1
|
Song S, Liu H, Miao L, He L, Xie W, Lan H, Yu C, Yan W, Wu Y, Wen XP, Xu Q, Deng X, Chen C. Molecular cytogenetic map visualizes the heterozygotic genome and identifies translocation chromosomes in Citrus sinensis. J Genet Genomics 2023; 50:410-421. [PMID: 36608932 DOI: 10.1016/j.jgg.2022.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023]
Abstract
Citrus sinensis is the most cultivated and economically valuable Citrus species in the world, whose genome has been assembled by three generation sequencings. However, chromosome recognition remains a problem due to the small size of chromosomes, and difficulty in differentiating between pseudo and real chromosomes because of a highly heterozygous genome. Here, we employ fluorescence in situ hybridization (FISH) with 9 chromosome painting probes, 30 oligo pools, and 8 repetitive sequences to visualize 18 chromosomes. Then, we develop an approach to identify each chromosome in one cell through single experiment of oligo-FISH and Chromoycin A3 (CMA) staining. By this approach, we construct a high-resolution molecular cytogenetic map containing the physical positions of CMA banding and 38 sequences of FISH including centromere regions, which enables us to visualize significant differences between homologous chromosomes. Based on the map, we locate several highly repetitive sequences on chromosomes and estimate sizes and copy numbers of each site. In particular, we discover the translocation regions of chromosomes 4 and 9 in C. sinensis "Valencia." The high-resolution molecular cytogenetic map will help improve understanding of sweet orange genome assembly and also provide a fundamental reference for investigating chromosome evolution and chromosome engineering for genetic improvement in Citrus.
Collapse
Affiliation(s)
- Shipeng Song
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hui Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Luke Miao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Li He
- National-local Joint Engineering Laboratory of Citrus Breeding and Cultivation/Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Wenzhao Xie
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; National Key Laboratory of Crop Genetics and Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hong Lan
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; Hubei Province Engineering Research Center of Legume Plants, College of Life Science, Jianghan University, Wuhan, Hubei 430056, China
| | - Changxiu Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wenkai Yan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yufeng Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiao-Peng Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, College of Life Science, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Chunli Chen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
2
|
Barros E Silva AE, Guerra M. CMA/DAPI Banding of Plant Chromosomes. Methods Mol Biol 2023; 2672:215-224. [PMID: 37335478 DOI: 10.1007/978-1-0716-3226-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Chromosome banding based on base-specific fluorochromes, mainly double staining with chromomycin A3 (CMA) and 4'-6-diamidino-2-phenylindole (DAPI), has been widely used since the 1970s. This technique allows the differential staining of distinct types of heterochromatin. Afterward, the fluorochromes can be easily removed and leave the preparation ready for sequential procedures such as FISH or immunodetection. Interpretations of similar bands obtained with different techniques, however, merit certain caution. Here we present a detailed protocol for CMA/DAPI staining optimized for plant cytogenetics and call attention to the most common sources of misinterpretation of DAPI bands.
Collapse
Affiliation(s)
- Ana Emília Barros E Silva
- Laboratório de Citogenética Vegetal, Departamento de Biociências, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
| | - Marcelo Guerra
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
3
|
Silva GS, Souza MM, Carvalho Cayres Pamponét V. Identification of 45S rDNA in Passiflora using low coverage sequencing: analysis of GC content and chromosomal localization. Mol Biol Rep 2022; 49:8555-8566. [PMID: 35997851 DOI: 10.1007/s11033-022-07686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 06/08/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The 45S rDNA is considered the most useful chromosomal marker for cytogenetic analysis of Passiflora. Amplification of 45S rDNA sequence via PCR are more advantageous than sequence maintenance in vectors for chromosomal hybridization via FISH. We aimed both to identify 45S rDNA by sequencing data for chromosomal localization and to verify the relationship between GC content and CMA3/DAPI banding. METHODS AND RESULTS Low-coverage sequencing of Passiflora alata, P. cincinnata, and P. edulis was performed, and 45S rDNA units were identified using RepeatExplorer. The 45S rDNA units were used to construct a neighbor-joining tree to verify the similarities between the three species' 18S and 26S rDNA sequences. Clusters (CL)116 (P. alata), CL71 (P. cincinnata), and CL116 (P. edulis) were remarkably similar among the three species, and the 26S rDNA sequences of the clusters were similar to those of Populus tremuloides, Salix interior, and Averrhoa carambola (98% identity). The 26S rDNA was cytologically localized in the chromosomes of P. edulis, P. bahiensis, and the backcrossed hybrid (P. sublanceolata vs. HD13). The hybridization transfer capacity was evaluated in Citrus sunki and Cucumis melo. Finally, a chromosomal pair with a heteromorphic 26S rDNA site was observed in P. edulis, which was the same to that observed for CMA3. CONCLUSION The amplification of the 26S rDNA in Passiflora via PCR and the chromosomal localization in Passiflora and other plant species was successfully achieved. The CMA3 bands were found to be related not only to the amount of GC but also to its structure and the number of repetitions.
Collapse
Affiliation(s)
- Gonçalo Santos Silva
- Laboratório de Melhoramento de Plantas (LAMEP), Departamento de Ciências Biológicas (DCB), Universidade Estadual de Santa Cruz (UESC), Rod. Jorge Amado, Km 16, Salobrinho, Ilhéus, BA, 45662-900, Brasil
| | - Margarete Magalhães Souza
- Laboratório de Melhoramento de Plantas (LAMEP), Departamento de Ciências Biológicas (DCB), Universidade Estadual de Santa Cruz (UESC), Rod. Jorge Amado, Km 16, Salobrinho, Ilhéus, BA, 45662-900, Brasil.
| | - Vanessa Carvalho Cayres Pamponét
- Laboratório de Melhoramento de Plantas (LAMEP), Departamento de Ciências Biológicas (DCB), Universidade Estadual de Santa Cruz (UESC), Rod. Jorge Amado, Km 16, Salobrinho, Ilhéus, BA, 45662-900, Brasil
| |
Collapse
|
4
|
Ribeiro T, Vaio M, Félix LP, Guerra M. Satellite DNA probes of Alstroemeria longistaminea (Alstroemeriaceae) paint the heterochromatin and the B chromosome, reveal a G-like banding pattern, and point to a strong structural karyotype conservation. PROTOPLASMA 2022; 259:413-426. [PMID: 34148192 DOI: 10.1007/s00709-021-01681-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
Alstroemeria species present a well-conserved and asymmetric karyotype. The genus is divided into a Chilean clade, rich in heterochromatin, and a Brazilian clade, poor in heterochromatin. We investigated the distribution of the main repetitive sequences in the chromosomes of the Brazilian species A. longistaminea (2n = 16 + 0-6B) aiming to evaluate the role played by these sequences on the structural organization of the karyotype. In situ hybridization of the three most abundant retrotransposons, corresponding to ~ 45% of the genome, was uniformly distributed. Three satellite DNA sequences, representing near half of the whole satellite fraction (1.93% of the genome), were mainly concentrated on the heterochromatin and one of them painted the whole B chromosome. Noteworthy, some satellites were located on euchromatin, either dispersed or concentrated in clusters along the chromosomes, revealing a G-band-like pattern. The two satellites that presented more C-band- and G-band-like labeling were also hybridized in situ in two other Alstroemeria species. They revealed astonishing similar patterns of distribution, indicating an unusually structural karyotype conservation among Brazilian species.
Collapse
Affiliation(s)
- Tiago Ribeiro
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, PE, Brazil.
- Integrative Plant Research Lab, Department of Botany and Ecology, Federal University of Mato Grosso, Av. Fernando Corrêa da Costa, 2367, Boa Esperança, Cuiabá, 78060-900, MT, Brazil.
| | - Magdalena Vaio
- Laboratorio de Evolución y Domesticación de las Plantas, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Leonardo P Félix
- Laboratory of Plant Cytogenetics, Department of Biosciences, Federal University of Paraíba, Areia, PB, Brazil
| | - Marcelo Guerra
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
5
|
Ibiapino A, Báez M, García MA, Costea M, Stefanović S, Pedrosa-Harand A. Karyotype asymmetry in Cuscuta L. subgenus Pachystigma reflects its repeat DNA composition. Chromosome Res 2022; 30:91-107. [PMID: 35089455 DOI: 10.1007/s10577-021-09683-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/25/2022]
Abstract
Cuscuta is a cytogenetically diverse genus, with karyotypes varying 18-fold in chromosome number and 127-fold in genome size. Each of its four subgenera also presents particular chromosomal features, such as bimodal karyotypes in Pachystigma. We used low coverage sequencing of the Cuscuta nitida genome (subgenus Pachystigma), as well as chromosome banding and molecular cytogenetics of three subgenus representatives, to understand the origin of bimodal karyotypes. All three species, C. nitida, C. africana (2n = 28) and C. angulata (2n = 30), showed heterochromatic bands mainly in the largest chromosome pairs. Eighteen satellite DNAs were identified in C. nitida genome, two showing similarity to mobile elements. The most abundant were present at the largest pairs, as well as the highly abundant ribosomal DNAs. The most abundant Ty1/Copia and Ty3/Gypsy elements were also highly enriched in the largest pairs, except for the Ty3/Gypsy CRM, which also labelled the pericentromeric regions of the smallest chromosomes. This accumulation of repetitive DNA in the larger pairs indicates that these sequences are largely responsible for the formation of bimodal karyotypes in the subgenus Pachystigma. The repetitive DNA fraction is directly linked to karyotype evolution in Cuscuta.
Collapse
Affiliation(s)
- Amalia Ibiapino
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| | - Mariana Báez
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil.,Plant Breeding Department, University of Bonn, Bonn, Germany
| | | | - Mihai Costea
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Saša Stefanović
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil.
| |
Collapse
|
6
|
Ribeiro T, Nascimento J, Santos A, Félix LP, Guerra M. Origin and evolution of highly polymorphic rDNA sites in Alstroemeria longistaminea (Alstroemeriaceae) and related species. Genome 2021; 64:833-845. [PMID: 33852822 DOI: 10.1139/gen-2020-0159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Alstroemeria (Alstroemeriaceae) displays a conserved and highly asymmetric karyotype, where most rDNA sites can be properly recognized by the size and morphology of the chromosomes. We analyzed the intraspecific variation of rDNA sites in A. longistaminea and compared with their distribution in other species (A. caryophyllaea and A. piauhyensis) and a representative of a sister genus, Bomarea edulis. All three species of Alstroemeria presented 2n = 16, and one to six B chromosomes were found in some individuals of A. longistaminea. There was a set of 12 conserved rDNA sites (four 5S and eight 35S) and up to 11 variable sites. B chromosomes were almost entirely covered by 35S signals, coupled with tiny 5S sites. Noteworthy, most rDNA sites found in A. caryophyllaea and A. piauhyensis were localized in chromosome positions similar to those in A. longistaminea, suggesting the existence of conserved hotspots for rDNA accumulation. Some of these hotspots were absent in Chilean Alstromeria as well in B. edulis. We propose that insertions of rDNA sequences on chromosomes do not occur randomly but rather on preferential sites or hotspots for insertions. The maintenance of these arrays, however, may be favored/constrained by different factors, resulting in stable or polymorphic sites.
Collapse
Affiliation(s)
- Tiago Ribeiro
- Laboratório de Citogenética e Evolução Vegetal, Universidade Federal de Pernambuco, Departamento de Botânica, Recife, Pernambuco, Brasil
| | - Jéssica Nascimento
- Laboratório de Citogenética e Evolução Vegetal, Universidade Federal de Pernambuco, Departamento de Botânica, Recife, Pernambuco, Brasil
| | - Amanda Santos
- Laboratório de Citogenética e Evolução Vegetal, Universidade Federal de Pernambuco, Departamento de Botânica, Recife, Pernambuco, Brasil
| | - Leonardo P Félix
- Universidade Federal da Paraíba, Departamento de Biociências, Campus II, Areia, Paraíba, Brasil
| | - Marcelo Guerra
- Laboratório de Citogenética e Evolução Vegetal, Universidade Federal de Pernambuco, Departamento de Botânica, Recife, Pernambuco, Brasil
| |
Collapse
|
7
|
Silvestri MC, Ortiz AM, Robledo GA, Lavia GI. Chromosome diversity in species of the genus Arachis, revealed by FISH and CMA/DAPI banding, and inferences about their karyotype differentiation. AN ACAD BRAS CIENC 2020; 92:e20191364. [PMID: 32901677 DOI: 10.1590/0001-3765202020191364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/11/2019] [Indexed: 11/22/2022] Open
Abstract
The species of the genus Arachis (Leguminosae) are ordered into nine sections. The assignment of genome types in this genus has been based on cross-compatibility analysis and molecular cytogenetic studies. The latter has also allowed karyotypically establishing well-defined genomes and reassigning the genome of several species. However, most of these studies have been focused mainly on the sections Arachis and Rhizomatosae. To increase the knowledge about the chromosome diversity of the whole genus, here we performed a detailed karyotype characterization of representative species of most of the sections and genomes of Arachis. This characterization included chromosome morphology, CMA/DAPI chromosome banding, and chromosome marker localization (rDNAloci and one satDNA sequence) by fluorescent in situ hybridization (FISH). Based on the data obtained and other previously published data, we established the karyotype similarities by cluster analysis and defined eleven karyotype groups. The grouping was partly coincident with the traditional genome assignment, except for some groups and some individual species. Karyotype similarities among some genomes were also found. The main characteristics of each karyotype group of Arachis were summarized. Together, our results provide information that may be beneficial for future cytogenetic and evolutionary studies, and also contribute to the identification of interspecific hybrids.
Collapse
Affiliation(s)
- MarÍa C Silvestri
- Instituto de Botánica del Nordeste (CONICET-UNNE, Fac. Cs. Agrarias), Sargento Cabral 2131, C.C. 209, 3400 Corrientes, Argentina
| | - Alejandra M Ortiz
- Instituto de Botánica del Nordeste (CONICET-UNNE, Fac. Cs. Agrarias), Sargento Cabral 2131, C.C. 209, 3400 Corrientes, Argentina
| | - GermÁn A Robledo
- Instituto de Botánica del Nordeste (CONICET-UNNE, Fac. Cs. Agrarias), Sargento Cabral 2131, C.C. 209, 3400 Corrientes, Argentina.,Facultad de Ciencias Exactas y Naturales y Agrimensura, UNNE, Av. Libertad 5460, 3400 Corrientes, Argentina
| | - Graciela I Lavia
- Instituto de Botánica del Nordeste (CONICET-UNNE, Fac. Cs. Agrarias), Sargento Cabral 2131, C.C. 209, 3400 Corrientes, Argentina.,Facultad de Ciencias Exactas y Naturales y Agrimensura, UNNE, Av. Libertad 5460, 3400 Corrientes, Argentina
| |
Collapse
|
8
|
He L, Zhao H, He J, Yang Z, Guan B, Chen K, Hong Q, Wang J, Liu J, Jiang J. Extraordinarily conserved chromosomal synteny of Citrus species revealed by chromosome-specific painting. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2225-2235. [PMID: 32578280 DOI: 10.1111/tpj.14894] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 05/20/2023]
Abstract
Reliable identification of individual chromosomes in eukaryotic species is the foundation for comparative chromosome synteny and evolutionary studies. Unfortunately, chromosome identification has been a major challenge for plants with small chromosomes, such as the Citrus species. We developed oligonucleotide-based chromosome painting probes for all nine chromosomes in Citrus maxima (Pummelo). We were able to identify all C. maxima chromosomes in the same metaphase cells using multiple rounds of sequential fluorescence in situ hybridization with the painting probes. We conducted comparative chromosome painting analysis in six different Citrus and related species. We found that each painting probe hybridized to only a single chromosome in all other five species, suggesting that the six species have maintained a complete chromosomal synteny after more than 9 million years of divergence. No interchromosomal rearrangement was identified in any species. These results support the hypothesis that karyotypes of woody species are more stable than herbaceous plants because woody plants need a longer period to fix chromosome structural variants in natural populations.
Collapse
Affiliation(s)
- Li He
- National-local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Hainan Zhao
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jian He
- National-local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Bin Guan
- National-local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Keling Chen
- National-local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Qibin Hong
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Jianhui Wang
- National-local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Jianjun Liu
- National-local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA
| |
Collapse
|
9
|
Mendes S, Régis T, Terol J, Soares Filho WDS, Talon M, Pedrosa-Harand A. Integration of mandarin ( Citrus reticulata) cytogenetic map with its genome sequence. Genome 2020; 63:437-444. [PMID: 32758104 DOI: 10.1139/gen-2020-0046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Citrus is an extremely important genus in terms of world fruit production. Despite its economic importance and the small genome sizes of its species (2n = 18, 1C = 430 ± 68 Mbp), entire genomic assemblies have only recently become available for some of its representatives. Together with the previous CMA/DAPI banding and fluorescence in situ hybridization (FISH) in the group, these data are important for understanding the complex relationships between its species and for assisting breeding programs. To anchor genomic data with the cytogenetic map of mandarin (Citrus reticulata), the parental species of several economically important hybrids such as sweet orange and clementine, 18 BAC (bacterial artificial chromosome) clones were used. Eleven clementine BACs were positioned by BAC-FISH, doubling the number of chromosome markers so far available for BAC-FISH in citrus. Additionally, six previously mapped BACs were end-sequenced, allowing, together with one BAC previously sequenced, their assignment to scaffolds and the subsequent integration of chromosomes and the genome assembly. This study therefore established correlations between mandarin scaffolds and chromosomes, allowing further structural genomic and comparative study with the sweet orange genome, as well as insights into the chromosomal evolution of the group.
Collapse
Affiliation(s)
- Sandra Mendes
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil
| | - Thallita Régis
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil
| | - Javier Terol
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | | | - Manuel Talon
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Andrea Pedrosa-Harand
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil
| |
Collapse
|
10
|
Cordeiro JMP, Kaehler M, Souza LG, Felix LP. Heterochromatin and numeric chromosome evolution in Bignoniaceae, with emphasis on the Neotropical clade Tabebuia alliance. Genet Mol Biol 2020; 43:e20180171. [PMID: 31429855 PMCID: PMC7229889 DOI: 10.1590/1678-4685-gmb-2018-0171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 03/05/2019] [Indexed: 11/22/2022] Open
Abstract
Bignoniaceae is a diverse family composed of 840 species with Pantropical distribution. The chromosome number 2n = 40 is predominant in most species of the family, with n = 20 formerly being considered the haploid base number. We discuss here the haploid base number of Bignoniaceae and examine heterochromatin distributions revealed by CMA/DAPI fluorochromes in the Tabebuia alliance, as well as in some species of the Bignonieae, Tecomeae, and Jacarandeae tribes. When comparing the chromosome records and the phylogenies of Bignoniaceae it can be deduced that the base number of Bignoniaceae is probably n = 18, followed by an ascendant dysploidy (n = 18 → n = 20) in the most derived and diverse clades. The predominant heterochromatin banding patterns in the Tabebuia alliance were found to be two terminal CMA+ bands or two terminal and two proximal CMA+ bands. The banding pattern in the Tabebuia alliance clade was more variable than seen in Jacarandeae, but less variable than Bignonieae. Despite the intermediate level of variation observed, heterochromatin banding patterns offer a promising tool for distinguishing species, especially in the morphologically complex genus Handroanthus.
Collapse
Affiliation(s)
- Joel M P Cordeiro
- Universidade Federal da Paraíba, Centro de Ciências Agrárias, Departamento de Ciências Biológicas, Campus II, Areia, PB, Brazil
| | - Miriam Kaehler
- Mulleriana: Sociedade Fritz Müller de Ciências Naturais, Curitiba, PR, Brazil
| | - Luiz Gustavo Souza
- Universidade Federal de Pernambuco, Centro de Ciências Biológicas, Departamento de Botânica, Recife, PE, Brazil
| | - Leonardo P Felix
- Universidade Federal da Paraíba, Centro de Ciências Agrárias, Departamento de Ciências Biológicas, Campus II, Areia, PB, Brazil
| |
Collapse
|
11
|
Deng H, Tang G, Xu N, Gao Z, Lin L, Liang D, Xia H, Deng Q, Wang J, Cai Z, Liang G, Lv X. Integrated Karyotypes of Diploid and Tetraploid Carrizo Citrange ( Citrus sinensis L. Osbeck × Poncirus trifoliata L. Raf.) as Determined by Sequential Multicolor Fluorescence in situ Hybridization With Tandemly Repeated DNA Sequences. FRONTIERS IN PLANT SCIENCE 2020; 11:569. [PMID: 32536930 PMCID: PMC7267054 DOI: 10.3389/fpls.2020.00569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/16/2020] [Indexed: 05/20/2023]
Abstract
Carrizo citrange [Citrus sinensis (L.) Osbeck × Poncirus trifoliata (L.) Raf., CC] is one of the most widely used rootstocks in citriculture worldwide, but its cytogenetic study has been hampered by its inherent small size, morphological similarity to mitotic chromosomes, and lack of accessible cytological landmarks. In our previous study, a spontaneously occurring tetraploid CC seedling was discovered. The main goals of this study were to elucidate the chromosome constitution and construct the karyotypes of diploid CC rootstock and its corresponding spontaneously occurring tetraploid. To accomplish these, the chromosomal characteristics were investigated by sequential multicolor fluorescence in situ hybridization (FISH) with eight properly labeled repetitive DNA sequences, including a centromere-like repeat, four satellite repeats, two rDNAs, and an oligonucleotide of telomeric (TTTAGGG) n repeat. The results nicely demonstrated that these repetitive DNAs are reliable cytogenetic markers that collectively facilitate simultaneous and unequivocal identification of homologous chromosome pairs. Based on chromosome size and morphology together with FISH patterns of repetitive DNAs, an integrated karyotype of CC rootstock was constructed, consisting of 2n = 2x = 12m (1sat) + 6sm with karyotype asymmetry degree being divided into 2B category. Cytogenetically speaking, the variable and asymmetric distribution patterns of these repetitive DNAs were fully confirmed the hybrid nature of CC rootstock. In addition, comparative distribution patterns and chromosomal localizations of these repetitive DNAs convincingly showed that this tetraploid CC material arose from somatic chromosome doubling of diploid CC rootstock. This study revealed, for the first time, the integrated karyotype and chromosomal characteristics of this important citrus rootstock as well as its spontaneously occurring tetraploid plant. Furthermore, this study is a good prospective model for study species with morphologically indistinguishable small chromosomes.
Collapse
Affiliation(s)
- Honghong Deng
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Guohao Tang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Nuo Xu
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Zhijian Gao
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Lijin Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Dong Liang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Hui Xia
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Qunxian Deng
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Jin Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Zexi Cai
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Guolu Liang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- *Correspondence: Guolu Liang,
| | - Xiulan Lv
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
- Xiulan Lv,
| |
Collapse
|
12
|
Ribeiro T, Vasconcelos E, Dos Santos KGB, Vaio M, Brasileiro-Vidal AC, Pedrosa-Harand A. Diversity of repetitive sequences within compact genomes of Phaseolus L. beans and allied genera Cajanus L. and Vigna Savi. Chromosome Res 2019; 28:139-153. [PMID: 31734754 DOI: 10.1007/s10577-019-09618-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/24/2019] [Accepted: 10/15/2019] [Indexed: 01/08/2023]
Abstract
Repetitive sequences are ubiquitous and fast-evolving elements responsible for size variation and large-scale organization of plant genomes. Within tribe Phaseoleae (Fabaceae), some genera, such as Phaseolus, Vigna, and Cajanus, show small genome and mostly stable chromosome number. Here, we applied a combined computational and cytological approach to study the organization and diversification of repetitive elements in some species of these genera. Sequences were classified in terms of type and repetitiveness and the most abundant were mapped to chromosomes. We identified long terminal repeat (LTR) retrotransposons, especially Ogre and Chromovirus elements, making up most of genomes, other than P. acutifolius and Vigna species. Satellite DNAs (SatDNAs) were less representative, but highly diverse among species, showing a clear phylogenetic relationship. In situ localization revealed preferential location at pericentromeres and centromeres for both types of sequences, suggesting a heterogeneous composition, especially for centromeres. Few elements showed subterminal accumulation. Copy number variation among chromosomes within and among species was observed for all nine identified SatDNAs. Altogether, our data pointed two main elements (Ty3/Gypsy retrotransponsons and SatDNAs) to the diversification on the repetitive landscape in Phaseoleae, with a typical set of repeats in each species. The high turnover of these sequences, however, did not affect total genome size.
Collapse
Affiliation(s)
- Tiago Ribeiro
- Integrative Plant Research Laboratory, Department of Botany and Ecology, Federal University of Mato Grosso, Av. Fernando Corrêa da Costa, 2367, Boa Esperança, Cuiabá, MT, 78060900, Brazil.
| | - Emanuelle Vasconcelos
- Laboratory of Plant Genetics and Biotechnology, Department of Genetics, Federal University of Pernambuco, Recife, PE, Brazil
| | - Karla G B Dos Santos
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Av. Prof. Moraes Rêgo, s/n, Cidade Universitária, Recife, PE, 50670420, Brazil
| | - Magdalena Vaio
- Laboratory of Plant Genome Evolution and Domestication, Department of Plant Biology, Faculty of Agronomy, University of the Republic, Montevideo, Uruguay
| | - Ana Christina Brasileiro-Vidal
- Laboratory of Plant Genetics and Biotechnology, Department of Genetics, Federal University of Pernambuco, Recife, PE, Brazil
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Av. Prof. Moraes Rêgo, s/n, Cidade Universitária, Recife, PE, 50670420, Brazil.
| |
Collapse
|
13
|
Ibiapino A, García MA, Ferraz ME, Costea M, Stefanović S, Guerra M. Allopolyploid origin and genome differentiation of the parasitic species Cuscuta veatchii (Convolvulaceae) revealed by genomic in situ hybridization. Genome 2019; 62:467-475. [PMID: 31071271 DOI: 10.1139/gen-2018-0184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Interspecific hybridization and genome duplication to form allopolyploids are major evolutionary events in angiosperms. In the parasitic genus Cuscuta (Convolvulaceae), molecular data suggested the existence of species of hybrid origin. One of them, C. veatchii, has been proposed as a hybrid between C. denticulata and C. nevadensis, both included in sect. Denticulatae. To test this hypothesis, a cytogenetic analysis was performed with CMA/DAPI staining and fluorescent in situ hybridization using 5S and 35S rDNA and genomic probes. Chromosomes of C. denticulata were small with a well-defined centromeric region, whereas C. nevadensis had larger, densely stained chromosomes, and less CMA+ heterochromatic bands. Cuscuta veatchii had 2n = 60 chromosomes, about 30 of them similar to those of C. denticulata and the remaining to C. nevadensis. GISH analysis confirmed the presence of both subgenomes in the allotetraploid C. veatchii. However, the number of rDNA sites and the haploid karyotype length in C. veatchii were not additive. The diploid parentals had already diverged in their chromosomes structure, whereas the reduction in the number of rDNA sites more probably occurred after hybridization. As phylogenetic data suggested a recent divergence of the progenitors, these species should have a high rate of karyotype evolution.
Collapse
Affiliation(s)
- Amália Ibiapino
- a Laboratory of Plant Cytogenetics and Evolution - Federal University of Pernambuco, Department of Botany, Recife 50.372-970, PE, Brazil
| | - Miguel A García
- b Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.,c Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AE, United Kingdom
| | - Maria Eduarda Ferraz
- a Laboratory of Plant Cytogenetics and Evolution - Federal University of Pernambuco, Department of Botany, Recife 50.372-970, PE, Brazil
| | - Mihai Costea
- d Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Saša Stefanović
- b Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Marcelo Guerra
- a Laboratory of Plant Cytogenetics and Evolution - Federal University of Pernambuco, Department of Botany, Recife 50.372-970, PE, Brazil
| |
Collapse
|
14
|
Deng H, Cai Z, Xiang S, Guo Q, Huang W, Liang G. Karyotype Analysis of Diploid and Spontaneously Occurring Tetraploid Blood Orange [ Citrus sinensis (L.) Osbeck] Using Multicolor FISH With Repetitive DNA Sequences as Probes. FRONTIERS IN PLANT SCIENCE 2019; 10:331. [PMID: 30967887 PMCID: PMC6440391 DOI: 10.3389/fpls.2019.00331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/04/2019] [Indexed: 05/17/2023]
Abstract
Blood orange [Citrus sinensis (L.) Osbeck] has been increasingly appreciated by consumers worldwide owing to its brilliant red color, abundant anthocyanin and other health-promoting compounds. However, there is still relatively little known about its cytogenetic characteristics, probably because of the small size and similar morphology of metaphase chromosomes and the paucity of chromosomal landmarks. In our previous study, a naturally occurring tetraploid blood orange plant was obtained via seedling screening. Before this tetraploid germplasm can be manipulated into a citrus triploid seedless breeding program, it is of great importance to determine its chromosome characterization and composition. In the present study, an integrated karyotype of blood orange was constructed using sequential multicolor fluorescence in situ hybridization (FISH) with four satellite repeats, two ribosomal DNAs (rDNAs), a centromere-like repeat and an oligonucleotide of telomere repeat (TTTAGGG)3 as probes. Satellite repeats were preferentially located at the terminal regions of the chromosomes of blood orange. Individual somatic chromosome pairs of blood orange were unambiguously identified by repetitive DNA-based multicolor FISH. These probes proved to be effective chromosomal landmarks. The karyotype was formulated as 2n = 2x = 18 = 16m+2sm (1sat) with the karyotype asymmetry degree belonging to 2B. The chromosomal distribution pattern of these repetitive DNAs in this spontaneously occurring tetraploid was identical to that of the diploid, but the tetraploid carried twice the number of hybridization sites as the diploid, indicating a possible pathway involving the spontaneous duplication of chromosome sets in nucellar cells. Our work may facilitate the molecular cytogenetic study of blood orange and provide chromosomal characterization for the future utilization of this tetraploid germplasm in the service of seedless breeding programs.
Collapse
Affiliation(s)
- Honghong Deng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Zexi Cai
- College of Agronomy and Biotechnology, National Maize Improvement Center, China Agricultural University, Beijing, China
| | - Suqiong Xiang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Qigao Guo
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Wei Huang
- College of Agronomy and Biotechnology, National Maize Improvement Center, China Agricultural University, Beijing, China
| | - Guolu Liang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Deng H, Xiang S, Guo Q, Jin W, Cai Z, Liang G. Molecular cytogenetic analysis of genome-specific repetitive elements in Citrus clementina Hort. Ex Tan. and its taxonomic implications. BMC PLANT BIOLOGY 2019; 19:77. [PMID: 30770721 PMCID: PMC6377768 DOI: 10.1186/s12870-019-1676-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 02/07/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Clementine mandarin (Citrus clementina Hort. ex Tan.) is one of the most famous and widely grown citrus cultivars worldwide. Variations in relation to the composition and distribution of repetitive DNA sequences that dominate greatly in eukaryote genomes are considered to be species-, genome-, or even chromosome-specific. Repetitive DNA-based fluorescence in situ hybridization (FISH) is a powerful tool for molecular cytogenetic study. However, to date few studies have involved in the repetitive elements and cytogenetic karyotype of Clementine. RESULTS A graph-based similarity sequence read clustering methodology was performed to analyze the repetitive DNA families in the Clementine genome. The bioinformatics analysis showed that repetitive DNAs constitute 41.95% of the Clementine genome, and the majority of repetitive elements are retrotransposons and satellite DNAs. Sequential multicolor FISH using a probe mix that contained CL17, four satellite DNAs, two rDNAs and an oligonucleotide of (TTTAGGG)3 was performed with Clementine somatic metaphase chromosomes. An integrated karyotype of Clementine was established based on unequivocal and reproducible chromosome discriminations. The distribution patterns of these probes in several Citrus, Poncirus and Fortunella species were summarized through extensive FISH analyses. Polymorphism and heterozygosity were commonly observed in the three genera. Some asymmetrical FISH loci in Clementine were in agreement with its hybrid origin. CONCLUSIONS The composition and abundance of repetitive elements in the Clementine genome were reanalyzed. Multicolor FISH-based karyotyping provided direct visual proof of the heterozygous nature of Clementine chromosomes with conspicuous asymmetrical FISH hybridization signals. We detected some similar and variable distribution patterns of repetitive DNAs in Citrus, Poncirus, and Fortunella, which revealed notable conservation among these genera, as well as obvious polymorphism and heterozygosity, indicating the potential utility of these repetitive element markers for the study of taxonomic, phylogenetic and evolutionary relationships in the future.
Collapse
Affiliation(s)
- Honghong Deng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715 China
| | - Suqiong Xiang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715 China
| | - Qigao Guo
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715 China
| | - Weiwei Jin
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Zexi Cai
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Guolu Liang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715 China
| |
Collapse
|
16
|
Karyotype heterogeneity in Philodendron s.l. (Araceae) revealed by chromosome mapping of rDNA loci. PLoS One 2018; 13:e0207318. [PMID: 30440003 PMCID: PMC6237374 DOI: 10.1371/journal.pone.0207318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
Philodendron s.l. (Araceae) has been recently focus of taxonomic and phylogenetic studies, but karyotypic data are limited to chromosome numbers and a few published genome sizes. In this work, karyotypes of 34 species of Philodendron s.l. (29 species of Philodendron and five of Thaumatophyllum), ranging from 2n = 28 to 36 chromosomes, were analyzed by fluorescence in situ hybridization (FISH) with rDNA and telomeric probes, aiming to understand the evolution of the karyotype diversity of the group. Philodendron presented a high number variation of 35S rDNA, ranging from two to 16 sites, which were mostly in the terminal region of the short arms, with nine species presenting heteromorphisms. In the case of Thaumatophyllum species, we observed a considerably lower variation, which ranged from two to four terminal sites. The distribution of the 5S rDNA clusters was more conserved, with two sites for most species, being preferably located interstitially in the long chromosome arms. For the telomeric probe, while exclusively terminal sites were observed for P. giganteum (2n = 30) chromosomes, P. callosum (2n = 28) presented an interstitial distribution associated with satellite DNA. rDNA sites of the analyzed species of Philodendron s.l. species were randomly distributed considering the phylogenetic context, probably due to rapid evolution and great diversity of these genomes. The observed heteromorphisms suggest the accumulation of repetitive DNA in the genomes of some species and the occurrence of chromosomal rearrangements along the karyotype evolution of the group.
Collapse
|
17
|
Cordeiro JMP, Kaehler M, Souza G, Felix LP. Karyotype analysis in Bignonieae (Bignoniaceae): chromosome numbers and heterochromatin. AN ACAD BRAS CIENC 2017; 89:2697-2706. [PMID: 29236867 DOI: 10.1590/0001-3765201720170363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/31/2017] [Indexed: 11/21/2022] Open
Abstract
Chromosome numbers and heterochromatin banding pattern variability have been shown to be useful for taxonomic and evolutionary studies of different plant taxa. Bignonieae is the largest tribe of Bignoniaceae, composed mostly by woody climber species whose taxonomies are quite complicated. We reviewed and added new data concerning chromosome numbers in Bignonieae and performed the first analyses of heterochromatin banding patterns in that tribe based on the fluorochromes chromomycin A3 (CMA) and 4'-6-diamidino-2-phenylindole (DAPI). We confirmed the predominant diploid number 2n = 40, as well as variations reported in the literature (dysploidy in Mansoa [2n = 38] and polyploidy in Dolichandra ungis-cati [2n = 80] and Pyrostegia venusta [2n = 80]). We also found a new cytotype for the genus Anemopaegma (Anemopaegma citrinum, 2n = 60) and provide the first chromosome counts for five species (Adenocalymma divaricatum, Amphilophium scabriusculum, Fridericia limae, F. subverticillata, and Xylophragma myrianthum). Heterochromatin analyses revealed only GC-rich regions, with six different arrangements of those bands. The A-type (one large and distal telomeric band) were the most common, although the presence and combinations of the other types appear to be the most promising for taxonomic studies.
Collapse
Affiliation(s)
- Joel M P Cordeiro
- Centro de Ciências Agrárias, Departamento de Ciências Biológicas, Universidade Federal da Paraíba, Campus II, Rodovia PB 079, Km 12, 58397-000 Areia, PB, Brazil
| | - Miriam Kaehler
- Mülleriana, Sociedade Fritz Müller de Ciências Naturais, Rua Humberto Morona, 26, 80050-402 Curitiba, PR, Brazil
| | - Gustavo Souza
- Centro de Ciências Biológicas, Departamento de Botânica, Universidade Federal de Pernambuco, Campus I, Av. Prof. Moraes Rego, 1235, 50670-901 Recife, PE, Brazil
| | - Leonardo P Felix
- Centro de Ciências Agrárias, Departamento de Ciências Biológicas, Universidade Federal da Paraíba, Campus II, Rodovia PB 079, Km 12, 58397-000 Areia, PB, Brazil
| |
Collapse
|
18
|
Feitoza L, Costa L, Guerra M. Condensation patterns of prophase/prometaphase chromosome are correlated with H4K5 histone acetylation and genomic DNA contents in plants. PLoS One 2017; 12:e0183341. [PMID: 28854212 PMCID: PMC5576753 DOI: 10.1371/journal.pone.0183341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/02/2017] [Indexed: 02/05/2023] Open
Abstract
Mitotic prophase chromosome condensation plays an essential role in nuclear division being therefore regulated by highly conserved mechanisms. However, degrees of chromatin condensation in prophase-prometaphase cells may vary along the chromosomes resulting in specific condensation patterns. We examined different condensation patterns (CPs) of prophase and prometaphase chromosomes and investigated their relationship with genome size and distribution of histone H4 acetylated at lysine 5 (H4K5ac) in 17 plant species. Our results showed that most species with small genomes (2C < 5 pg) (Arachis pusilla, Bixa orellana, Costus spiralis, Eleutherine bulbosa, Indigofera campestris, Phaseolus lunatus, P. vulgaris, Poncirus trifoliata, and Solanum lycopersicum) displayed prophase chromosomes with late condensing terminal regions that were highly enriched in H4K5ac, and early condensing regions with apparently non-acetylated proximal chromatin. The species with large genomes (Allium cepa, Callisia repens, Araucaria angustifolia and Nothoscordum pulchellum) displayed uniformly condensed and acetylated prophase/prometaphase chromosomes. Three species with small genomes (Eleocharis geniculata, Rhynchospora pubera, and R. tenuis) displayed CP and H4K5ac labeling patterns similar to species with large genomes, whereas a forth species (Emilia sonchifolia) exhibited a gradual chromosome labeling, being more acetylated in the terminal regions and less acetylated in the proximal ones. The nucleolus organizer chromatin was the only chromosomal region that in prometaphase or metaphase could be hyperacetylated, hypoacetylated or non-acetylated, depending on the species. Our data indicate that the CP of a plant chromosome complement is influenced but not exclusively determined by nuclear and chromosomal DNA contents, whereas the CP of individual chromosomes is clearly correlated with H4K5ac distribution.
Collapse
Affiliation(s)
- Lidiane Feitoza
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, PE, Brazil
| | - Lucas Costa
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, PE, Brazil
| | - Marcelo Guerra
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
19
|
Ribeiro T, Dos Santos KGB, Richard MMS, Sévignac M, Thareau V, Geffroy V, Pedrosa-Harand A. Evolutionary dynamics of satellite DNA repeats from Phaseolus beans. PROTOPLASMA 2017; 254:791-801. [PMID: 27335007 DOI: 10.1007/s00709-016-0993-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
Common bean (Phaseolus vulgaris) subtelomeres are highly enriched for khipu, the main satellite DNA identified so far in this genome. Here, we comparatively investigate khipu genomic organization in Phaseolus species from different clades. Additionally, we identified and characterized another satellite repeat, named jumper, associated to khipu. A mixture of P. vulgaris khipu clones hybridized in situ confirmed the presence of khipu-like sequences on subterminal chromosome regions in all Phaseolus species, with differences in the number and intensity of signals between species and when species-specific clones were used. Khipu is present as multimers of ∼500 bp and sequence analyses of cloned fragments revealed close relationship among khipu repeats. The new repeat, named jumper, is a 170-bp satellite sequence present in all Phaseolus species and inserted into the nontranscribed spacer (NTS) of the 5S rDNA in the P. vulgaris genome. Nevertheless, jumper was found as a high-copy repeat at subtelomeres and/or pericentromeres in the Phaseolus microcarpus lineage only. Our data argue for khipu as an important subtelomeric satellite DNA in the genus and for a complex satellite repeat composition of P. microcarpus subtelomeres, which also contain jumper. Furthermore, the differential amplification of these repeats in subtelomeres or pericentromeres reinforces the presence of a dynamic satellite DNA library in Phaseolus.
Collapse
Affiliation(s)
- Tiago Ribeiro
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Karla G B Dos Santos
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Manon M S Richard
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
| | - Mireille Sévignac
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
| | - Vincent Thareau
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
| | - Valérie Geffroy
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
| | - Andrea Pedrosa-Harand
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
20
|
Ribeiro T, Marques A, Novák P, Schubert V, Vanzela ALL, Macas J, Houben A, Pedrosa-Harand A. Centromeric and non-centromeric satellite DNA organisation differs in holocentric Rhynchospora species. Chromosoma 2016; 126:325-335. [DOI: 10.1007/s00412-016-0616-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/15/2022]
|
21
|
Lan H, Chen CL, Miao Y, Yu CX, Guo WW, Xu Q, Deng XX. Fragile Sites of 'Valencia' Sweet Orange (Citrus sinensis) Chromosomes Are Related with Active 45s rDNA. PLoS One 2016; 11:e0151512. [PMID: 26977938 PMCID: PMC4792391 DOI: 10.1371/journal.pone.0151512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/29/2016] [Indexed: 12/12/2022] Open
Abstract
Citrus sinensis chromosomes present a morphological differentiation of bands after staining by the fluorochromes CMA and DAPI, but there is still little information on its chromosomal characteristics. In this study, the chromosomes in 'Valencia' C. sinensis were analyzed by fluorescence in situ hybridization (FISH) using telomere DNA and the 45S rDNA gene as probes combining CMA/DAPI staining, which showed that there were two fragile sites in sweet orange chromosomes co-localizing at distended 45S rDNA regions, one proximally locating on B-type chromosome and the other subterminally locating on D-type chromosome. While the chromosomal CMA banding and 45S rDNA FISH mapping in the doubled haploid line of 'Valencia' C. sinensis indicated six 45S rDNA regions, four were identified as fragile sites as doubled comparing its parental line, which confirmed the cytological heterozygosity and chromosomal heteromorphisms in sweet orange. Furthermore, Ag-NOR identified two distended 45S rDNA regions to be active nucleolar organizing regions (NORs) in diploid 'Valencia' C. sinensis. The occurrence of quadrivalent in meiosis of pollen mother cells (PMCs) in 'Valencia' sweet orange further confirmed it was a chromosomal reciprocal translocation line. We speculated this chromosome translocation was probably related to fragile sites. Our data provide insights into the chromosomal characteristics of the fragile sites in 'Valencia' sweet orange and are expected to facilitate the further investigation of the possible functions of fragile sites.
Collapse
Affiliation(s)
- Hong Lan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Li Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yin Miao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chang-Xiu Yu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiu-Xin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
22
|
Roa F, Guerra M. Non-Random Distribution of 5S rDNA Sites and Its Association with 45S rDNA in Plant Chromosomes. Cytogenet Genome Res 2015; 146:243-9. [PMID: 26489031 DOI: 10.1159/000440930] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 11/19/2022] Open
Abstract
5S and 45S rDNA sites are the best mapped chromosome regions in eukaryotic chromosomes. In this work, a database was built gathering information about the position and number of 5S rDNA sites in 784 plant species, aiming to identify patterns of distribution along the chromosomes and its correlation with the position of 45S rDNA sites. Data revealed that in most karyotypes (54.5%, including polyploids) two 5S rDNA sites (a single pair) are present, with 58.7% of all sites occurring in the short arm, mainly in the proximal region. In karyotypes of angiosperms with only 1 pair of sites (single sites) they are mostly found in the proximal region (52.0%), whereas in karyotypes with multiple sites the location varies according to the average chromosome size. Karyotypes with multiple sites and small chromosomes (<3 µm) often display proximal sites, while medium-sized (between 3 and 6 µm) and large chromosomes (>6 µm) more commonly show terminal or interstitial sites. In species with holokinetic chromosomes, the modal value of sites per karyotype was also 2, but they were found mainly in a terminal position. Adjacent 5S and 45S rDNA sites were often found in the short arm, reflecting the preferential distribution of both sites in this arm. The high frequency of genera with at least 1 species with adjacent 5S and 45S sites reveals that this association appeared several times during angiosperm evolution, but it has been maintained only rarely as the dominant array in plant genera.
Collapse
|
23
|
Olanj N, Garnatje T, Sonboli A, Vallès J, Garcia S. The striking and unexpected cytogenetic diversity of genus Tanacetum L. (Asteraceae): a cytometric and fluorescent in situ hybridisation study of Iranian taxa. BMC PLANT BIOLOGY 2015; 15:174. [PMID: 26152193 PMCID: PMC4494159 DOI: 10.1186/s12870-015-0564-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/26/2015] [Indexed: 05/15/2023]
Abstract
BACKGROUND Although karyologically well studied, the genus Tanacetum (Asteraceae) is poorly known from the perspective of molecular cytogenetics. The prevalence of polyploidy, including odd ploidy warranted an extensive cytogenetic study. We studied several species native to Iran, one of the most important centres of diversity of the genus. We aimed to characterise Tanacetum genomes through fluorochrome banding, fluorescent in situ hybridisation (FISH) of rRNA genes and the assessment of genome size by flow cytometry. We appraise the effect of polyploidy and evaluate the existence of intraspecific variation based on the number and distribution of GC-rich bands and rDNA loci. Finally, we infer ancestral genome size and other cytogenetic traits considering phylogenetic relationships within the genus. RESULTS We report first genome size (2C) estimates ranging from 3.84 to 24.87 pg representing about 11 % of those recognised for the genus. We found striking cytogenetic diversity both in the number of GC-rich bands and rDNA loci. There is variation even at the population level and some species have undergone massive heterochromatic or rDNA amplification. Certain morphometric data, such as pollen size or inflorescence architecture, bear some relationship with genome size. Reconstruction of ancestral genome size, number of CMA+ bands and number of rDNA loci show that ups and downs have occurred during the evolution of these traits, although genome size has mostly increased and the number of CMA+ bands and rDNA loci have decreased in present-day taxa compared with ancestral values. CONCLUSIONS Tanacetum genomes are highly unstable in the number of GC-rich bands and rDNA loci, although some patterns can be established at the diploid and tetraploid levels. In particular, aneuploid taxa and some odd ploidy species show greater cytogenetic instability than the rest of the genus. We have also confirmed a linked rDNA arrangement for all the studied Tanacetum species. The labile scenario found in Tanacetum proves that some cytogenetic features previously regarded as relatively constant, or even diagnostic, can display high variability, which is better interpreted within a phylogenetic context.
Collapse
Affiliation(s)
- Nayyereh Olanj
- Department of Biology, Faculty of Basic Science, Malayer University, Malayer, Iran.
- Laboratori de Botànica - Unitat associada CSIC, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, 08028, Barcelona, Catalonia, Spain.
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Passeig del Migdia s/n, Parc de Montjuïc, 08038, Barcelona, Catalonia, Spain.
| | - Ali Sonboli
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, 1983963113, Tehran, Iran.
| | - Joan Vallès
- Laboratori de Botànica - Unitat associada CSIC, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, 08028, Barcelona, Catalonia, Spain.
| | - Sònia Garcia
- Laboratori de Botànica - Unitat associada CSIC, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, 08028, Barcelona, Catalonia, Spain.
| |
Collapse
|
24
|
She CW, Jiang XH, Ou LJ, Liu J, Long KL, Zhang LH, Duan WT, Zhao W, Hu JC. Molecular cytogenetic characterisation and phylogenetic analysis of the seven cultivated Vigna species (Fabaceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:268-80. [PMID: 24750425 DOI: 10.1111/plb.12174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 01/28/2014] [Indexed: 05/07/2023]
Abstract
The genomic organisation of the seven cultivated Vigna species, V. unguiculata, V. subterranea, V. angularis, V. umbellata, V. radiata, V. mungo and V. aconitifolia, was determined using sequential combined PI and DAPI (CPD) staining and dual-colour fluorescence in situ hybridisation (FISH) with 5S and 45S rDNA probes. For phylogenetic analyses, comparative genomic in situ hybridisation (cGISH) onto somatic chromosomes and sequence analysis of the internal transcribed spacer (ITS) of 45S rDNA were used. Quantitative karyotypes were established using chromosome measurements, fluorochrome bands and rDNA FISH signals. All species had symmetrical karyotypes composed of only metacentric or metacentric and submetacentric chromosomes. Distinct heterochromatin differentiation was revealed by CPD staining and DAPI counterstaining after FISH. The rDNA sites among all species differed in their number, location and size. cGISH of V. umbellata genomic DNA to the chromosomes of all species produced strong signals in all centromeric regions of V. umbellata and V. angularis, weak signals in all pericentromeric regions of V. aconitifolia, and CPD-banded proximal regions of V. mungo var. mungo. Molecular phylogenetic trees showed that V. angularis and V. umbellata were the closest relatives, and V. mungo and V. aconitifolia were relatively closely related; these species formed a group that was separated from another group comprising V. radiata, V. unguiculata ssp. sesquipedalis and V. subterranea. This result was consistent with the phylogenetic relationships inferred from the heterochromatin and cGISH patterns; thus, fluorochrome banding and cGISH are efficient tools for the phylogenetic analysis of Vigna species.
Collapse
MESH Headings
- Base Sequence
- Chromosomes, Plant/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal Spacer/chemistry
- DNA, Ribosomal Spacer/genetics
- Fabaceae/cytology
- Fabaceae/genetics
- Genome, Plant/genetics
- In Situ Hybridization, Fluorescence
- Karyotype
- Mitosis/genetics
- Molecular Sequence Data
- Phylogeny
- Plant Leaves/cytology
- Plant Leaves/genetics
- Sequence Analysis, DNA
- Species Specificity
Collapse
Affiliation(s)
- C-W She
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua, China; Key Laboratory of Xiangxi Medicinal Plant and Ethnobotany of Hunan Higher Education, Huaihua University, Huaihua, China; Department of Life Sciences, Huaihua University, Huaihua, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Santos AA, Penha HA, Bellec A, Munhoz CDF, Pedrosa-Harand A, Bergès H, Vieira MLC. Begin at the beginning: A BAC-end view of the passion fruit (Passiflora) genome. BMC Genomics 2014; 15:816. [PMID: 25260959 PMCID: PMC4189760 DOI: 10.1186/1471-2164-15-816] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/22/2014] [Indexed: 12/16/2022] Open
Abstract
Background The passion fruit (Passiflora edulis) is a tropical crop of economic importance both for juice production and consumption as fresh fruit. The juice is also used in concentrate blends that are consumed worldwide. However, very little is known about the genome of the species. Therefore, improving our understanding of passion fruit genomics is essential and to some degree a pre-requisite if its genetic resources are to be used more efficiently. In this study, we have constructed a large-insert BAC library and provided the first view on the structure and content of the passion fruit genome, using BAC-end sequence (BES) data as a major resource. Results The library consisted of 82,944 clones and its levels of organellar DNA were very low. The library represents six haploid genome equivalents, and the average insert size was 108 kb. To check its utility for gene isolation, successful macroarray screening experiments were carried out with probes complementary to eight Passiflora gene sequences available in public databases. BACs harbouring those genes were used in fluorescent in situ hybridizations and unique signals were detected for four BACs in three chromosomes (n = 9). Then, we explored 10,000 BES and we identified reads likely to contain repetitive mobile elements (19.6% of all BES), simple sequence repeats and putative proteins, and to estimate the GC content (~42%) of the reads. Around 9.6% of all BES were found to have high levels of similarity to plant genes and ontological terms were assigned to more than half of the sequences analysed (940). The vast majority of the top-hits made by our sequences were to Populus trichocarpa (24.8% of the total occurrences), Theobroma cacao (21.6%), Ricinus communis (14.3%), Vitis vinifera (6.5%) and Prunus persica (3.8%). Conclusions We generated the first large-insert library for a member of Passifloraceae. This BAC library provides a new resource for genetic and genomic studies, as well as it represents a valuable tool for future whole genome study. Remarkably, a number of BAC-end pair sequences could be mapped to intervals of the sequenced Arabidopsis thaliana, V. vinifera and P. trichocarpa chromosomes, and putative collinear microsyntenic regions were identified. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-816) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maria Lucia Carneiro Vieira
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", P,O, Box 83, 13400-970 Piracicaba, Brazil.
| |
Collapse
|
26
|
Marcon-Tavares AB, Felinto F, Feitoza L, Barros e Silva AE, Guerra M. Different Patterns of Chromosomal Histone H3 Phosphorylation in Land Plants. Cytogenet Genome Res 2014; 143:136-43. [DOI: 10.1159/000364815] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
27
|
Barros e Silva A, dos Santos Soares Filho W, Guerra M. Linked 5S and 45S rDNA Sites Are Highly Conserved through the Subfamily Aurantioideae (Rutaceae). Cytogenet Genome Res 2013; 140:62-9. [DOI: 10.1159/000350695] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2012] [Indexed: 11/19/2022] Open
|
28
|
Guarido PCP, de Paula AA, da Silva CRM, Rodriguez C, Vanzela ALL. Hypomethylation of cytosine residues in cold-sensitive regions of Cestrum strigilatum (Solanaceae). Genet Mol Biol 2012; 35:455-9. [PMID: 22888295 PMCID: PMC3389534 DOI: 10.1590/s1415-47572012005000026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/13/2012] [Indexed: 11/22/2022] Open
Abstract
Heterochromatin comprises a fraction of the genome usually with highly repeated DNA sequences and lacks of functional genes. This region can be revealed by using Giemsa C-banding, fluorochrome staining and cytomolecular tools. Some plant species are of particular interest through having a special type of heterochromatin denominated the cold-sensitive region (CSR). Independent of other chromosomal regions, when biological materials are subjected to low temperatures (about 0 °C), CSRs appear slightly stained and decondensed. In this study, we used Cestrum strigilatum (Solanaceae) to understand some aspects of CSR condensation associated with cytosine methylation levels, and to compare the behavior of different heterochromatin types of this species, when subjected to low temperatures.
Collapse
Affiliation(s)
- Paula Carolina Paes Guarido
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Adriano Alves de Paula
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | | | - André Luís Laforga Vanzela
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| |
Collapse
|
29
|
Ribeiro T, dos Santos KGB, Fonsêca A, Pedrosa-Harand A. Isolation and characterization of a new repetitive DNA family recently amplified in the Mesoamerican gene pool of the common bean (Phaseolus vulgaris L., Fabaceae). Genetica 2011; 139:1135-42. [PMID: 22086374 DOI: 10.1007/s10709-011-9615-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 11/07/2011] [Indexed: 12/21/2022]
Abstract
The common bean (Phaseolus vulgaris) is one of the most important crop plants. About 50% of its genome is composed of repetitive sequences, but only a little fraction was isolated and characterized so far. In this paper, a new repetitive DNA family from the species, named PvMeso, was isolated and characterized in both gene pools of P. vulgaris (Andean and Mesoamerican) and related species. Two fragments, 1.7 and 2.3 kb long, were cloned from BAC 255F18, which has previously shown a repetitive pattern. The subclone PvMeso-31 showed a terminal block in chromosome 7. This subclone contains a 1,705 bp long, AT-rich repeat with small internal repeats and shares a 1.2 kb region with PvMeso-47, derived from the 2.3 kb fragment. The presence of this repetitive block was restricted to Mesoamerican accessions of the common bean. In P. acutifolius, P. leptostachyus and Andean P. vulgaris, only a faint, 2.3 kb fragment was visualized in Southern experiments. Moreover, in Mesoamerican accessions, two other fragments (1.7 kb and 3.4 kb) were strongly labelled as well. Taken together, our results indicate that PvMeso is a recently emerged, repeat family initially duplicated in chromosome 11, on ancestral Mesoamerican accession, and later amplified in chromosome 7, after the split of the two major gene pools of the common bean.
Collapse
Affiliation(s)
- Tiago Ribeiro
- Department of Botany, Laboratory of Plant Cytogenetics, Federal University of Pernambuco, Recife, PE 50670-420, Brazil
| | | | | | | |
Collapse
|
30
|
Hynniewta M, Malik SK, Rao SR. Karyological studies in ten species of Citrus(Linnaeus, 1753) (Rutaceae) of North-East India. COMPARATIVE CYTOGENETICS 2011; 5:277-287. [PMID: 24260635 PMCID: PMC3833788 DOI: 10.3897/compcytogen.v5i4.1796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 07/27/2011] [Indexed: 06/02/2023]
Abstract
Ten Citrus (Linnaeus, 1753) species of North-East India have been karyo-morphologically analysed. All studied species had 2n=18 chromosomes without any evidence of numerical variation. All the chromosomes were found to be of metacentric and sub-metacentric in all the species; the morphology of the chromosomes showing size difference only. Symmetrical karyotype which does not have much difference in the ratio of longest to shortest chromosome in all the species was observed. Three species, Citrus grandis (Osbeck, 1757), Citrus reticulata (Blanco, 1837) and Citrus medica (Linnaeus, 1753) are identified as true basic species from asymmetry studies of karyotypes as they reflect on the primitive nature of their genomes. Citrus indica (Tanaka, 1937)occupies a special taxonomic position within the genus Citrus as a progenitor for other cultivated species.
Collapse
Affiliation(s)
- Marlykynti Hynniewta
- Plant Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong (Meghalaya) India
| | - Surendra Kumar Malik
- Tissue Culture & cryopreservation Unit, National Bureau of Plant Genetic Resource, New Delhi
| | - Satyawada Rama Rao
- Plant Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong (Meghalaya) India
| |
Collapse
|
31
|
Mondin M, Aguiar-Perecin MLR. Heterochromatin patterns and ribosomal DNA loci distribution in diploid and polyploid Crotalaria species (Leguminosae, Papilionoideae), and inferences on karyotype evolution. Genome 2011; 54:718-26. [PMID: 21864195 DOI: 10.1139/g11-034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Most Crotalaria species display a symmetric karyotype with 2n = 16, but 2n = 14 is found in Chrysocalycinae subsection Incanae and 2n = 32 in American species of the section Calycinae. Seven species of the sections Chrysocalycinae, Calycinae, and Crotalaria were analyzed for the identification of heterochromatin types with GC- and AT-specific fluorochromes and chromosomal location of ribosomal DNA loci using fluorescent in situ hybridization (FISH). A major 45S rDNA locus was observed on chromosome 1 in all the species, and a variable number of minor ones were revealed. Only one 5S rDNA locus was observed in the species investigated. Chromomycin A(3) (CMA) revealed CMA(+) bands colocalized with most rDNA loci, small bands unrelated to ribosomal DNA on two chromosome pairs in Crotalaria incana, and CMA(+) centromeric bands that were quenched by distamycin A were detected in species of Calycinae and Crotalaria sections. DAPI(+) bands were detected in C. incana. The results support the species relationships based on flower specialization and were useful for providing insight into mechanisms of karyotype evolution. The heterochromatin types revealed by fluorochromes suggest the occurrence of rearrangements in repetitive DNA families in these heterochromatic blocks during species diversification. This DNA sequence turnover and the variability in number/position of rDNA sites could be interpreted as resulting from unequal crossing over and (or) transposition events. The occurrence of only one 5S rDNA locus and the smaller chromosome size in the polyploids suggest that DNA sequence losses took place following polyploidization events.
Collapse
Affiliation(s)
- Mateus Mondin
- Department of Genetics, ESALQ, University of São Paulo, Piracicaba, SP, Brazil
| | | |
Collapse
|
32
|
Menezes RST, Carvalho AF, Silva JG, Costa MA. Molecular characterization of constitutive heterochromatin in three species of Trypoxylon (Hymenoptera: Crabronidae: Trypoxylini) by CMA3/DAPI staining. COMPARATIVE CYTOGENETICS 2011; 5:71-80. [PMID: 24260620 PMCID: PMC3833737 DOI: 10.3897/compcytogen.v5i2.961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/07/2011] [Indexed: 06/02/2023]
Abstract
Previous cytogenetic analyses in Trypoxylon Latreille, 1796 have been basically restricted to C-banding. In the present study, base-specific CMA3 and DAPI fluorochrome staining were used to characterize the constitutive heterochromatin in three Trypoxylon species. The heterochromatin was GC-rich in all the species studied; however, in Trypoxylon nitidum F. Smith, 1856the molecular composition of the heterochromatinwasdifferent among chromosome pairs. Conversely, the euchromatin was AT-rich in the three species. These results suggest high conservatism in the euchromatic regions as opposed to the heterochromatic regions that have a high rate of changes. In this study, we report the karyotype of Trypoxylon rugifrons F. Smith, 1873which has the lowest chromosome number in the genus and other characteristics of the likely ancestral Trypoxylon karyotype.
Collapse
Affiliation(s)
- Rodolpho Santos Telles Menezes
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz. Rod Ilhéus/Itabuna Km 16, 45650-000 Ilhéus, Bahia, Brazil
| | | | | | | |
Collapse
|
33
|
Mendes S, Moraes AP, Mirkov TE, Pedrosa-Harand A. Chromosome homeologies and high variation in heterochromatin distribution between Citrus L. and Poncirus Raf. as evidenced by comparative cytogenetic mapping. Chromosome Res 2011; 19:521-30. [DOI: 10.1007/s10577-011-9203-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 10/18/2022]
|
34
|
Marques A, Fuchs J, Ma L, Heckmann S, Guerra M, Houben A. Characterization of Eu- and heterochromatin of citrus with a focus on the condensation behavior of 45S rDNA chromatin. Cytogenet Genome Res 2011; 134:72-82. [PMID: 21304248 DOI: 10.1159/000323971] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2010] [Indexed: 11/19/2022] Open
Abstract
To characterize the properties of eu- and heterochromatic regions in Citrus species, the chromosomal distribution of different histone H3 marks, DNA methylation sites (5mC) and 45S ribosomal DNA sites were determined for C. clementina, C. paradisi, C. sinensis, and for the hybrid Ortanique C. reticulata × C. sinensis. Our data show that in the relatively small genomes of investigated Citrus species (genome size ranges from 378-400 Mbp) the euchromatin is characterized by histone H3 lysine 4 mono-, di- and trimethylation (H3K4me1/ 2/3) and histone H3 lysine 9 trimethylation (H3K9me3). In contrast, histone H3 lysine 9 mono- and dimethylation (H3K9me1/2), histone H3 lysine 27 mono-, di- and trimethylation (H3K27me1/2/3) as well as 5-methylcytosine (5mC) were enriched at certain heterochromatin fractions. Whereas H3K9me1/2 and H3K27me1 were preferentially enriched at the chromomycin A(3)-bright (CMA(+)) heterochromatin, H3K27me2/3 showed a higher accumulation at the DAPI brightly-stained heterochromatin. 5mC signals were associated with most of the CMA(+) areas as well as with the DAPI strongly-stained heterochromatin fraction. Therefore, extensive methylation of DNA as well as of H3K9me1/2 and H3K27me1/2/3, and depletion of H3K4me1/2/3 and H3K9me3 appear to be specific features of heterochromatin in Citrus. Transcriptionally active decondensed 45S rDNA sites were found DNA hypomethylated, while the silenced condensed sites were strongly 5mC methylated. Although the number of chromosomal 45S rDNA sites differed between the species, the number of transcriptionally active rDNA sites remains constant.
Collapse
Affiliation(s)
- A Marques
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | | | | | | | | |
Collapse
|