1
|
Gaynor ML, Kortessis N, Soltis DE, Soltis PS, Ponciano JM. Dynamics of Mixed-Ploidy Populations under Demographic and Environmental Stochasticities. Am Nat 2025; 205:413-434. [PMID: 40179426 DOI: 10.1086/734411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
AbstractThe population dynamics of autopolyploids-organisms with more than two genome copies of a single species-and their diploid progenitors have been extensively studied. The acquisition of multiple genome copies is heavily influenced by stochasticity, which strongly suggests the efficacy of a probabilistic approach to examine the long-term dynamics of a population with multiple cytotypes. Yet our current understanding of the dynamics of autopolyploid populations has not incorporated stochastic population dynamics and coexistence theory. To investigate the factors contributing to the probability and stability of coexisting cytotypes, we designed a new population dynamics model that incorporates demographic and environmental stochasticities to simulate the formation, establishment, and persistence of diploids, triploids, and autotetraploids in the face of gene flow among cytotypes. We found that increased selfing rates and pronounced reproductive isolation promote coexistence of multiple cytotypes. In stressful environments and with strong competitive effects among cytotypes, these dynamics are more complex; our stochastic modeling approach reveals the resulting intricacies that give autotetraploids competitive advantage over their diploid progenitors. Our work is foundational for a better understanding of the dynamics of coexistence of multiple cytotypes.
Collapse
|
2
|
Han X, Li J, Li G, Zhang Z, Lian T, Zhang B, Luo T, Lv R, Cai X, Lin X, Xu C, Wu Y, Gong L, Wendel JF, Liu B. Rapid formation of stable autotetraploid rice from genome-doubled F1 hybrids of japonica-indica subspecies. NATURE PLANTS 2025; 11:743-760. [PMID: 40164786 PMCID: PMC12015120 DOI: 10.1038/s41477-025-01966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025]
Abstract
Theory predicts that in the absence of selection, a newly formed segmental allopolyploid will become 'autopolyploidized' if homoeologous exchanges (HEs) occur freely. Moreover, because selection against meiotic abnormalities is expected to be strong in the initial generations, we anticipate HEs to be uncommon in evolved segmental allopolyploids. Here we analysed the whole-genome composition of 202 phenotypically homogeneous and stable rice tetraploid recombinant inbred lines (TRILs) derived from Oryza sativa subsp. japonica subsp. indica hybridization/whole-genome doubling. We measured functional traits related to growth, development and reproductive fitness, and analysed meiotic chromosomal behaviour of the TRILs. We uncover factors that constrain the genomic composition of the TRILs, including asymmetric parental contribution and exclusive uniparental segment retention. Intriguingly, some TRILs that have high fertility and abiotic stress resilience co-occur with largely stabilized meiosis. Our findings comprise evidence supporting the evolutionary possibility of HE-catalysed 'allo-to-auto' polyploidy transitions in nature, with implications for creating new polyploid crops.
Collapse
Affiliation(s)
- Xu Han
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Jiahao Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Guo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Taotao Lian
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Bingqi Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Ting Luo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiaojing Cai
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiuyun Lin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Ying Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China.
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China.
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China.
| |
Collapse
|
3
|
Siriwardana CL. Plant Nuclear Factor Y (NF-Y) Transcription Factors: Evolving Insights into Biological Functions and Gene Expansion. Int J Mol Sci 2024; 26:38. [PMID: 39795894 PMCID: PMC11719662 DOI: 10.3390/ijms26010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Gene expansion is a common phenomenon in plant transcription factor families; however, the underlying molecular mechanisms remain elusive. Examples of gene expansion in transcription factors are found in all eukaryotes. One example is plant nuclear factor Y (NF-Y) transcription factors. NF-Y is ubiquitous to eukaryotes and comprises three independent protein families: NF-YA, NF-YB, and NF-YC. While animals and fungi mostly have one of each NF-Y subunit, NF-Y is greatly expanded in plants. For example, humans have one each of NF-YA, NF-YB, and NF-YC, while the model plant Arabidopsis has ten each of NF-YA, NF-YB, and NF-YC. Our understanding of the plant NF-Y, including its biological roles, molecular mechanisms, and gene expansion, has improved over the past few years. Here we will review its biological roles and focus on studies demonstrating that NF-Y can serve as a model for plant gene expansion. These studies show that NF-Y can be classified into ancestrally related subclasses. Further, the primary structure of each NF-Y contains a conserved core domain flanked by non-conserved N- and C-termini. The non-conserved N- and C-termini, under pressure for diversifying selection, may provide clues to this gene family's retention and functional diversification following gene duplication. In summary, this review demonstrates that NF-Y expansion has the potential to be used as a model to study the gene expansion and retention of transcription factor families.
Collapse
Affiliation(s)
- Chamindika L Siriwardana
- Department of Science and Mathematics, Texas A&M University-Central Texas, Killeen, TX 76549, USA
| |
Collapse
|
4
|
Emonet A, Awad M, Tikhomirov N, Vasilarou M, Pérez-Antón M, Gan X, Novikova PY, Hay A. Polyploid genome assembly of Cardamine chenopodiifolia. GIGABYTE 2024; 2024:gigabyte145. [PMID: 39748951 PMCID: PMC11693932 DOI: 10.46471/gigabyte.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Cardamine chenopodiifolia is an amphicarpic plant in the Brassicaceae family. Plants develop two fruit types, one above and another below ground. This rare trait is associated with octoploidy in C. chenopodiifolia. The absence of genomic data for C. chenopodiifolia currently limits our understanding of the development and evolution of amphicarpy. Here, we produced a chromosome-scale assembly of the C. chenopodiifolia genome using high-fidelity long read sequencing with the Pacific Biosciences platform. We assembled 32 chromosomes and two organelle genomes with a total length of 597.2 Mb and an N50 of 18.8 Mb. Genome completeness was estimated at 99.8%. We observed structural variation among homeologous chromosomes, suggesting that C. chenopodiifolia originated via allopolyploidy, and phased the octoploid genome into four sub-genomes using orthogroup trees. This fully phased, chromosome-level genome assembly is an important resource to help investigate amphicarpy in C. chenopodiifolia and the origin of trait novelties by allopolyploidy.
Collapse
Affiliation(s)
- Aurélia Emonet
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Mohamed Awad
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Nikita Tikhomirov
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Maria Vasilarou
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Miguel Pérez-Antón
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Xiangchao Gan
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, 210095, Nanjing, China
| | - Polina Yu. Novikova
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Angela Hay
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| |
Collapse
|
5
|
Zhu Y, Wang X, He Y, Liu Y, Wang R, Liu Y, Wang S. Chromosome doubling increases PECTIN METHYLESTERASE 2 expression, biomass, and osmotic stress tolerance in kiwifruit. PLANT PHYSIOLOGY 2024; 196:2841-2855. [PMID: 39250762 PMCID: PMC11637999 DOI: 10.1093/plphys/kiae475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024]
Abstract
Chromosome doubling-induced polyploidization is a popular tool for crop breeding. Polyploidy crops commonly have multiple advantages, including increased biomass and stress tolerance. However, little is known about the genes responsible for these advantages. We found kiwifruit (Actinidia chinensis cv. Hongyang) PECTIN METHYLESTERASE 2 (AcPME2) is substantially upregulated in artificially created tetraploid plants that show increased biomass and enhanced tolerance to osmotic stress. Overexpression (OE) of AcPME2 led to increased biomass and enhanced stress tolerance in Arabidopsis (Arabidopsis thaliana), tomato (Solanum lycopersicum), and kiwifruit. Upon short-term osmotic stress treatment, AcPME2-OE plants showed higher levels of demethylesterified pectins and more Ca2+ accumulation in the cell wall than Col-0 plants, which led to increased cell wall stiffness. The stress-induced plasmolysis assays indicated that AcPME2 dynamically mediated the cell wall stiffness in response to osmotic stress, which is dependent on Ca2+ accumulation. Transcriptomic analysis discovered that dozens of stress-responsive genes were significantly upregulated in the AcPME2-OE plants under osmotic stress. Besides, AcPME2-mediated cell wall reinforcement prevented cell wall collapse and deformation under osmotic stress. Our results revealed a single gene contributes to two advantages of polyploidization (increased biomass and osmotic stress tolerance) and that AcPME2 dynamically regulates cell wall stiffness in response to osmotic stress.
Collapse
Affiliation(s)
- Yanyan Zhu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xinlei Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yan He
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yajing Liu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Runze Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yongsheng Liu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Songhu Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
6
|
Lv Z, Addo Nyarko C, Ramtekey V, Behn H, Mason AS. Defining autopolyploidy: Cytology, genetics, and taxonomy. AMERICAN JOURNAL OF BOTANY 2024; 111:e16292. [PMID: 38439575 DOI: 10.1002/ajb2.16292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 03/06/2024]
Abstract
Autopolyploidy is taxonomically defined as the presence of more than two copies of each genome within an organism or species, where the genomes present must all originate within the same species. Alternatively, "genetic" or "cytological" autopolyploidy is defined by polysomic inheritance: random pairing and segregation of the four (or more) homologous chromosomes present, with no preferential pairing partners. In this review, we provide an overview of methods used to categorize species as taxonomic and cytological autopolyploids, including both modern and obsolete cytological methods, marker-segregation-based and genomics methods. Subsequently, we also investigated how frequently polysomic inheritance has been reliably documented in autopolyploids. Pure or predominantly polysomic inheritance was documented in 39 of 43 putative autopolyploid species where inheritance data was available (91%) and in seven of eight synthetic autopolyploids, with several cases of more mixed inheritance within species. We found no clear cases of autopolyploids with disomic inheritance, which was likely a function of our search methodology. Interestingly, we found seven species with purely polysomic inheritance and another five species with partial or predominant polysomic inheritance that appear to be taxonomic allopolyploids. Our results suggest that observations of polysomic inheritance can lead to relabeling of taxonomically allopolyploid species as autopolyploid and highlight the need for further cytogenetic and genomic investigation into polyploid origins and inheritance types.
Collapse
Affiliation(s)
- Zhenling Lv
- Plant Breeding Department, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Charles Addo Nyarko
- Plant Breeding Department, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Vinita Ramtekey
- Plant Breeding Department, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
- ICAR-Indian Institute of Seed Science, 275103, Mau, India
| | - Helen Behn
- Plant Breeding Department, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Annaliese S Mason
- Plant Breeding Department, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| |
Collapse
|
7
|
Ruiz-Bayón A, Cara-Rodríguez C, Sarmiento-Mañús R, Muñoz-Viana R, Lozano FM, Ponce MR, Micol JL. Roles of the Arabidopsis KEULE Gene in Postembryonic Development. Int J Mol Sci 2024; 25:6667. [PMID: 38928373 PMCID: PMC11204279 DOI: 10.3390/ijms25126667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Cytokinesis in plant cells begins with the fusion of vesicles that transport cell wall materials to the center of the cell division plane, where the cell plate forms and expands radially until it fuses with the parental cell wall. Vesicle fusion is facilitated by trans-SNARE complexes, with assistance from Sec1/Munc18 (SM) proteins. The SNARE protein KNOLLE and the SM protein KEULE are required for membrane fusion at the cell plate. Due to the crucial function of KEULE, all Arabidopsis (Arabidopsis thaliana) keule mutants identified to date are seedling lethal. Here, we identified the Arabidopsis serrata4-1 (sea4-1) and sea4-2 mutants, which carry recessive, hypomorphic alleles of KEULE. Homozygous sea4-1 and sea4-2 plants are viable and fertile but have smaller rosettes and fewer leaves at bolting than the wild type. Their leaves are serrated, small, and wavy, with a complex venation pattern. The mutant leaves also develop necrotic patches and undergo premature senescence. RNA-seq revealed transcriptome changes likely leading to reduced cell wall integrity and an increase in the unfolded protein response. These findings shed light on the roles of KEULE in postembryonic development, particularly in the patterning of rosette leaves and leaf margins.
Collapse
Affiliation(s)
| | | | | | | | | | | | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain; (A.R.-B.); (C.C.-R.); (R.S.-M.); (R.M.-V.); (F.M.L.); (M.R.P.)
| |
Collapse
|
8
|
Akiyama R, Goto T, Tameshige T, Sugisaka J, Kuroki K, Sun J, Akita J, Hatakeyama M, Kudoh H, Kenta T, Tonouchi A, Shimahara Y, Sese J, Kutsuna N, Shimizu-Inatsugi R, Shimizu KK. Seasonal pigment fluctuation in diploid and polyploid Arabidopsis revealed by machine learning-based phenotyping method PlantServation. Nat Commun 2023; 14:5792. [PMID: 37737204 PMCID: PMC10517152 DOI: 10.1038/s41467-023-41260-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 08/29/2023] [Indexed: 09/23/2023] Open
Abstract
Long-term field monitoring of leaf pigment content is informative for understanding plant responses to environments distinct from regulated chambers but is impractical by conventional destructive measurements. We developed PlantServation, a method incorporating robust image-acquisition hardware and deep learning-based software that extracts leaf color by detecting plant individuals automatically. As a case study, we applied PlantServation to examine environmental and genotypic effects on the pigment anthocyanin content estimated from leaf color. We processed >4 million images of small individuals of four Arabidopsis species in the field, where the plant shape, color, and background vary over months. Past radiation, coldness, and precipitation significantly affected the anthocyanin content. The synthetic allopolyploid A. kamchatica recapitulated the fluctuations of natural polyploids by integrating diploid responses. The data support a long-standing hypothesis stating that allopolyploids can inherit and combine the traits of progenitors. PlantServation facilitates the study of plant responses to complex environments termed "in natura".
Collapse
Affiliation(s)
- Reiko Akiyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Takao Goto
- Research and Development Division, LPIXEL Inc., Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Toshiaki Tameshige
- Kihara Institute for Biological Research (KIBR), Yokohama City University, 641-12 Maioka, Totsuka-ward, Yokohama, 244-0813, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-Cho, Ikoma, Nara, 630-0192, Japan
| | - Jiro Sugisaka
- Kihara Institute for Biological Research (KIBR), Yokohama City University, 641-12 Maioka, Totsuka-ward, Yokohama, 244-0813, Japan
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, 520-2113, Japan
| | - Ken Kuroki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Jianqiang Sun
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki, 305-8517, Japan
| | - Junichi Akita
- Department of Electric and Computer Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Functional Genomics Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, 520-2113, Japan
| | - Tanaka Kenta
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, 1278-294 Sugadaira-kogen, Ueda, 386-2204, Japan
| | - Aya Tonouchi
- Research and Development Division, LPIXEL Inc., Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Yuki Shimahara
- Research and Development Division, LPIXEL Inc., Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Jun Sese
- Artificial Intelligence Research Center, AIST, 2-3-26 Aomi, Koto-ku, Tokyo, 135-0064, Japan
- Humanome Lab, Inc., L-HUB 3F, 1-4, Shumomiyabi-cho, Shinjuku, Tokyo, 162-0822, Japan
- AIST-Tokyo Tech RWBC-OIL, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Natsumaro Kutsuna
- Research and Development Division, LPIXEL Inc., Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
- Kihara Institute for Biological Research (KIBR), Yokohama City University, 641-12 Maioka, Totsuka-ward, Yokohama, 244-0813, Japan.
| |
Collapse
|
9
|
Yu RM, Zhang N, Zhang BW, Liang Y, Pang XX, Cao L, Chen YD, Zhang WP, Yang Y, Zhang DY, Pang EL, Bai WN. Genomic insights into biased allele loss and increased gene numbers after genome duplication in autotetraploid Cyclocarya paliurus. BMC Biol 2023; 21:168. [PMID: 37553642 PMCID: PMC10408227 DOI: 10.1186/s12915-023-01668-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Autopolyploidy is a valuable model for studying whole-genome duplication (WGD) without hybridization, yet little is known about the genomic structural and functional changes that occur in autopolyploids after WGD. Cyclocarya paliurus (Juglandaceae) is a natural diploid-autotetraploid species. We generated an allele-aware autotetraploid genome, a chimeric chromosome-level diploid genome, and whole-genome resequencing data for 106 autotetraploid individuals at an average depth of 60 × per individual, along with 12 diploid individuals at an average depth of 90 × per individual. RESULTS Autotetraploid C. paliurus had 64 chromosomes clustered into 16 homologous groups, and the majority of homologous chromosomes demonstrated similar chromosome length, gene numbers, and expression. The regions of synteny, structural variation and nonalignment to the diploid genome accounted for 81.3%, 8.8% and 9.9% of the autotetraploid genome, respectively. Our analyses identified 20,626 genes (69.18%) with four alleles and 9191 genes (30.82%) with one, two, or three alleles, suggesting post-polyploid allelic loss. Genes with allelic loss were found to occur more often in proximity to or within structural variations and exhibited a marked overlap with transposable elements. Additionally, such genes showed a reduced tendency to interact with other genes. We also found 102 genes with more than four copies in the autotetraploid genome, and their expression levels were significantly higher than their diploid counterparts. These genes were enriched in enzymes involved in stress response and plant defense, potentially contributing to the evolutionary success of autotetraploids. Our population genomic analyses suggested a single origin of autotetraploids and recent divergence (~ 0.57 Mya) from diploids, with minimal interploidy admixture. CONCLUSIONS Our results indicate the potential for genomic and functional reorganization, which may contribute to evolutionary success in autotetraploid C. paliurus.
Collapse
Affiliation(s)
- Rui-Min Yu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ning Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Bo-Wen Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yu Liang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xiao-Xu Pang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Lei Cao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yi-Dan Chen
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Wei-Ping Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yang Yang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Da-Yong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Er-Li Pang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Wei-Ning Bai
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
10
|
Siriwardana CL, Risinger JR, Carpenter EM, Holt BF. Analysis of gene duplication within the Arabidopsis NUCLEAR FACTOR Y, subunit B (NF-YB) protein family reveals domains under both purifying and diversifying selection. PLoS One 2023; 18:e0289332. [PMID: 37531316 PMCID: PMC10396019 DOI: 10.1371/journal.pone.0289332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023] Open
Abstract
Gene duplication is an evolutionary mechanism that provides new genetic material. Since gene duplication is a major driver for molecular evolution, examining the fate of duplicated genes is an area of active research. The fate of duplicated genes can include loss, subfunctionalization, and neofunctionalization. In this manuscript, we chose to experimentally study the fate of duplicated genes using the Arabidopsis NUCLEAR FACTOR Y (NF-Y) transcription factor family. NF-Y transcription factors are heterotrimeric complexes, composed of NF-YA, NF-YB, and NF-YC. NF-YA subunits are responsible for nucleotide-specific binding to a CCAAT cis-regulatory element. NF-YB and NF-YC subunits make less specific, but essential complex-stabilizing contacts with the DNA flanking the core CCAAT pentamer. While ubiquitous in eukaryotes, each NF-Y family has expanded by duplication in the plant lineage. For example, the model plant Arabidopsis contains 10 each of the NF-Y subunits. Here we examine the fate of duplicated NF-YB proteins in Arabidopsis, which are composed of central histone fold domains (HFD) and less conserved flanking regions (N- and C-termini). Specifically, the principal question we wished to address in this manuscript was to what extent can the 10 Arabidopsis NF-YB paralogs functionally substitute the genes NF-YB2 and NF-YB3 in the promotion of photoperiodic flowering? Our results demonstrate that the conserved histone fold domains (HFD) may be under pressure for purifying (negative) selection, while the non-conserved N- and C-termini may be under pressure for diversifying (positive) selection, which explained each paralog's ability to substitute. In conclusion, our data demonstrate that the N- and C-termini may have allowed the duplicated genes to undergo functional diversification, allowing the retention of the duplicated genes.
Collapse
Affiliation(s)
- Chamindika L Siriwardana
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Science and Mathematics, Texas A&M University-Central Texas, Killeen, Texas, United States of America
| | - Jan R Risinger
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- Myriad Genetics Corporation, Salt Lake City, Utah, United States of America
| | - Emily Mills Carpenter
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- Aquatic Biomonitoring, Austin, Texas, United States of America
| | - Ben F Holt
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- AgBiome, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
11
|
Bomblies K. Learning to tango with four (or more): the molecular basis of adaptation to polyploid meiosis. PLANT REPRODUCTION 2023; 36:107-124. [PMID: 36149479 PMCID: PMC9957869 DOI: 10.1007/s00497-022-00448-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/10/2022] [Indexed: 05/29/2023]
Abstract
Polyploidy, which arises from genome duplication, has occurred throughout the history of eukaryotes, though it is especially common in plants. The resulting increased size, heterozygosity, and complexity of the genome can be an evolutionary opportunity, facilitating diversification, adaptation and the evolution of functional novelty. On the other hand, when they first arise, polyploids face a number of challenges, one of the biggest being the meiotic pairing, recombination and segregation of the suddenly more than two copies of each chromosome, which can limit their fertility. Both for developing polyploidy as a crop improvement tool (which holds great promise due to the high and lasting multi-stress resilience of polyploids), as well as for our basic understanding of meiosis and plant evolution, we need to know both the specific nature of the challenges polyploids face, as well as how they can be overcome in evolution. In recent years there has been a dramatic uptick in our understanding of the molecular basis of polyploid adaptations to meiotic challenges, and that is the focus of this review.
Collapse
Affiliation(s)
- Kirsten Bomblies
- Plant Evolutionary Genetics, Institute of Plant Molecular Biology, Department of Biology, ETH Zürich, Zurich, Switzerland.
| |
Collapse
|
12
|
Islam MM, Deepo DM, Nasif SO, Siddique AB, Hassan O, Siddique AB, Paul NC. Cytogenetics and Consequences of Polyploidization on Different Biotic-Abiotic Stress Tolerance and the Potential Mechanisms Involved. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202684. [PMID: 36297708 PMCID: PMC9609754 DOI: 10.3390/plants11202684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 06/12/2023]
Abstract
The application of polyploidy in sustainable agriculture has already brought much appreciation among researchers. Polyploidy may occur naturally or can be induced in the laboratory using chemical or gaseous agents and results in complete chromosome nondisjunction. This comprehensive review described the potential of polyploidization on plants, especially its role in crop improvement for enhanced production and host-plant resistance development against pests and diseases. An in-depth investigation on techniques used in the induction of polyploidy, cytogenetic evaluation methods of different ploidy levels, application, and current research trends is also presented. Ongoing research has mainly aimed to bring the recurrence in polyploidy, which is usually detected by flow cytometry, chromosome counting, and cytogenetic techniques such as fluorescent in situ hybridization (FISH) and genomic in situ hybridization (GISH). Polyploidy can bring about positive consequences in the growth and yield attributes of crops, making them more tolerant to abiotic and biotic stresses. However, the unexpected change in chromosome set and lack of knowledge on the mechanism of stress alleviation is hindering the application of polyploidy on a large scale. Moreover, a lack of cost-benefit analysis and knowledge gaps on the socio-economic implication are predominant. Further research on polyploidy coupling with modern genomic technologies will help to bring real-world market prospects in the era of changing climate. This review on polyploidy provides a solid foundation to do next-generation research on crop improvement.
Collapse
Affiliation(s)
- Md Mazharul Islam
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Korea
- Research and Development, Horticultural Crop Breeding, Quality Feeds Limited, Dhaka 1230, Bangladesh
| | - Deen Mohammad Deepo
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Korea
| | - Saifullah Omar Nasif
- Global Centre for Environmental Remediation (GCER), College of Engineering Science and Environment, The University of Newcastle, Newcastle, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Newcastle, NSW 2308, Australia
| | - Abu Bakar Siddique
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90736 Umeå, Sweden
| | - Oliul Hassan
- Department of Ecology and Environmental System, College of Ecology and Environmental Sciences, Kyungpook National University, Sangju 37224, Korea
| | - Abu Bakar Siddique
- Department of Plant Biology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Narayan Chandra Paul
- Kumho Life Science Laboratory, Department of Integrative Food Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
13
|
Chromosome segregation failure and cytokinesis defect producing unreduced pollen in the diploid rubber tree (Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg.). J RUBBER RES 2022. [DOI: 10.1007/s42464-022-00176-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Nibau C, Gonzalo A, Evans A, Sweet‐Jones W, Phillips D, Lloyd A. Meiosis in allopolyploid Arabidopsis suecica. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1110-1122. [PMID: 35759495 PMCID: PMC9545853 DOI: 10.1111/tpj.15879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 06/01/2023]
Abstract
Polyploidy is a major force shaping eukaryote evolution but poses challenges for meiotic chromosome segregation. As a result, first-generation polyploids often suffer from more meiotic errors and lower fertility than established wild polyploid populations. How established polyploids adapt their meiotic behaviour to ensure genome stability and accurate chromosome segregation remains an active research question. We present here a cytological description of meiosis in the model allopolyploid species Arabidopsis suecica (2n = 4x = 26). In large part meiosis in A. suecica is diploid-like, with normal synaptic progression and no evidence of synaptic partner exchanges. Some abnormalities were seen at low frequency, including univalents at metaphase I, anaphase bridges and aneuploidy at metaphase II; however, we saw no evidence of crossover formation occurring between non-homologous chromosomes. The crossover number in A. suecica is similar to the combined number reported from its diploid parents Arabidopsis thaliana (2n = 2x = 10) and Arabidopsis arenosa (2n = 2x = 16), with an average of approximately 1.75 crossovers per chromosome pair. This contrasts with naturally evolved autotetraploid A. arenosa, where accurate chromosome segregation is achieved by restricting crossovers to approximately 1 per chromosome pair. Although an autotetraploid donor is hypothesized to have contributed the A. arenosa subgenome to A. suecica, A. suecica harbours diploid A. arenosa variants of key meiotic genes. These multiple lines of evidence suggest that meiosis in the recently evolved allopolyploid A. suecica is essentially diploid like, with meiotic adaptation following a very different trajectory to that described for autotetraploid A. arenosa.
Collapse
Affiliation(s)
- Candida Nibau
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityPenglaisAberystwythCeredigionSY23 3DAUK
| | - Adrián Gonzalo
- John Innes CentreColney LaneNorwichNR4 7UHUK
- Department of Biology, Institute of Molecular Plant BiologySwiss Federal Institute of Technology (ETH) ZürichZürich8092Switzerland
| | - Aled Evans
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityPenglaisAberystwythCeredigionSY23 3DAUK
| | - William Sweet‐Jones
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityPenglaisAberystwythCeredigionSY23 3DAUK
| | - Dylan Phillips
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityPenglaisAberystwythCeredigionSY23 3DAUK
| | - Andrew Lloyd
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityPenglaisAberystwythCeredigionSY23 3DAUK
| |
Collapse
|
15
|
Fernández P, Hidalgo O, Juan A, Leitch IJ, Leitch AR, Palazzesi L, Pegoraro L, Viruel J, Pellicer J. Genome Insights into Autopolyploid Evolution: A Case Study in Senecio doronicum (Asteraceae) from the Southern Alps. PLANTS 2022; 11:plants11091235. [PMID: 35567236 PMCID: PMC9099586 DOI: 10.3390/plants11091235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022]
Abstract
Polyploidy is a widespread phenomenon across angiosperms, and one of the main drivers of diversification. Whilst it frequently involves hybridisation, autopolyploidy is also an important feature of plant evolution. Minority cytotypes are frequently overlooked due to their lower frequency in populations, but the development of techniques such as flow cytometry, which enable the rapid screening of cytotype diversity across large numbers of individuals, is now providing a more comprehensive understanding of cytotype diversity within species. Senecio doronicum is a relatively common daisy found throughout European mountain grasslands from subalpine to almost nival elevations. We have carried out a population-level cytotype screening of 500 individuals from Tête Grosse (Alpes-de-Haute-Provence, France), confirming the coexistence of tetraploid (28.2%) and octoploid cytotypes (71.2%), but also uncovering a small number of hexaploid individuals (0.6%). The analysis of repetitive elements from short-read genome-skimming data combined with nuclear (ITS) and whole plastid DNA sequences support an autopolyploid origin of the polyploid S. doronicum individuals and provide molecular evidence regarding the sole contribution of tetraploids in the formation of hexaploid individuals. The evolutionary impact and resilience of the new cytotype have yet to be determined, although the coexistence of different cytotypes may indicate nascent speciation.
Collapse
Affiliation(s)
- Pol Fernández
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., Parc de Montjuïc, 08038 Barcelona, Spain;
- Correspondence: (P.F.); (J.P.); Tel.: +34-932890611 (P.F. & J.P.)
| | - Oriane Hidalgo
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., Parc de Montjuïc, 08038 Barcelona, Spain;
- Royal Botanic Gardens, Kew, Kew Green, Richmond TW9 3AE, UK; (I.J.L.); (J.V.)
| | - Ana Juan
- Departamento de Ciencias Ambientales y Recursos Naturales, Universidad de Alicante, 03080 Alicante, Spain;
| | - Ilia J. Leitch
- Royal Botanic Gardens, Kew, Kew Green, Richmond TW9 3AE, UK; (I.J.L.); (J.V.)
| | - Andrew R. Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK;
| | - Luis Palazzesi
- Museo Argentino de Ciencias Naturales, CONICET, División Paleobotánica, Buenos Aires C1405DJR, Argentina;
| | - Luca Pegoraro
- Biodiversity and Conservation Biology Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Bimensdorf, Switzerland;
| | - Juan Viruel
- Royal Botanic Gardens, Kew, Kew Green, Richmond TW9 3AE, UK; (I.J.L.); (J.V.)
| | - Jaume Pellicer
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., Parc de Montjuïc, 08038 Barcelona, Spain;
- Royal Botanic Gardens, Kew, Kew Green, Richmond TW9 3AE, UK; (I.J.L.); (J.V.)
- Correspondence: (P.F.); (J.P.); Tel.: +34-932890611 (P.F. & J.P.)
| |
Collapse
|
16
|
Ponsford JCB, Hubbard CJ, Harrison JG, Maignien L, Buerkle CA, Weinig C. Whole-Genome Duplication and Host Genotype Affect Rhizosphere Microbial Communities. mSystems 2022; 7:e0097321. [PMID: 35014873 PMCID: PMC8751390 DOI: 10.1128/msystems.00973-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/15/2021] [Indexed: 01/04/2023] Open
Abstract
The composition of microbial communities found in association with plants is influenced by host phenotype and genotype. However, the ways in which specific genetic architectures of host plants shape microbiomes are unknown. Genome duplication events are common in the evolutionary history of plants and influence many important plant traits, and thus, they may affect associated microbial communities. Using experimentally induced whole-genome duplication (WGD), we tested the effect of WGD on rhizosphere bacterial communities in Arabidopsis thaliana. We performed 16S rRNA amplicon sequencing to characterize differences between microbiomes associated with specific host genetic backgrounds (Columbia versus Landsberg) and ploidy levels (diploid versus tetraploid). We modeled relative abundances of bacterial taxa using a hierarchical Bayesian approach. We found that host genetic background and ploidy level affected rhizosphere community composition. We then tested to what extent microbiomes derived from a specific genetic background or ploidy level affected plant performance by inoculating sterile seedlings with microbial communities harvested from a prior generation. We found a negative effect of the tetraploid Columbia microbiome on growth of all four plant genetic backgrounds. These findings suggest an interplay between host genetic background and ploidy level and bacterial community assembly with potential ramifications for host fitness. Given the prevalence of ploidy-level variation in both wild and managed plant populations, the effects on microbiomes of this aspect of host genetic architecture could be a widespread driver of differences in plant microbiomes. IMPORTANCE Plants influence the composition of their associated microbial communities, yet the underlying host-associated genetic determinants are typically unknown. Genome duplication events are common in the evolutionary history of plants and affect many plant traits. Using Arabidopsis thaliana, we characterized how whole-genome duplication affected the composition of rhizosphere bacterial communities and how bacterial communities associated with two host plant genetic backgrounds and ploidy levels affected subsequent plant growth. We observed an interaction between ploidy level and genetic background that affected both bacterial community composition and function. This research reveals how genome duplication, a widespread genetic feature of both wild and crop plant species, influences bacterial assemblages and affects plant growth.
Collapse
Affiliation(s)
| | - Charley J. Hubbard
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Program in Ecology, University of Wyoming, Laramie, Wyoming, USA
| | | | - Lois Maignien
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, Massachusetts, USA
- Laboratory of Microbiology of Extreme Environments, UMR 6197, Institut Européen de la Mer, Université de Bretagne Occidentale, Plouzane, France
| | - C. Alex Buerkle
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Program in Ecology, University of Wyoming, Laramie, Wyoming, USA
| | - Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Program in Ecology, University of Wyoming, Laramie, Wyoming, USA
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
17
|
Arter M, Keeney S. Meiosis: Disentangling polyploid chromosomes with supercharged crossover interference. Curr Biol 2021; 31:R1442-R1444. [PMID: 34752773 DOI: 10.1016/j.cub.2021.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Meiosis depends on the cell's ability to match each chromosome to its homolog in a strictly pairwise fashion. A new study describes an elegant mechanism that tetraploid Arabidopsis arenosa plants evolved to faithfully connect and segregate pairs of homologous chromosomes.
Collapse
Affiliation(s)
- Meret Arter
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
18
|
Morgan C, White MA, Franklin FCH, Zickler D, Kleckner N, Bomblies K. Evolution of crossover interference enables stable autopolyploidy by ensuring pairwise partner connections in Arabidopsis arenosa. Curr Biol 2021; 31:4713-4726.e4. [PMID: 34480856 PMCID: PMC8585506 DOI: 10.1016/j.cub.2021.08.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/23/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022]
Abstract
Polyploidy is a major driver of evolutionary change. Autopolyploids, which arise by within-species whole-genome duplication, carry multiple nearly identical copies of each chromosome. This presents an existential challenge to sexual reproduction. Meiotic chromosome segregation requires formation of DNA crossovers (COs) between two homologous chromosomes. How can this outcome be achieved when more than two essentially equivalent partners are available? We addressed this question by comparing diploid, neo-autotetraploid, and established autotetraploid Arabidopsis arenosa using new approaches for analysis of meiotic CO patterns in polyploids. We discover that crossover interference, the classical process responsible for patterning of COs in diploid meiosis, is defective in the neo-autotetraploid but robust in the established autotetraploid. The presented findings suggest that, initially, diploid-like interference fails to act effectively on multivalent pairing and accompanying pre-CO recombination interactions and that stable autopolyploid meiosis can emerge by evolution of a “supercharged” interference process, which can now act effectively on such configurations. Thus, the basic interference mechanism responsible for simplifying CO patterns along chromosomes in diploid meiosis has evolved the capability to also simplify CO patterns among chromosomes in autopolyploids, thereby promoting bivalent formation. We further show that evolution of stable autotetraploidy preadapts meiosis to higher ploidy, which in turn has interesting mechanistic and evolutionary implications. In a neo-autotetraploid, aberrant crossover interference confers aberrant meiosis In a stable autotetraploid, regular crossover interference confers regular meiosis Crossover and synaptic patterns point to evolution of “supercharged” interference Accordingly, evolution of stable autotetraploidy preadapts to higher ploidies
Collapse
Affiliation(s)
- Chris Morgan
- John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - Martin A White
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | | | - Denise Zickler
- University Paris-Saclay, Commissariat à l'Energie Atomique at aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| | | |
Collapse
|
19
|
Bohutínská M, Handrick V, Yant L, Schmickl R, Kolář F, Bomblies K, Paajanen P. De Novo Mutation and Rapid Protein (Co-)evolution during Meiotic Adaptation in Arabidopsis arenosa. Mol Biol Evol 2021; 38:1980-1994. [PMID: 33502506 PMCID: PMC8097281 DOI: 10.1093/molbev/msab001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A sudden shift in environment or cellular context necessitates rapid adaptation. A dramatic example is genome duplication, which leads to polyploidy. In such situations, the waiting time for new mutations might be prohibitive; theoretical and empirical studies suggest that rapid adaptation will largely rely on standing variation already present in source populations. Here, we investigate the evolution of meiosis proteins in Arabidopsis arenosa, some of which were previously implicated in adaptation to polyploidy, and in a diploid, habitat. A striking and unexplained feature of prior results was the large number of amino acid changes in multiple interacting proteins, especially in the relatively young tetraploid. Here, we investigate whether selection on meiosis genes is found in other lineages, how the polyploid may have accumulated so many differences, and whether derived variants were selected from standing variation. We use a range-wide sample of 145 resequenced genomes of diploid and tetraploid A. arenosa, with new genome assemblies. We confirmed signals of positive selection in the polyploid and diploid lineages they were previously reported in and find additional meiosis genes with evidence of selection. We show that the polyploid lineage stands out both qualitatively and quantitatively. Compared with diploids, meiosis proteins in the polyploid have more amino acid changes and a higher proportion affecting more strongly conserved sites. We find evidence that in tetraploids, positive selection may have commonly acted on de novo mutations. Several tests provide hints that coevolution, and in some cases, multinucleotide mutations, might contribute to rapid accumulation of changes in meiotic proteins.
Collapse
Affiliation(s)
- Magdalena Bohutínská
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
| | - Vinzenz Handrick
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Levi Yant
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic.,Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Kirsten Bomblies
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom.,Plant Evolutionary Genetics, Department of Biology, Institute of Molecular Plant Biology, ETH Zürich, Zurich, Switzerland
| | - Pirita Paajanen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
20
|
Weitz AP, Dukic M, Zeitler L, Bomblies K. Male meiotic recombination rate varies with seasonal temperature fluctuations in wild populations of autotetraploid Arabidopsis arenosa. Mol Ecol 2021; 30:4630-4641. [PMID: 34273213 PMCID: PMC9292783 DOI: 10.1111/mec.16084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/16/2022]
Abstract
Meiosis, the cell division by which eukaryotes produce haploid gametes, is essential for fertility in sexually reproducing species. This process is sensitive to temperature, and can fail outright at temperature extremes. At less extreme values, temperature affects the genome‐wide rate of homologous recombination, which has important implications for evolution and population genetics. Numerous studies in laboratory conditions have shown that recombination rate plasticity is common, perhaps nearly universal, among eukaryotes. These studies have also shown that variation in the length or timing of stresses can strongly affect results, raising the important question whether these findings translate to more variable field conditions. Moreover, lower or higher recombination rate could cause certain kinds of meiotic aberrations, especially in polyploid species—raising the additional question whether temperature fluctuations in field conditions cause problems. Here, we tested whether (1) recombination rate varies across a season in the wild in two natural populations of autotetraploid Arabidopsis arenosa, (2) whether recombination rate correlates with temperature fluctuations in nature, and (3) whether natural temperature fluctuations might cause meiotic aberrations. We found that plants in two genetically distinct populations showed a similar plastic response with recombination rate increases correlated with both high and low temperatures. In addition, increased recombination rate correlated with increased multivalent formation, especially at lower temperature, hinting that polyploids in particular may suffer meiotic problems in conditions they encounter in nature. Our results show that studies of recombination rate plasticity done in laboratory settings inform our understanding of what happens in nature.
Collapse
Affiliation(s)
- Andrew P Weitz
- Department of Biology, Institute of Molecular Plant Biology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland.,Department of Environmental Sciences, Western Washington University, Bellingham, Washington, USA
| | - Marinela Dukic
- Department of Biology, Institute of Molecular Plant Biology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Leo Zeitler
- Department of Biology, Institute of Molecular Plant Biology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland.,Department of Biology, Ecological Genomics, Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Kirsten Bomblies
- Department of Biology, Institute of Molecular Plant Biology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| |
Collapse
|
21
|
Li Z, McKibben MTW, Finch GS, Blischak PD, Sutherland BL, Barker MS. Patterns and Processes of Diploidization in Land Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:387-410. [PMID: 33684297 DOI: 10.1146/annurev-arplant-050718-100344] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Most land plants are now known to be ancient polyploids that have rediploidized. Diploidization involves many changes in genome organization that ultimately restore bivalent chromosome pairing and disomic inheritance, and resolve dosage and other issues caused by genome duplication. In this review, we discuss the nature of polyploidy and its impact on chromosome pairing behavior. We also provide an overview of two major and largely independent processes of diploidization: cytological diploidization and genic diploidization/fractionation. Finally, we compare variation in gene fractionation across land plants and highlight the differences in diploidization between plants and animals. Altogether, we demonstrate recent advancements in our understanding of variation in the patterns and processes of diploidization in land plants and provide a road map for future research to unlock the mysteries of diploidization and eukaryotic genome evolution.
Collapse
Affiliation(s)
- Zheng Li
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Michael T W McKibben
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Geoffrey S Finch
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Paul D Blischak
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Brittany L Sutherland
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| |
Collapse
|
22
|
Baduel P, Quadrana L. Jumpstarting evolution: How transposition can facilitate adaptation to rapid environmental changes. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102043. [PMID: 33932785 DOI: 10.1016/j.pbi.2021.102043] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/10/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Because of their ability to replicate across genomes, transposable elements (TEs) represent major generators of large-effect mutations. As a result, chromatin-based mechanisms have evolved to control the mutational potential of TEs at multiple levels, from the epigenetic silencing of TE sequences, through the modulation of their integration space, up to the alleviation of the impact of new insertions. Although most TE insertions are highly deleterious, some can provide key adaptive variation. Together with their remarkable sensitivity to the environment and precise integration preferences, the unique characteristics of TEs place them as potent genomic engines of adaptive innovation. Herein, we review recent works exploring the regulation and impact of transposition in nature and discuss their implications for the evolutionary response of species to drastic environmental changes.
Collapse
Affiliation(s)
- Pierre Baduel
- Institut de Biologie de l'École Normale Supérieure, ENS, 46 rue d'Ulm, 75005, Paris, France
| | - Leandro Quadrana
- Institut de Biologie de l'École Normale Supérieure, ENS, 46 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
23
|
Bohutínská M, Alston M, Monnahan P, Mandáková T, Bray S, Paajanen P, Kolář F, Yant L. Novelty and convergence in adaptation to whole genome duplication. Mol Biol Evol 2021; 38:3910-3924. [PMID: 33783509 PMCID: PMC8382928 DOI: 10.1093/molbev/msab096] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/08/2021] [Accepted: 03/29/2021] [Indexed: 12/26/2022] Open
Abstract
Whole genome duplication (WGD) can promote adaptation but is disruptive to conserved processes, especially meiosis. Studies in Arabidopsis arenosa revealed a coordinated evolutionary response to WGD involving interacting proteins controlling meiotic crossovers, which are minimised in an autotetraploid (within-species polyploid) to avoid mis-segregation. Here we test whether this surprising flexibility of a conserved essential process, meiosis, is recapitulated in an independent WGD system, Cardamine amara, 17 million years diverged from A. arenosa. We assess meiotic stability and perform population-based scans for positive selection, contrasting the genomic response to WGD in C. amara with that of A. arenosa. We found in C. amara the strongest selection signals at genes with predicted functions thought important to adaptation to WGD: meiosis, chromosome remodelling, cell cycle, and ion transport. However, genomic responses to WGD in the two species differ: minimal ortholog-level convergence emerged, with none of the meiosis genes found in A. arenosa exhibiting strong signal in C. amara. This is consistent with our observations of lower meiotic stability and occasional clonal spreading in diploid C. amara, suggesting that nascent C. amara autotetraploid lineages were preadapted by their diploid lifestyle to survive while enduring reduced meiotic fidelity. However, in contrast to a lack of ortholog convergence, we see process-level and network convergence in DNA management, chromosome organisation, stress signalling, and ion homeostasis processes. This gives the first insight into the salient adaptations required to meet the challenges of a WGD state and shows that autopolyploids can utilize multiple evolutionary trajectories to adapt to WGD.
Collapse
Affiliation(s)
- Magdalena Bohutínská
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
| | - Mark Alston
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Patrick Monnahan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Terezie Mandáková
- CEITEC - Central European Institute of Technology, and Faculty of Science, Masaryk University, Kamenice, Czech Republic
| | - Sian Bray
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, UK.,School of Biosciences University of Nottingham, Nottingham, UK
| | - Pirita Paajanen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic.,Natural History Museum, University of Oslo, Oslo, Norway
| | - Levi Yant
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, UK.,School of Life Sciences University of Nottingham, Nottingham, UK
| |
Collapse
|
24
|
Gómez-Martínez H, Gil-Muñoz F, Bermejo A, Zuriaga E, Badenes ML. Insights of Phenolic Pathway in Fruits: Transcriptional and Metabolic Profiling in Apricot ( Prunus armeniaca). Int J Mol Sci 2021; 22:ijms22073411. [PMID: 33810284 PMCID: PMC8037730 DOI: 10.3390/ijms22073411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
There is an increasing interest in polyphenols, plant secondary metabolites, in terms of fruit quality and diet, mainly due to their antioxidant effect. However, the identification of key gene enzymes and their roles in the phenylpropanoid pathway in temperate fruits species remains uncertain. Apricot (Prunus armeniaca) is a Mediterranean fruit with high diversity and fruit quality properties, being an excellent source of polyphenol compounds. For a better understanding of the phenolic pathway in these fruits, we selected a set of accessions with genetic-based differences in phenolic compounds accumulation. HPLC analysis of the main phenolic compounds and transcriptional analysis of the genes involved in key steps of the polyphenol network were carried out. Phenylalanine ammonia-lyase (PAL), dihydroflavonol-4-reductase (DFR) and flavonol synthase (FLS) were the key enzymes selected. Orthologous of the genes involved in transcription of these enzymes were identified in apricot: ParPAL1, ParPAL2, ParDFR, ParFLS1 and ParFLS2. Transcriptional data of the genes involved in those critical points and their relationships with the polyphenol compounds were analyzed. Higher expression of ParDFR and ParPAL2 has been associated with red-blushed accessions. Differences in expression between paralogues could be related to the presence of a BOXCOREDCPAL cis-acting element related to the genes involved in anthocyanin synthesis ParFLS2, ParDFR and ParPAL2.
Collapse
|
25
|
Van de Peer Y, Ashman TL, Soltis PS, Soltis DE. Polyploidy: an evolutionary and ecological force in stressful times. THE PLANT CELL 2021; 33:11-26. [PMID: 33751096 PMCID: PMC8136868 DOI: 10.1093/plcell/koaa015] [Citation(s) in RCA: 319] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/07/2020] [Indexed: 05/10/2023]
Abstract
Polyploidy has been hypothesized to be both an evolutionary dead-end and a source for evolutionary innovation and species diversification. Although polyploid organisms, especially plants, abound, the apparent nonrandom long-term establishment of genome duplications suggests a link with environmental conditions. Whole-genome duplications seem to correlate with periods of extinction or global change, while polyploids often thrive in harsh or disturbed environments. Evidence is also accumulating that biotic interactions, for instance, with pathogens or mutualists, affect polyploids differently than nonpolyploids. Here, we review recent findings and insights on the effect of both abiotic and biotic stress on polyploids versus nonpolyploids and propose that stress response in general is an important and even determining factor in the establishment and success of polyploidy.
Collapse
Affiliation(s)
- Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB - UGent Center for Plant Systems Biology, B-9052 Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611
- Department of Biology, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
26
|
Burns R, Mandáková T, Gunis J, Soto-Jiménez LM, Liu C, Lysak MA, Novikova PY, Nordborg M. Gradual evolution of allopolyploidy in Arabidopsis suecica. Nat Ecol Evol 2021; 5:1367-1381. [PMID: 34413506 PMCID: PMC8484011 DOI: 10.1038/s41559-021-01525-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 07/01/2021] [Indexed: 02/06/2023]
Abstract
Most diploid organisms have polyploid ancestors. The evolutionary process of polyploidization is poorly understood but has frequently been conjectured to involve some form of 'genome shock', such as genome reorganization and subgenome expression dominance. Here we study polyploidization in Arabidopsis suecica, a post-glacial allopolyploid species formed via hybridization of Arabidopsis thaliana and Arabidopsis arenosa. We generated a chromosome-level genome assembly of A. suecica and complemented it with polymorphism and transcriptome data from all species. Despite a divergence around 6 million years ago (Ma) between the ancestral species and differences in their genome composition, we see no evidence of a genome shock: the A. suecica genome is colinear with the ancestral genomes; there is no subgenome dominance in expression; and transposon dynamics appear stable. However, we find changes suggesting gradual adaptation to polyploidy. In particular, the A. thaliana subgenome shows upregulation of meiosis-related genes, possibly to prevent aneuploidy and undesirable homeologous exchanges that are observed in synthetic A. suecica, and the A. arenosa subgenome shows upregulation of cyto-nuclear processes, possibly in response to the new cytoplasmic environment of A. suecica, with plastids maternally inherited from A. thaliana. These changes are not seen in synthetic hybrids, and thus are likely to represent subsequent evolution.
Collapse
Affiliation(s)
- Robin Burns
- grid.24194.3a0000 0000 9669 8503Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Terezie Mandáková
- grid.10267.320000 0001 2194 0956CEITEC - Central European Institute of Technology, and Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Joanna Gunis
- grid.24194.3a0000 0000 9669 8503Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Luz Mayela Soto-Jiménez
- grid.24194.3a0000 0000 9669 8503Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Chang Liu
- grid.9464.f0000 0001 2290 1502Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Martin A. Lysak
- grid.10267.320000 0001 2194 0956CEITEC - Central European Institute of Technology, and Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Polina Yu. Novikova
- grid.511033.5VIB-UGent Center for Plant Systems Biology, Ghent, Belgium ,grid.419498.90000 0001 0660 6765Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Magnus Nordborg
- grid.24194.3a0000 0000 9669 8503Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
27
|
Bomblies K. When everything changes at once: finding a new normal after genome duplication. Proc Biol Sci 2020; 287:20202154. [PMID: 33203329 PMCID: PMC7739491 DOI: 10.1098/rspb.2020.2154] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Whole-genome duplication (WGD), which leads to polyploidy, is implicated in adaptation and speciation. But what are the immediate effects of WGD and how do newly polyploid lineages adapt to them? With many studies of new and evolved polyploids now available, along with studies of genes under selection in polyploids, we are in an increasingly good position to understand how polyploidy generates novelty. Here, I will review consistent effects of WGD on the biology of plants, such as an increase in cell size, increased stress tolerance and more. I will discuss how a change in something as fundamental as cell size can challenge the function of some cell types in particular. I will also discuss what we have learned about the short- to medium-term evolutionary response to WGD. It is now clear that some of this evolutionary response may 'lock in' traits that happen to be beneficial, while in other cases, it might be more of an 'emergency response' to work around physiological changes that are either deleterious, or cannot be undone in the polyploid context. Yet, other traits may return rapidly to a diploid-like state. Polyploids may, by re-jigging many inter-related processes, find a new, conditionally adaptive, normal.
Collapse
Affiliation(s)
- Kirsten Bomblies
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
28
|
Meeus S, Šemberová K, De Storme N, Geelen D, Vallejo-Marín M. Effect of Whole-Genome Duplication on the Evolutionary Rescue of Sterile Hybrid Monkeyflowers. PLANT COMMUNICATIONS 2020; 1:100093. [PMID: 33367262 PMCID: PMC7747968 DOI: 10.1016/j.xplc.2020.100093] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/08/2020] [Accepted: 07/01/2020] [Indexed: 05/15/2023]
Abstract
Hybridization is a creative evolutionary force, increasing genomic diversity and facilitating adaptation and even speciation. Hybrids often face significant challenges to establishment, including reduced fertility that arises from genomic incompatibilities between their parents. Whole-genome duplication in hybrids (allopolyploidy) can restore fertility, cause immediate phenotypic changes, and generate reproductive isolation. Yet the survival of polyploid lineages is uncertain, and few studies have compared the performance of recently formed allopolyploids and their parents under field conditions. Here, we use natural and synthetically produced hybrid and polyploid monkeyflowers (Mimulus spp.) to study how polyploidy contributes to the fertility, reproductive isolation, phenotype, and performance of hybrids in the field. We find that polyploidization restores fertility and that allopolyploids are reproductively isolated from their parents. The phenotype of allopolyploids displays the classic gigas effect of whole-genome duplication, in which plants have larger organs and are slower to flower. Field experiments indicate that survival of synthetic hybrids before and after polyploidization is intermediate between that of the parents, whereas natural hybrids have higher survival than all other taxa. We conclude that hybridization and polyploidy can act as sources of genomic novelty, but adaptive evolution is key in mediating the establishment of young allopolyploid lineages.
Collapse
Affiliation(s)
- Sofie Meeus
- Department of Biological and Environmental Sciences. University of Stirling, Stirling FK9 4LA, UK
| | - Kristýna Šemberová
- Department of Botany, Charles University, 128 43 Prague 2, Czech Republic
| | - Nico De Storme
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
| | - Danny Geelen
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
| | - Mario Vallejo-Marín
- Department of Biological and Environmental Sciences. University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
29
|
Hallin J, Cisneros AF, Hénault M, Fijarczyk A, Dandage R, Bautista C, Landry CR. Similarities in biological processes can be used to bridge ecology and molecular biology. Evol Appl 2020; 13:1335-1350. [PMID: 32684962 PMCID: PMC7359829 DOI: 10.1111/eva.12961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/17/2020] [Accepted: 03/16/2020] [Indexed: 01/10/2023] Open
Abstract
Much of the research in biology aims to understand the origin of diversity. Naturally, ecological diversity was the first object of study, but we now have the necessary tools to probe diversity at molecular scales. The inherent differences in how we study diversity at different scales caused the disciplines of biology to be organized around these levels, from molecular biology to ecology. Here, we illustrate that there are key properties of each scale that emerge from the interactions of simpler components and that these properties are often shared across different levels of organization. This means that ideas from one level of organization can be an inspiration for novel hypotheses to study phenomena at another level. We illustrate this concept with examples of events at the molecular level that have analogs at the organismal or ecological level and vice versa. Through these examples, we illustrate that biological processes at different organization levels are governed by general rules. The study of the same phenomena at different scales could enrich our work through a multidisciplinary approach, which should be a staple in the training of future scientists.
Collapse
Affiliation(s)
- Johan Hallin
- Département de biochimie de microbiologie et de bio-informatique Faculté des sciences et de génie Université Laval Québec Canada.,Département de biologie Faculté des sciences et de génie Université Laval Québec Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec Canada.,PROTEO Le réseau québécois de recherche sur la fonction la structure et l'ingénierie des protéines Université Laval Québec Canada.,Centre de Recherche en Données Massives (CRDM) Université Laval Québec Canada
| | - Angel F Cisneros
- Département de biochimie de microbiologie et de bio-informatique Faculté des sciences et de génie Université Laval Québec Canada.,Département de biologie Faculté des sciences et de génie Université Laval Québec Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec Canada.,PROTEO Le réseau québécois de recherche sur la fonction la structure et l'ingénierie des protéines Université Laval Québec Canada.,Centre de Recherche en Données Massives (CRDM) Université Laval Québec Canada
| | - Mathieu Hénault
- Département de biochimie de microbiologie et de bio-informatique Faculté des sciences et de génie Université Laval Québec Canada.,Département de biologie Faculté des sciences et de génie Université Laval Québec Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec Canada.,PROTEO Le réseau québécois de recherche sur la fonction la structure et l'ingénierie des protéines Université Laval Québec Canada.,Centre de Recherche en Données Massives (CRDM) Université Laval Québec Canada
| | - Anna Fijarczyk
- Département de biochimie de microbiologie et de bio-informatique Faculté des sciences et de génie Université Laval Québec Canada.,Département de biologie Faculté des sciences et de génie Université Laval Québec Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec Canada.,PROTEO Le réseau québécois de recherche sur la fonction la structure et l'ingénierie des protéines Université Laval Québec Canada.,Centre de Recherche en Données Massives (CRDM) Université Laval Québec Canada
| | - Rohan Dandage
- Département de biochimie de microbiologie et de bio-informatique Faculté des sciences et de génie Université Laval Québec Canada.,Département de biologie Faculté des sciences et de génie Université Laval Québec Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec Canada.,PROTEO Le réseau québécois de recherche sur la fonction la structure et l'ingénierie des protéines Université Laval Québec Canada.,Centre de Recherche en Données Massives (CRDM) Université Laval Québec Canada
| | - Carla Bautista
- Département de biochimie de microbiologie et de bio-informatique Faculté des sciences et de génie Université Laval Québec Canada.,Département de biologie Faculté des sciences et de génie Université Laval Québec Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec Canada.,PROTEO Le réseau québécois de recherche sur la fonction la structure et l'ingénierie des protéines Université Laval Québec Canada.,Centre de Recherche en Données Massives (CRDM) Université Laval Québec Canada
| | - Christian R Landry
- Département de biochimie de microbiologie et de bio-informatique Faculté des sciences et de génie Université Laval Québec Canada.,Département de biologie Faculté des sciences et de génie Université Laval Québec Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec Canada.,PROTEO Le réseau québécois de recherche sur la fonction la structure et l'ingénierie des protéines Université Laval Québec Canada.,Centre de Recherche en Données Massives (CRDM) Université Laval Québec Canada
| |
Collapse
|
30
|
Derived alleles of two axis proteins affect meiotic traits in autotetraploid Arabidopsis arenosa. Proc Natl Acad Sci U S A 2020; 117:8980-8988. [PMID: 32273390 PMCID: PMC7183234 DOI: 10.1073/pnas.1919459117] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genome duplication is an important factor in the evolution of eukaryotic lineages, but it poses challenges for the regular segregation of chromosomes in meiosis and thus fertility. To survive, polyploid lineages must evolve to overcome initial challenges that accompany doubling the chromosome complement. Understanding how evolution can solve the challenge of segregating multiple homologous chromosomes promises fundamental insights into the mechanisms of genome maintenance and could open polyploidy as a crop improvement tool. We previously identified candidate genes for meiotic stabilization of Arabidopsis arenosa, which has natural diploid and tetraploid variants. Here we test the role that derived alleles of two genes under selection in tetraploid A. arenosa might have in meiotic stabilization in tetraploids. Polyploidy, which results from whole genome duplication (WGD), has shaped the long-term evolution of eukaryotic genomes in all kingdoms. Polyploidy is also implicated in adaptation, domestication, and speciation. Yet when WGD newly occurs, the resulting neopolyploids face numerous challenges. A particularly pernicious problem is the segregation of multiple chromosome copies in meiosis. Evolution can overcome this challenge, likely through modification of chromosome pairing and recombination to prevent deleterious multivalent chromosome associations, but the molecular basis of this remains mysterious. We study mechanisms underlying evolutionary stabilization of polyploid meiosis using Arabidopsis arenosa, a relative of A. thaliana with natural diploid and meiotically stable autotetraploid populations. Here we investigate the effects of ancestral (diploid) versus derived (tetraploid) alleles of two genes, ASY1 and ASY3, that were among several meiosis genes under selection in the tetraploid lineage. These genes encode interacting proteins critical for formation of meiotic chromosome axes, long linear multiprotein structures that form along sister chromatids in meiosis and are essential for recombination, chromosome segregation, and fertility. We show that derived alleles of both genes are associated with changes in meiosis, including reduced formation of multichromosome associations, reduced axis length, and a tendency to more rod-shaped bivalents in metaphase I. Thus, we conclude that ASY1 and ASY3 are components of a larger multigenic solution to polyploid meiosis in which individual genes have subtle effects. Our results are relevant for understanding polyploid evolution and more generally for understanding how meiotic traits can evolve when faced with challenges.
Collapse
|
31
|
Li X, Shahid MQ, Wen M, Chen S, Yu H, Jiao Y, Lu Z, Li Y, Liu X. Global identification and analysis revealed differentially expressed lncRNAs associated with meiosis and low fertility in autotetraploid rice. BMC PLANT BIOLOGY 2020; 20:82. [PMID: 32075588 PMCID: PMC7032005 DOI: 10.1186/s12870-020-2290-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/13/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Autotetraploid rice is a useful germplasm for polyploid rice breeding. Our previous research showed that non-coding RNAs might be associated with low fertility in autotetraploid rice. However, little information is available on long non-coding RNAs (lncRNAs) involved in the low fertility of autotetraploid rice. In the present study, RNA-seq was employed to detect the differentially expressed meiosis-related lncRNAs in autotetraploid rice, and gene overexpression and knock out experiments were used to validate the potential function of candidate lncRNA. RESULTS A total of 444 differentially expressed lncRNAs (DEL) were detected during anther and ovary meiosis in autotetraploid rice. Of these, 328 DEL were associated with the transposable elements, which displayed low expression levels during meiosis in autotetraploid rice. We used rapid amplification of cDNA ends (RACE) assay to validate 10 DEL and found that the lncRNAs were not assembly artifacts, and six of them were conserved in tetraploid rice. Moreover, 237 and 20 lncRNAs were associated with pollen mother cell (PMC) and embryo sac mother cell (EMC) meiosis in autotetraploid rice, respectively. The differential expressions of some meiosis-related targets and its DEL regulator, including MEL1 regulated by TCONS_00068868, LOC_Os12g41350 (meiotic asynaptic mutant 1) by TCONS_00057811 in PMC, and LOC_Os12g39420 by TCONS_00144592 in EMC, were confirmed by qRT-PCR. TCONS_00057811, TCONS_00055980 and TCONS_00130461 showed anther specific expression patterns and were found to be highly expressed during meiosis. CRISPR/Cas9 editing of lncRNA57811 displayed similar morphology compared to wild type. The overexpression of lncRNA57811 resulted in low pollen fertility (29.70%) and seed setting (33%) in rice. CONCLUSION The differential expression levels of lncRNAs, associated with transposable elements and meiosis-regulated targets, might be endogenous noncoding regulators of pollen/embryo sac development that cause low fertility in autotetraploid rice. The results enhance our understanding about rice lncRNAs, and facilitate functional research in autotetraploid rice.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Minsi Wen
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Shuling Chen
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Hang Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Yamin Jiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Zijun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Yajing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
32
|
Carlson KD, Bhogale S, Anderson D, Zaragoza-Mendoza A, Madlung A. Subfunctionalization of phytochrome B1/B2 leads to differential auxin and photosynthetic responses. PLANT DIRECT 2020; 4:e00205. [PMID: 32128473 PMCID: PMC7047017 DOI: 10.1002/pld3.205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/26/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Gene duplication and polyploidization are genetic mechanisms that instantly add genetic material to an organism's genome. Subsequent modification of the duplicated material leads to the evolution of neofunctionalization (new genetic functions), subfunctionalization (differential retention of genetic functions), redundancy, or a decay of duplicated genes to pseudogenes. Phytochromes are light receptors that play a large role in plant development. They are encoded by a small gene family that in tomato is comprised of five members: PHYA, PHYB1, PHYB2, PHYE, and PHYF. The most recent gene duplication within this family was in the ancestral PHYB gene. Using transcriptome profiling, co-expression network analysis, and physiological and molecular experimentation, we show that tomato SlPHYB1 and SlPHYB2 exhibit both common and non-redundant functions. Specifically, PHYB1 appears to be the major integrator of light and auxin responses, such as gravitropism and phototropism, while PHYB1 and PHYB2 regulate aspects of photosynthesis antagonistically to each other, suggesting that the genes have subfunctionalized since their duplication.
Collapse
Affiliation(s)
- Keisha D Carlson
- Department of Biology University of Puget Sound Tacoma Washington
| | - Sneha Bhogale
- Department of Biology University of Puget Sound Tacoma Washington
| | - Drew Anderson
- Department of Biology University of Puget Sound Tacoma Washington
| | | | - Andreas Madlung
- Department of Biology University of Puget Sound Tacoma Washington
| |
Collapse
|
33
|
Chen P, Chen J, Sun M, Yan H, Feng G, Wu B, Zhang X, Wang X, Huang L. Comparative transcriptome study of switchgrass ( Panicum virgatum L.) homologous autopolyploid and its parental amphidiploid responding to consistent drought stress. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:170. [PMID: 33072185 PMCID: PMC7559793 DOI: 10.1186/s13068-020-01810-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 10/06/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Newly formed polyploids may experience short-term adaptative changes in their genome that may enhance the resistance of plants to stress. Considering the increasingly serious effects of drought on biofuel plants, whole genome duplication (WGD) may be an efficient way to proceed with drought resistant breeding. However, the molecular mechanism of drought response before/after WGD remains largely unclear. RESULT We found that autoploid switchgrass (Panicum virgatum L.) 8X Alamo had higher drought tolerance than its parent amphidiploid 4X Alamo using physiological tests. RNA and microRNA sequencing at different time points during drought were then conducted on 8X Alamo and 4X Alamo switchgrass. The specific differentially expressed transcripts (DETs) that related to drought stress (DS) in 8X Alamo were enriched in ribonucleoside and ribonucleotide binding, while the drought-related DETs in 4X Alamo were enriched in structural molecule activity. Ploidy-related DETs were primarily associated with signal transduction mechanisms. Weighted gene co-expression network analysis (WGCNA) detected three significant DS-related modules, and their DETs were primarily enriched in biosynthesis process and photosynthesis. A total of 26 differentially expressed microRNAs (DEmiRs) were detected, and among them, sbi-microRNA 399b was only expressed in 8X Alamo. The targets of microRNAs that were responded to polyploidization and drought stress all contained cytochrome P450 and superoxide dismutase genes. CONCLUSIONS This study explored the drought response of 8X and 4X Alamo switchgrass on both physiological and transcriptional levels, and provided experimental and sequencing data basis for a short-term adaptability study and drought-resistant biofuel plant breeding.
Collapse
Affiliation(s)
- Peilin Chen
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
- Institute for Biology, Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Jing Chen
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Min Sun
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Haidong Yan
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
- Department of Horticulture, Virginia Tech, Blacksburg, VA 24061 USA
| | - Guangyan Feng
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Bingchao Wu
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xinquan Zhang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xiaoshan Wang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| | - Linkai Huang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
34
|
Marburger S, Monnahan P, Seear PJ, Martin SH, Koch J, Paajanen P, Bohutínská M, Higgins JD, Schmickl R, Yant L. Interspecific introgression mediates adaptation to whole genome duplication. Nat Commun 2019; 10:5218. [PMID: 31740675 PMCID: PMC6861236 DOI: 10.1038/s41467-019-13159-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/24/2019] [Indexed: 01/19/2023] Open
Abstract
Adaptive gene flow is a consequential phenomenon across all kingdoms. Although recognition is increasing, there is no study showing that bidirectional gene flow mediates adaptation at loci that manage core processes. We previously discovered concerted molecular changes among interacting members of the meiotic machinery controlling crossover number upon adaptation to whole-genome duplication (WGD) in Arabidopsis arenosa. Here we conduct a population genomic study to test the hypothesis that adaptation to WGD has been mediated by adaptive gene flow between A. arenosa and A. lyrata. We find that A. lyrata underwent WGD more recently than A. arenosa, suggesting that pre-adapted alleles have rescued nascent A. lyrata, but we also detect gene flow in the opposite direction at functionally interacting loci under the most extreme levels of selection. These data indicate that bidirectional gene flow allowed for survival after WGD, and that the merger of these species is greater than the sum of their parts. Whole genome duplication (WGD) presents new challenges to the establishment of optimal allelic combinations and to the meiotic machinery. Here, the authors show that adaptive gene flow from Arabidopsis arenosa could rescue the nascent A. lyrata from extinction following WGD.
Collapse
Affiliation(s)
- Sarah Marburger
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Patrick Monnahan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Paul J Seear
- Department of Genetics and Genome Biology, University of Leicester, Adrian Building, University Road, Leicester, LE1 7RH, UK
| | - Simon H Martin
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Jordan Koch
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Pirita Paajanen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Magdalena Bohutínská
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic.,The Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Adrian Building, University Road, Leicester, LE1 7RH, UK
| | - Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic. .,The Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic.
| | - Levi Yant
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK. .,Future Food Beacon of Excellence and the School of Life Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
35
|
Thomson GJ, Hernon C, Austriaco N, Shapiro RS, Belenky P, Bennett RJ. Metabolism-induced oxidative stress and DNA damage selectively trigger genome instability in polyploid fungal cells. EMBO J 2019; 38:e101597. [PMID: 31448850 PMCID: PMC6769381 DOI: 10.15252/embj.2019101597] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/30/2019] [Accepted: 08/01/2019] [Indexed: 01/04/2023] Open
Abstract
Understanding how cellular activities impact genome stability is critical to multiple biological processes including tumorigenesis and reproductive biology. The fungal pathogen Candida albicans displays striking genome dynamics during its parasexual cycle as tetraploid cells, but not diploid cells, exhibit genome instability and reduce their ploidy when grown on a glucose-rich "pre-sporulation" medium. Here, we reveal that C. albicans tetraploid cells are metabolically hyperactive on this medium with higher rates of fermentation and oxidative respiration relative to diploid cells. This heightened metabolism results in elevated levels of reactive oxygen species (ROS), activation of the ROS-responsive transcription factor Cap1, and the formation of DNA double-strand breaks. Genetic or chemical suppression of ROS levels suppresses each of these phenotypes and also protects against genome instability. These studies reveal how endogenous metabolic processes can generate sufficient ROS to trigger genome instability in polyploid C. albicans cells. We also discuss potential parallels with metabolism-induced instability in cancer cells and speculate that ROS-induced DNA damage could have facilitated ploidy cycling prior to a conventional meiosis in eukaryotes.
Collapse
Affiliation(s)
- Gregory J Thomson
- Molecular Microbiology and Immunology DepartmentBrown UniversityProvidenceRIUSA
| | - Claire Hernon
- Molecular Microbiology and Immunology DepartmentBrown UniversityProvidenceRIUSA
| | | | - Rebecca S Shapiro
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - Peter Belenky
- Molecular Microbiology and Immunology DepartmentBrown UniversityProvidenceRIUSA
| | - Richard J Bennett
- Molecular Microbiology and Immunology DepartmentBrown UniversityProvidenceRIUSA
| |
Collapse
|
36
|
Zhang H, Zheng R, Wang Y, Zhang Y, Hong P, Fang Y, Li G, Fang Y. The effects of Arabidopsis genome duplication on the chromatin organization and transcriptional regulation. Nucleic Acids Res 2019; 47:7857-7869. [PMID: 31184697 PMCID: PMC6736098 DOI: 10.1093/nar/gkz511] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/26/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022] Open
Abstract
Autopolyploidy is widespread in higher plants and important for agricultural yield and quality. However, the effects of genome duplication on the chromatin organization and transcriptional regulation are largely unknown in plants. Using High-throughput Chromosome Conformation Capture (Hi-C), we showed that autotetraploid Arabidopsis presented more inter-chromosomal interactions and fewer short-range chromatin interactions compared with its diploid progenitor. In addition, genome duplication contributed to the switching of some loose and compact structure domains with altered H3K4me3 and H3K27me3 histone modification status. 539 genes were identified with altered transcriptions and chromatin interactions in autotetraploid Arabidopsis. Especially, we found that genome duplication changed chromatin looping and H3K27me3 histone modification in Flowering Locus C. We propose that genome doubling modulates the transcription genome-wide by changed chromatin interactions and at the specific locus by altered chromatin loops and histone modifications.
Collapse
Affiliation(s)
- Hui Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ruiqin Zheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunlong Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ping Hong
- National Key Laboratory of Crop Genetic Improvement, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaping Fang
- National Key Laboratory of Crop Genetic Improvement, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuda Fang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
37
|
Záveská E, Maylandt C, Paun O, Bertel C, Frajman B, The Steppe Consortium, Schönswetter P. Multiple auto- and allopolyploidisations marked the Pleistocene history of the widespread Eurasian steppe plant Astragalus onobrychis (Fabaceae). Mol Phylogenet Evol 2019; 139:106572. [PMID: 31351183 DOI: 10.1016/j.ympev.2019.106572] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 12/26/2022]
Abstract
The Eurasian steppes occupy a significant portion of the worldwide land surface and their biota have been affected by specific past range dynamics driven by ice ages-related climatic fluctuations. The dynamic alterations in conditions during the Pleistocene often triggered reticulate evolution and whole genome duplication events. Employing genomic, genetic and cytogenetic tools as well as morphometry we investigate the intricate evolution of Astragalus onobrychis, a widespread Eurasian steppe plant with diploid, tetraploid and octoploid cytotypes. To analyse the heteroploid RADseq dataset we employ both genotype-based and genotype-free methods that result in highly consistent results, and complement our inference with information from the plastid ycf1 region. We uncover a complex and reticulate evolutionary history, including at least one auto-tetraploidization event and two allo-octoploidization events; one of them involved also genetic contributions from other species, most likely A. goktschaicus. The present genetic structure points to the existence of four main clades within A. onobrychis, which only partly correspond to different ploidies. Time-calibrated diffusion models suggest that diversification within A. onobrychis was associated with ice age-related climatic fluctuations during the last million years. We finally argue for the usefulness of uniparentally inherited plastid markers, even in the genomic era, especially when investigating heteroploid systems.
Collapse
Affiliation(s)
- Eliška Záveská
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Clemens Maylandt
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Clara Bertel
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Božo Frajman
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - The Steppe Consortium
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria; Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria; Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria; Department of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria; Real Jardín Botánico, CSIC, Plaza de Murillo 2, 28014 Madrid, Spain; Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; Institute for Alpine Environment, Eurac Research, Drususallee 1/Viale Druso 1, 39100 Bozen/Bolzano, Italy
| | - Peter Schönswetter
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria.
| |
Collapse
|
38
|
Pervasive population genomic consequences of genome duplication in Arabidopsis arenosa. Nat Ecol Evol 2019; 3:457-468. [DOI: 10.1038/s41559-019-0807-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022]
|
39
|
Zhang H, Ali A, Hou F, Wu T, Guo D, Zeng X, Wang F, Zhao H, Chen X, Xu P, Wu X. Effects of ploidy variation on promoter DNA methylation and gene expression in rice (Oryza sativa L.). BMC PLANT BIOLOGY 2018; 18:314. [PMID: 30497392 PMCID: PMC6267922 DOI: 10.1186/s12870-018-1553-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Polyploidy, or whole-genome duplication (WGD) promotes genetic diversification in plants. However, whether WGD is accompanied by epigenetic regulation especially DNA methylation remains yet elusive. Methylation of different region in genomic DNA play discrete role in gene regulation and developmental processes in plants. RESULTS In our study, we used an apomictic rice line (SARII-628) that produces twin seedlings of different ploidy for methylated DNA immunoprecipitation sequencing (MeDIP-seq). We compared the level of methylation and mRNA expression in three different (CG, CHG, and CHH) sequence contexts of promoter region among haploid (1X), diploid (2X), and triploid (3X) seedling. We used MeDIP-Seq analysis of 14 genes to investigate whole genome DNA methylation and found that relative level of DNA methylation across different ploidy was in following order e.g. diploid > triploid > haploid. GO functional classification of differentially methylated genes into 9 comparisons group of promoter, intergenic and intragenic region discovered, these genes were mostly enriched for cellular component, molecular function, and biological process. By the comparison of methylome data, digital gene expression (DGE), mRNA expression profile, and Q-PCR findings LOC_ Os07g31450 and LOC_ Os01g59320 were analyzed for BS-Seq (Bisulphite sequencing). CONCLUSIONS We found that (1) The level of the promoter DNA methylation is negatively correlated with gene expression within each ploidy level. (2) Among all ploidy levels, CG sequence context had highest methylation frequency, and demonstrated that the high CG methylation did reduce gene expression change suggesting that DNA methylation exert repressive function and ensure genome stability during WGD. (3) Alteration in ploidy (from diploid to haploid, or diploid to triploid) reveals supreme changes in methylation frequency of CHH sequence context. Our finding will contribute an understanding towards lower stability of CHH sequence context and educate the effect of promoter region methylation during change in ploidy state in rice.
Collapse
Affiliation(s)
- Hongyu Zhang
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Asif Ali
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Feixue Hou
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Tingkai Wu
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Daiming Guo
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Xiufeng Zeng
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Fangfang Wang
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Huixia Zhao
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Xiaoqiong Chen
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Peizhou Xu
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Xianjun Wu
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| |
Collapse
|
40
|
Jones DM, Wells R, Pullen N, Trick M, Irwin JA, Morris RJ. Spatio-temporal expression dynamics differ between homologues of flowering time genes in the allopolyploid Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:103-118. [PMID: 29989238 PMCID: PMC6175450 DOI: 10.1111/tpj.14020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/18/2018] [Accepted: 06/19/2018] [Indexed: 05/20/2023]
Abstract
Polyploidy is a recurrent feature of eukaryotic evolution and has been linked to increases in complexity, adaptive radiation and speciation. Within angiosperms such events have occurred repeatedly in many plant lineages. Here we investigate the retention and spatio-temporal expression dynamics of duplicated genes predicted to regulate the floral transition in Brassica napus (oilseed rape, OSR). We show that flowering time genes are preferentially retained relative to other genes in the OSR genome. Using a transcriptome time series in two tissues (leaf and shoot apex) across development we show that 67% of these retained flowering time genes are expressed. Furthermore, between 64% (leaf) and 74% (shoot apex) of the retained gene homologues show diverged expression patterns relative to each other across development, suggesting neo- or subfunctionalization. A case study of homologues of the shoot meristem identity gene TFL1 reveals differences in cis-regulatory elements that could explain this divergence. Such differences in the expression dynamics of duplicated genes highlight the challenges involved in translating gene regulatory networks from diploid model systems to more complex polyploid crop species.
Collapse
Affiliation(s)
- D. Marc Jones
- Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
- Computational and Systems BiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Rachel Wells
- Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Nick Pullen
- Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Martin Trick
- Computational and Systems BiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Judith A. Irwin
- Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Richard J. Morris
- Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
- Computational and Systems BiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| |
Collapse
|
41
|
Paape T, Briskine RV, Halstead-Nussloch G, Lischer HEL, Shimizu-Inatsugi R, Hatakeyama M, Tanaka K, Nishiyama T, Sabirov R, Sese J, Shimizu KK. Patterns of polymorphism and selection in the subgenomes of the allopolyploid Arabidopsis kamchatica. Nat Commun 2018; 9:3909. [PMID: 30254374 PMCID: PMC6156220 DOI: 10.1038/s41467-018-06108-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/10/2018] [Indexed: 12/30/2022] Open
Abstract
Genome duplication is widespread in wild and crop plants. However, little is known about genome-wide selection in polyploids due to the complexity of duplicated genomes. In polyploids, the patterns of purifying selection and adaptive substitutions may be affected by masking owing to duplicated genes or homeologs as well as effective population size. Here, we resequence 25 accessions of the allotetraploid Arabidopsis kamchatica, which is derived from the diploid species A. halleri and A. lyrata. We observe a reduction in purifying selection compared with the parental species. Interestingly, proportions of adaptive non-synonymous substitutions are significantly positive in contrast to most plant species. A recurrent pattern observed in both frequency and divergence–diversity neutrality tests is that the genome-wide distributions of both subgenomes are similar, but the correlation between homeologous pairs is low. This may increase the opportunity of different evolutionary trajectories such as in the HMA4 gene involved in heavy metal hyperaccumulation. Despite the prevalence of genome duplication in plants, little is known about the evolutionary patterns of entire subgenomes. Here the authors resequence allopolyploid Arabidopsis kamchatica genome to estimate diversity, linkage disequilibrium and strengths of both positive and purifying selection.
Collapse
Affiliation(s)
- Timothy Paape
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland. .,Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland.
| | - Roman V Briskine
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Department of Environmental Systems Science, ETH Zurich, CH-8092, Zurich, Switzerland.,Functional Genomics Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Gwyneth Halstead-Nussloch
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Heidi E L Lischer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, 1015, Switzerland
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, 1015, Switzerland.,Functional Genomics Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Kenta Tanaka
- Sugadaira Montane Research Center, University of Tsukuba, Nagano, Ueda, 386-2204, Japan
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-0934, Japan
| | - Renat Sabirov
- Institute of Marine Geology and Geophysics, Far East Branch, Russian Academy of Sciences, Nauki street, 1-B, Yuzhno-Sakhalinsk, 693022, Russian Federation
| | - Jun Sese
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan.,AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory, Tokyo, 152-8550, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland. .,Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland. .,Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Yokohama, 244-0813, Japan.
| |
Collapse
|
42
|
Baduel P, Bray S, Vallejo-Marin M, Kolář F, Yant L. The “Polyploid Hop”: Shifting Challenges and Opportunities Over the Evolutionary Lifespan of Genome Duplications. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00117] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
Nomaguchi T, Maeda Y, Yoshino T, Asahi T, Tirichine L, Bowler C, Tanaka T. Homoeolog expression bias in allopolyploid oleaginous marine diatom Fistulifera solaris. BMC Genomics 2018; 19:330. [PMID: 29728068 PMCID: PMC5935921 DOI: 10.1186/s12864-018-4691-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/17/2018] [Indexed: 11/27/2022] Open
Abstract
Background Allopolyploidy is a genomic structure wherein two or more sets of chromosomes derived from divergent parental species coexist within an organism. It is a prevalent genomic configuration in plants, as an important source of genetic variation, and also frequently confers environmental adaptability and increased crop productivity. We previously reported the oleaginous marine diatom Fistulifera solaris JPCC DA0580 to be a promising host for biofuel production and that its genome is allopolyploid, which had never previously been reported in eukaryotic microalgae. However, the study of allopolyploidy in F. solaris was hindered by the difficulty in classifying the homoeologous genes based on their progenitor origins, owing to the shortage of diatom genomic references. Results In this study, the allopolyploid genome of F. solaris was tentatively classified into two pseudo-parental subgenomes using sequence analysis based on GC content and codon frequency in each homoeologous gene pair. This approach clearly separated the genome into two distinct fractions, subgenome Fso_h and Fso_l, which also showed the potency of codon usage analysis to differentiate the allopolyploid subgenome. Subsequent homoeolog expression bias analysis revealed that, although both subgenomes appear to contribute to global transcription, there were subgenomic preferences in approximately 61% of homoeologous gene pairs, and the majority of these genes showed continuous bias towards a specific subgenome during lipid accumulation. Additional promoter analysis indicated the possibility of promoter motifs involved in biased transcription of homoeologous genes. Among these subgenomic preferences, genes involved in lipid metabolic pathways showed interesting patterns in that biosynthetic and degradative pathways showed opposite subgenomic preferences, suggesting the possibility that the oleaginous characteristics of F. solaris derived from one of its progenitors. Conclusions We report the detailed genomic structure and expression patterns in the allopolyploid eukaryotic microalga F. solaris. The allele-specific patterns reported may contribute to the oleaginous characteristics of F. solaris and also suggest the robust oleaginous characteristics of one of its progenitors. Our data reveal novel aspects of allopolyploidy in a diatom that is not only important for evolutionary studies but may also be advantageous for biofuel production in microalgae. Electronic supplementary material The online version of this article (10.1186/s12864-018-4691-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tatsuhiro Nomaguchi
- Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Yoshiaki Maeda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Toru Asahi
- Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Leila Tirichine
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, F-75005, Paris, France
| | - Chris Bowler
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, F-75005, Paris, France
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
44
|
Meirmans PG, Liu S, van Tienderen PH. The Analysis of Polyploid Genetic Data. J Hered 2018; 109:283-296. [DOI: 10.1093/jhered/esy006] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/20/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Patrick G Meirmans
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Shenglin Liu
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Peter H van Tienderen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
45
|
Banerjee S, Feyertag F, Alvarez-Ponce D. Intrinsic protein disorder reduces small-scale gene duplicability. DNA Res 2017; 24:435-444. [PMID: 28430886 PMCID: PMC5737077 DOI: 10.1093/dnares/dsx015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/28/2017] [Indexed: 01/23/2023] Open
Abstract
Whereas the rate of gene duplication is relatively high, only certain duplications survive the filter of natural selection and can contribute to genome evolution. However, the reasons why certain genes can be retained after duplication whereas others cannot remain largely unknown. Many proteins contain intrinsically disordered regions (IDRs), whose structures fluctuate between alternative conformational states. Due to their high flexibility, IDRs often enable protein–protein interactions and are the target of post-translational modifications. Intrinsically disordered proteins (IDPs) have characteristics that might either stimulate or hamper the retention of their encoding genes after duplication. On the one hand, IDRs may enable functional diversification, thus promoting duplicate retention. On the other hand, increased IDP availability is expected to result in deleterious unspecific interactions. Here, we interrogate the proteomes of human, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Arabidopsis thaliana and Escherichia coli, in order to ascertain the impact of protein intrinsic disorder on gene duplicability. We show that, in general, proteins encoded by duplicated genes tend to be less disordered than those encoded by singletons. The only exception is proteins encoded by ohnologs, which tend to be more disordered than those encoded by singletons or genes resulting from small-scale duplications. Our results indicate that duplication of genes encoding IDPs outside the context of whole-genome duplication (WGD) is often deleterious, but that IDRs facilitate retention of duplicates in the context of WGD. We discuss the potential evolutionary implications of our results.
Collapse
Affiliation(s)
- Sanghita Banerjee
- Department of Biology, University of Nevada, Reno, NV 89557, USA.,Machine Intelligence Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Felix Feyertag
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | | |
Collapse
|
46
|
Abstract
Polyploidy, or the duplication of entire genomes, has been observed in prokaryotic and eukaryotic organisms, and in somatic and germ cells. The consequences of polyploidization are complex and variable, and they differ greatly between systems (clonal or non-clonal) and species, but the process has often been considered to be an evolutionary 'dead end'. Here, we review the accumulating evidence that correlates polyploidization with environmental change or stress, and that has led to an increased recognition of its short-term adaptive potential. In addition, we discuss how, once polyploidy has been established, the unique retention profile of duplicated genes following whole-genome duplication might explain key longer-term evolutionary transitions and a general increase in biological complexity.
Collapse
|
47
|
Yant L, Bomblies K. Genomic studies of adaptive evolution in outcrossing Arabidopsis species. CURRENT OPINION IN PLANT BIOLOGY 2017; 36:9-14. [PMID: 27988391 DOI: 10.1016/j.pbi.2016.11.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Large-scale population genomic approaches have very recently been fruitfully applied to the Arabidopsis relatives Arabidopsis halleri, A. lyrata and especially A. arenosa. In contrast to A. thaliana, these species are obligately outcrossing and thus the footprints of natural selection are more straightforward to detect. Furthermore, both theoretical and empirical studies indicate that outcrossers are better able to evolve in response to selection pressure. As a result, recent work in these species serves as a paradigm of population genomic studies of adaptation both to environmental as well as intracellular challenges.
Collapse
Affiliation(s)
- Levi Yant
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| | - Kirsten Bomblies
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|
48
|
Nikolov LA, Tsiantis M. Using mustard genomes to explore the genetic basis of evolutionary change. CURRENT OPINION IN PLANT BIOLOGY 2017; 36:119-128. [PMID: 28285128 DOI: 10.1016/j.pbi.2017.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
Recent advances in sequencing technologies and gene manipulation tools have driven mustard species into the spotlight of comparative research and have offered powerful insight how phenotypic space is explored during evolution. Evidence emerged for genome-wide signal of transcription factors and gene duplication contributing to trait divergence, e.g., PLETHORA5/7 in leaf complexity. Trait divergence is often manifested in differential expression due to cis-regulatory divergence, as in KNOX genes and REDUCED COMPLEXITY, and can be coupled with protein divergence. Fruit shape in Capsella rubella results from anisotropic growth during three distinct phases. Brassicaceae exhibit novel fruit dispersal strategy, explosive pod shatter, where the rapid movement depends on slow build-up of tension and its rapid release facilitated by asymmetric cell wall thickenings.
Collapse
Affiliation(s)
- Lachezar A Nikolov
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany.
| |
Collapse
|
49
|
Paape T, Hatakeyama M, Shimizu-Inatsugi R, Cereghetti T, Onda Y, Kenta T, Sese J, Shimizu KK. Conserved but Attenuated Parental Gene Expression in Allopolyploids: Constitutive Zinc Hyperaccumulation in the Allotetraploid Arabidopsis kamchatica. Mol Biol Evol 2016; 33:2781-2800. [PMID: 27413047 PMCID: PMC5062318 DOI: 10.1093/molbev/msw141] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Allopolyploidization combines parental genomes and often confers broader species distribution. However, little is known about parentally transmitted gene expression underlying quantitative traits following allopolyploidization because of the complexity of polyploid genomes. The allopolyploid species Arabidopsis kamchatica is a natural hybrid of the zinc hyperaccumulator Arabidopsis halleri and of the nonaccumulator Arabidopsis lyrata We found that A. kamchatica retained the ability to hyperaccumulate zinc from A. halleri and grows in soils with both low and high metal content. Hyperaccumulation of zinc by A. kamchatica was reduced to about half of A. halleri, but is 10-fold greater than A. lyrata Homeologs derived from A. halleri had significantly higher levels of expression of genes such as HEAVY METAL ATPASE4 (HMA4), METAL TRANSPORTER PROTEIN1 and other metal ion transporters than those derived from A. lyrata, which suggests cis-regulatory differences. A. kamchatica has on average about half the expression of these genes compared with A. halleri due to fixed heterozygosity inherent in allopolyploids. Zinc treatment significantly changed the ratios of expression of 1% of homeologous pairs, including genes putatively involved in metal homeostasis. Resequencing data showed a significant reduction in genetic diversity over a large genomic region (290 kb) surrounding the HMA4 locus derived from the A. halleri parent compared with the syntenic A. lyrata-derived region, which suggests different evolutionary histories. We also estimated that three A. halleri-derived HMA4 copies are present in A. kamchatica Our findings support a transcriptomic model in which environment-related transcriptional patterns of both parents are conserved but attenuated in the allopolyploids.
Collapse
Affiliation(s)
- Timothy Paape
- Department of Evolutionary Biology and Environmental Studies and Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, CH 8057, Switzerland
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies and Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, CH 8057, Switzerland Functional Genomics Center Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies and Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, CH 8057, Switzerland
| | - Teo Cereghetti
- Department of Evolutionary Biology and Environmental Studies and Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, CH 8057, Switzerland
| | - Yoshihiko Onda
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan Sugadaira Montane Research Center, University of Tsukuba, Ueda, Nagano, Japan
| | - Tanaka Kenta
- Sugadaira Montane Research Center, University of Tsukuba, Ueda, Nagano, Japan
| | - Jun Sese
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies and Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, CH 8057, Switzerland Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan
| |
Collapse
|
50
|
Soltis DE, Visger CJ, Marchant DB, Soltis PS. Polyploidy: Pitfalls and paths to a paradigm. AMERICAN JOURNAL OF BOTANY 2016; 103:1146-66. [PMID: 27234228 DOI: 10.3732/ajb.1500501] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/25/2016] [Indexed: 05/22/2023]
Abstract
Investigators have long searched for a polyploidy paradigm-rules or principles that might be common following polyploidization (whole-genome duplication, WGD). Here we attempt to integrate what is known across the more thoroughly investigated polyploid systems on topics ranging from genetics to ecology. We found that while certain rules may govern gene retention and loss, systems vary in the prevalence of gene silencing vs. homeolog loss, chromosomal change, the presence of a dominant genome (in allopolyploids), and the relative importance of hybridization vs. genome doubling per se. In some lineages, aspects of polyploidization are repeated across multiple origins, but in other species multiple origins behave more stochastically in terms of genetic and phenotypic change. Our investigation also reveals that the path to synthesis is hindered by numerous gaps in our knowledge of even the best-known systems. Particularly concerning is the absence of linkage between genotype and phenotype. Moreover, most recent studies have focused on the genetic and genomic attributes of polyploidy, but rarely is there an ecological or physiological context. To promote a path to a polyploidy paradigm (or paradigms), we propose a major community goal over the next 10-20 yr to fill the gaps in our knowledge of well-studied polyploids. Before a meaningful synthesis is possible, more complete data sets are needed for comparison-systems that include comparable genetic, genomic, chromosomal, proteomic, as well as morphological, physiological, and ecological data. Also needed are more natural evolutionary model systems, as most of what we know about polyploidy continues to come from a few crop and genetic models, systems that often lack the ecological context inherent in natural systems and necessary for understanding the drivers of biodiversity.
Collapse
Affiliation(s)
- Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Department of Biology, University of Florida, Gainesville, Florida 32611 USA Genetics Institute, University of Florida, Gainesville, Florida 32608 USA
| | - Clayton J Visger
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Department of Biology, University of Florida, Gainesville, Florida 32611 USA
| | - D Blaine Marchant
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Department of Biology, University of Florida, Gainesville, Florida 32611 USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Genetics Institute, University of Florida, Gainesville, Florida 32608 USA
| |
Collapse
|