity of aphids is inherited and controlled. Yet so far this research effort has paid little attention to the cytogenetic processes that play a vital part in the organisation, expression and inheritance of the aphid genome. Aphids have holocentric chromosomes, which have very different properties from the chromosomes with localised centromeres that are found in most other organisms. Here we review the diverse forms of aphid chromosome behaviour that occur during sex determination and male and female meiosis, often in response to environmental changes and mediated by endocrine factors. Remarkable differences occur, even between related species, that could have significant effects on the inheritance of all or parts of the genome. In relation to this, we review the particular features of the distribution of heterochromatin, rDNA genes and other repetitive DNA in aphid chromosomes, and discuss the part that these may play in the epigenetic modification of chromatin structure and function.
Collapse
Affiliation(s)
- Gian Carlo Manicardi
- Department of Life Sciences, University of Modena and Reggio Emilia, Besta Building, via Amendola 2, 42122, Reggio Emilia, Italy
| | | | | |
Collapse
|
10
|
Quillery E, Quenez O, Peterlongo P, Plantard O. Development of genomic resources for the tick Ixodes ricinus: isolation and characterization of single nucleotide polymorphisms. Mol Ecol Resour 2013; 14:393-400. [PMID: 24119113 DOI: 10.1111/1755-0998.12179] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 12/12/2022]
Abstract
Assessing the genetic variability of the tick Ixodes ricinus-an important vector of pathogens in Europe-is an essential step for setting up antitick control methods. Here, we report the first identification of a set of SNPs isolated from the genome of I. ricinus, by applying a reduction in genomic complexity, pyrosequencing and new bioinformatics tools. Almost 1.4 million of reads (average length: 528 nt) were generated with a full Roche 454 GS FLX run on two reduced representation libraries of I. ricinus. A newly developed bioinformatics tool (DiscoSnp), which isolates SNPs without requiring any reference genome, was used to obtain 321 088 putative SNPs. Stringent selection criteria were applied in a bioinformatics pipeline to select 1768 SNPs for the development of specific primers. Among 384 randomly SNPs tested by Fluidigm genotyping technology on 464 individuals ticks, 368 SNPs loci (96%) exhibited the presence of the two expected alleles. Hardy-Weinberg equilibrium tests conducted on six natural populations of ticks have shown that from 26 to 46 of the 384 loci exhibited significant heterozygote deficiency.
Collapse
Affiliation(s)
- E Quillery
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in animal health, BP 40706, F-44307, Nantes, France; LUNAM Université, Oniris, Ecole nationale vétérinaire, agroalimentaire et de l'alimentation Nantes Atlantique, UMR BioEpAR, Nantes, 44307, France
| | | | | | | |
Collapse
|
11
|
Forman M, Nguyen P, Hula V, Král J. Sex chromosome pairing and extensive NOR polymorphism in Wadicosa fidelis (Araneae: Lycosidae). Cytogenet Genome Res 2013; 141:43-9. [PMID: 23711575 DOI: 10.1159/000351041] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2013] [Indexed: 11/19/2022] Open
Abstract
In terms of cytogenetics, entelegyne araneomorphs are the best studied clade of spiders. The typical karyotype of entelegyne males consists of acrocentric chromosomes, including 2 non-homologous X chromosomes. The present study is focused on the karyotype, nucleolus organising regions (NORs) and sex chromosome behaviour during meiosis of the entelegyne Wadicosa fidelis (Lycosidae). Preparations stained by Giemsa were used to study karyotype and meiosis. NORs were visualised by silver staining and fluorescence in situ hybridisation with 18S rDNA probe. The male karyotype consists of 28 acrocentric elements, including 2 X chromosomes. In contrast to the majority of other spiders, the male sex chromosomes pair during the major part of meiosis. Following an initial period of parallel pairing, the attachment of male sex chromosomes is restricted to centromeric areas and continues until metaphase II. Our study revealed an enormous number of NORs in the population from Galilee and indicates a considerable variability of NOR numbers in this population. The distal regions of 9 or 10 autosomal pairs contain NORs. The obtained data indicate the rapid spread of NORs in the karyotype of W. fidelis, which was presumably caused by ectopic recombinations and subsequent hybridisations of individuals with different NOR genotypes that produced heterozygotes.
Collapse
Affiliation(s)
- M Forman
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic.
| | | | | | | |
Collapse
|
12
|
High SNP density in the blacklegged tick, Ixodes scapularis, the principal vector of Lyme disease spirochetes. Ticks Tick Borne Dis 2013; 4:63-71. [DOI: 10.1016/j.ttbdis.2012.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/19/2012] [Accepted: 07/23/2012] [Indexed: 11/20/2022]
|
13
|
Heckmann S, Macas J, Kumke K, Fuchs J, Schubert V, Ma L, Novák P, Neumann P, Taudien S, Platzer M, Houben A. The holocentric species Luzula elegans shows interplay between centromere and large-scale genome organization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:555-65. [PMID: 23078243 DOI: 10.1111/tpj.12054] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/11/2012] [Accepted: 10/16/2012] [Indexed: 05/18/2023]
Abstract
In higher plants, the large-scale structure of monocentric chromosomes consists of distinguishable eu- and heterochromatic regions, the proportions and organization of which depend on a species' genome size. To determine whether the same interplay is maintained for holocentric chromosomes, we investigated the distribution of repetitive sequences and epigenetic marks in the woodrush Luzula elegans (3.81 Gbp/1C). Sixty-one per cent of the L. elegans genome is characterized by highly repetitive DNA, with over 30 distinct sequence families encoding an exceptionally high diversity of satellite repeats. Over 33% of the genome is composed of the Angela clade of Ty1/copia LTR retrotransposons, which are uniformly dispersed along the chromosomes, while the satellite repeats occur as bands whose distribution appears to be biased towards the chromosome termini. No satellite showed an almost chromosome-wide distribution pattern as expected for a holocentric chromosome and no typical centromere-associated LTR retrotransposons were found either. No distinguishable large-scale patterns of eu- and heterochromatin-typical epigenetic marks or early/late DNA replicating domains were found along mitotic chromosomes, although super-high-resolution light microscopy revealed distinguishable interspersed units of various chromatin types. Our data suggest a correlation between the centromere and overall genome organization in species with holocentric chromosomes.
Collapse
Affiliation(s)
- Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Melters DP, Paliulis LV, Korf IF, Chan SWL. Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis. Chromosome Res 2012; 20:579-93. [PMID: 22766638 DOI: 10.1007/s10577-012-9292-1] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In most eukaryotes, the kinetochore protein complex assembles at a single locus termed the centromere to attach chromosomes to spindle microtubules. Holocentric chromosomes have the unusual property of attaching to spindle microtubules along their entire length. Our mechanistic understanding of holocentric chromosome function is derived largely from studies in the nematode Caenorhabditis elegans, but holocentric chromosomes are found over a broad range of animal and plant species. In this review, we describe how holocentricity may be identified through cytological and molecular methods. By surveying the diversity of organisms with holocentric chromosomes, we estimate that the trait has arisen at least 13 independent times (four times in plants and at least nine times in animals). Holocentric chromosomes have inherent problems in meiosis because bivalents can attach to spindles in a random fashion. Interestingly, there are several solutions that have evolved to allow accurate meiotic segregation of holocentric chromosomes. Lastly, we describe how extensive genome sequencing and experiments in nonmodel organisms may allow holocentric chromosomes to shed light on general principles of chromosome segregation.
Collapse
Affiliation(s)
- Daniël P Melters
- Department of Molecular and Cell Biology and Genome Center, University of California, Davis, CA, USA
| | | | | | | |
Collapse
|
15
|
Guerrero FD, Moolhuijzen P, Peterson DG, Bidwell S, Caler E, Bellgard M, Nene VM, Djikeng A. Reassociation kinetics-based approach for partial genome sequencing of the cattle tick, Rhipicephalus (Boophilus) microplus. BMC Genomics 2010; 11:374. [PMID: 20540747 PMCID: PMC2893602 DOI: 10.1186/1471-2164-11-374] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 06/11/2010] [Indexed: 11/10/2022] Open
Abstract
Background The size and repetitive nature of the Rhipicephalus microplus genome makes obtaining a full genome sequence fiscally and technically problematic. To selectively obtain gene-enriched regions of this tick's genome, Cot filtration was performed, and Cot-filtered DNA was sequenced via 454 FLX pyrosequencing. Results The sequenced Cot-filtered genomic DNA was assembled with an EST-based gene index of 14,586 unique entries where each EST served as a potential "seed" for scaffold formation. The new sequence assembly extended the lengths of 3,913 of the 14,586 gene index entries. Over half of the extensions corresponded to extensions of over 30 amino acids. To survey the repetitive elements in the tick genome, the complete sequences of five BAC clones were determined. Both Class I and II transposable elements were found. Comparison of the BAC and Cot filtration data indicates that Cot filtration was highly successful in filtering repetitive DNA out of the genomic DNA used in 454 sequencing. Conclusion Cot filtration is a very useful strategy to incorporate into genome sequencing projects on organisms with large genome sizes and which contain high percentages of repetitive, difficult to assemble, genomic DNA. Combining the Cot selection approach with 454 sequencing and assembly with a pre-existing EST database as seeds resulted in extensions of 27% of the members of the EST database.
Collapse
Affiliation(s)
- Felix D Guerrero
- USDA-ARS, Knipling-Bushland U,S, Livestock Insects Research Laboratory, 2700 Fredericksburg Rd,, Kerrville, TX 78028, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Meyer JM, Kurtti TJ, Van Zee JP, Hill CA. Genome organization of major tandem repeats in the hard tick, Ixodes scapularis. Chromosome Res 2010; 18:357-70. [DOI: 10.1007/s10577-010-9120-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 02/09/2010] [Indexed: 11/30/2022]
|