1
|
Bener MB, Slepchenko BM, Inaba M. Detection of dedifferentiated stem cells in Drosophila testis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641800. [PMID: 40093072 PMCID: PMC11908254 DOI: 10.1101/2025.03.06.641800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Tissue homeostasis relies on the stable maintenance of the stem cell pool throughout an organism's lifespan. Dedifferentiation, a process in which partially or terminally differentiated cells revert to a stem cell state, has been observed in a wide range of stem cell systems, and it has been implicated in the mechanisms for stem cell maintenance. Dedifferentiated stem cells are morphologically indistinguishable from original stem cells, making them challenging to identify. Therefore, whether dedifferentiated stem cells have any distinguishable characteristics compared with original stem cells is poorly understood. The Drosophila testis provides a well-established model to study dedifferentiation. While our previous live imaging analyses have identified dedifferentiation events constantly occurring at steady state, existing genetic marking methods fail to detect most of the dedifferentiated stem cells and thus significantly underestimate the frequency of dedifferentiation events. Here, we established a genetic tool with improved sensitivity and used live imaging and mathematical modeling to evaluate the system. Our findings indicate that the specificity of lineage-specific promoters is critical for successfully identifying dedifferentiated stem cells.
Collapse
Affiliation(s)
- Muhammed Burak Bener
- Department of Cell Biology, University of Connecticut Health, Farmington, CT 06030
| | - Boris M. Slepchenko
- Department of Cell Biology, University of Connecticut Health, Farmington, CT 06030
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Mayu Inaba
- Department of Cell Biology, University of Connecticut Health, Farmington, CT 06030
| |
Collapse
|
2
|
Bener MB, Twillie A, Inaba M. Dedifferentiating germ cells regain stem-cell specific polarity checkpoint prior to niche reentry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538507. [PMID: 37131641 PMCID: PMC10153218 DOI: 10.1101/2023.04.26.538507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In the Drosophila germline stem cell system, maintenance of the stem cell pool requires "dedifferentiation", in which differentiating cells reattach to the niche and reacquire stem cell properties. However, the mechanism of dedifferentiation remains poorly understood. Here, using long-term live imaging, we show that dedifferentiated cells immediately re-enter mitosis with correct spindle orientation after reattachment to the niche. Analysis of cell cycle markers revealed that these dedifferentiating cells are all in G2 phase. In addition, we found that the observed G2 block during dedifferentiation likely corresponds to a centrosome orientation checkpoint (COC), a previously reported polarity checkpoint. We show that re-activation of a COC is likely required for the dedifferentiation thus ensuring asymmetric division even in dedifferentiated stem cells. Taken together, our study demonstrates the remarkable ability of dedifferentiating cells to reacquire the ability to divide asymmetrically.
Collapse
|
3
|
Hippenmeyer S. Principles of neural stem cell lineage progression: Insights from developing cerebral cortex. Curr Opin Neurobiol 2023; 79:102695. [PMID: 36842274 DOI: 10.1016/j.conb.2023.102695] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 02/28/2023]
Abstract
How to generate a brain of correct size and with appropriate cell-type diversity during development is a major question in Neuroscience. In the developing neocortex, radial glial progenitor (RGP) cells are the main neural stem cells that produce cortical excitatory projection neurons, glial cells, and establish the prospective postnatal stem cell niche in the lateral ventricles. RGPs follow a tightly orchestrated developmental program that when disrupted can result in severe cortical malformations such as microcephaly and megalencephaly. The precise cellular and molecular mechanisms instructing faithful RGP lineage progression are however not well understood. This review will summarize recent conceptual advances that contribute to our understanding of the general principles of RGP lineage progression.
Collapse
Affiliation(s)
- Simon Hippenmeyer
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
4
|
Contreras X, Amberg N, Davaatseren A, Hansen AH, Sonntag J, Andersen L, Bernthaler T, Streicher C, Heger A, Johnson RL, Schwarz LA, Luo L, Rülicke T, Hippenmeyer S. A genome-wide library of MADM mice for single-cell genetic mosaic analysis. Cell Rep 2021; 35:109274. [PMID: 34161767 PMCID: PMC8317686 DOI: 10.1016/j.celrep.2021.109274] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/14/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022] Open
Abstract
Mosaic analysis with double markers (MADM) offers one approach to visualize and concomitantly manipulate genetically defined cells in mice with single-cell resolution. MADM applications include the analysis of lineage, single-cell morphology and physiology, genomic imprinting phenotypes, and dissection of cell-autonomous gene functions in vivo in health and disease. Yet, MADM can only be applied to <25% of all mouse genes on select chromosomes to date. To overcome this limitation, we generate transgenic mice with knocked-in MADM cassettes near the centromeres of all 19 autosomes and validate their use across organs. With this resource, >96% of the entire mouse genome can now be subjected to single-cell genetic mosaic analysis. Beyond a proof of principle, we apply our MADM library to systematically trace sister chromatid segregation in distinct mitotic cell lineages. We find striking chromosome-specific biases in segregation patterns, reflecting a putative mechanism for the asymmetric segregation of genetic determinants in somatic stem cell division.
Collapse
Affiliation(s)
- Ximena Contreras
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Nicole Amberg
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | | | - Andi H Hansen
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Johanna Sonntag
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Lill Andersen
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Tina Bernthaler
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Carmen Streicher
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Anna Heger
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Randy L Johnson
- Department of Biochemistry and Molecular Biology, University of Texas, Houston, TX 77030, USA
| | - Lindsay A Schwarz
- HHMI and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- HHMI and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
5
|
Wooten M, Ranjan R, Chen X. Asymmetric Histone Inheritance in Asymmetrically Dividing Stem Cells. Trends Genet 2020; 36:30-43. [PMID: 31753528 PMCID: PMC6925335 DOI: 10.1016/j.tig.2019.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/21/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022]
Abstract
Epigenetic mechanisms play essential roles in determining distinct cell fates during the development of multicellular organisms. Histone proteins represent crucial epigenetic components that help specify cell identities. Previous work has demonstrated that during the asymmetric cell division of Drosophila male germline stem cells (GSCs), histones H3 and H4 are asymmetrically inherited, such that pre-existing (old) histones are segregated towards the self-renewing GSC whereas newly synthesized (new) histones are enriched towards the differentiating daughter cell. In order to further understand the molecular mechanisms underlying this striking phenomenon, two key questions must be answered: when and how old and new histones are differentially incorporated by sister chromatids, and how epigenetically distinct sister chromatids are specifically recognized and segregated. Here, we discuss recent advances in our understanding of the molecular mechanisms and cellular bases underlying these fundamental and important biological processes responsible for generating two distinct cells through one cell division.
Collapse
Affiliation(s)
- Matthew Wooten
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rajesh Ranjan
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
6
|
Asymmetric Centromeres Differentially Coordinate with Mitotic Machinery to Ensure Biased Sister Chromatid Segregation in Germline Stem Cells. Cell Stem Cell 2019; 25:666-681.e5. [PMID: 31564548 DOI: 10.1016/j.stem.2019.08.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/25/2019] [Accepted: 08/19/2019] [Indexed: 12/29/2022]
Abstract
Many stem cells utilize asymmetric cell division (ACD) to produce a self-renewed stem cell and a differentiating daughter cell. How non-genic information could be inherited differentially to establish distinct cell fates is not well understood. Here, we report a series of spatiotemporally regulated asymmetric components, which ensure biased sister chromatid attachment and segregation during ACD of Drosophila male germline stem cells (GSCs). First, sister centromeres are differentially enriched with proteins involved in centromere specification and kinetochore function. Second, temporally asymmetric microtubule activities and polarized nuclear envelope breakdown allow for the preferential recognition and attachment of microtubules to asymmetric sister kinetochores and sister centromeres. Abolishment of either the asymmetric sister centromeres or the asymmetric microtubule activities results in randomized sister chromatid segregation. Together, these results provide the cellular basis for partitioning epigenetically distinct sister chromatids during stem cell ACDs, which opens new directions to study these mechanisms in other biological contexts.
Collapse
|
7
|
Welte MA. As the fat flies: The dynamic lipid droplets of Drosophila embryos. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1156-85. [PMID: 25882628 DOI: 10.1016/j.bbalip.2015.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/31/2015] [Accepted: 04/06/2015] [Indexed: 01/09/2023]
Abstract
Research into lipid droplets is rapidly expanding, and new cellular and organismal roles for these lipid-storage organelles are continually being discovered. The early Drosophila embryo is particularly well suited for addressing certain questions in lipid-droplet biology and combines technical advantages with unique biological phenomena. This review summarizes key features of this experimental system and the techniques available to study it, in order to make it accessible to researchers outside this field. It then describes the two topics most heavily studied in this system, lipid-droplet motility and protein sequestration on droplets, discusses what is known about the molecular players involved, points to open questions, and compares the results from Drosophila embryo studies to what it is known about lipid droplets in other systems.
Collapse
Affiliation(s)
- Michael A Welte
- Department of Biology University of Rochester, RC Box 270211, 317 Hutchison Hall, Rochester, NY 14627, USA.
| |
Collapse
|
8
|
Yamamoto A. Gathering up meiotic telomeres: a novel function of the microtubule-organizing center. Cell Mol Life Sci 2014; 71:2119-34. [PMID: 24413667 PMCID: PMC11113538 DOI: 10.1007/s00018-013-1548-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/12/2013] [Accepted: 12/19/2013] [Indexed: 11/26/2022]
Abstract
During meiosis, telomeres cluster and promote homologous chromosome pairing. Telomere clustering depends on conserved SUN and KASH domain nuclear membrane proteins, which form a complex called the linker of nucleoskeleton and cytoskeleton (LINC) and connect telomeres with the cytoskeleton. It has been thought that LINC-mediated cytoskeletal forces induce telomere clustering. However, how cytoskeletal forces induce telomere clustering is not fully understood. Recent study of fission yeast has shown that the LINC complex forms the microtubule-organizing center (MTOC) at the telomere, which has been designated as the "telocentrosome", and that microtubule motors gather telomeres via telocentrosome-nucleated microtubules. This MTOC-dependent telomere clustering might be conserved in other eukaryotes. Furthermore, the MTOC-dependent clustering mechanism appears to function in various other biological events. This review presents an overview of the current understanding of the mechanism of meiotic telomere clustering and discusses the universality of the MTOC-dependent clustering mechanism.
Collapse
Affiliation(s)
- Ayumu Yamamoto
- Department of Chemistry, Graduate School of Science, Shizuoka University, 836 Ohya, Suruga-ku, Sizuoka, 422-8529, Japan,
| |
Collapse
|
9
|
Asymmetric distribution of histones during Drosophila male germline stem cell asymmetric divisions. Chromosome Res 2014; 21:255-69. [PMID: 23681658 DOI: 10.1007/s10577-013-9356-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
It has long been known that epigenetic changes are inheritable. However, except for DNA methylation, little is known about the molecular mechanisms of epigenetic inheritance. Many types of stem cells undergo asymmetric cell divisions to generate self-renewed stem cells and daughter cells committed for differentiation. Still, whether and how stem cells retain their epigenetic memory remain questions to be elucidated. During the asymmetric division of Drosophila male germline stem cell (GSC), our recent studies revealed that the preexisting histone 3 (H3) are selectively segregated to the GSC, whereas newly synthesized H3 deposited during DNA replication are enriched in the differentiating daughter cell. We propose a two-step model to explain this asymmetric histone distribution. First, prior to mitosis, preexisting histones and newly synthesized histones are differentially distributed at two sets of sister chromatids. Next, during mitosis, the set of sister chromatids that mainly consist of preexisting histones are segregated to GSCs, while the other set of sister chromatids enriched with newly synthesized histones are partitioned to the daughter cell committed for differentiation. In this review, we apply current knowledge about epigenetic inheritance and asymmetric cell division to inform our discussion of potential molecular mechanisms and the cellular basis underlying this asymmetric histone distribution pattern. We will also discuss whether this phenomenon contributes to the maintenance of stem cell identity and resetting chromatin structure in the other daughter cell for differentiation.
Collapse
|