1
|
Wise CF, Herkert NJ, Hoffman K, Vaden S, Breen M, Stapleton HM. Environmental Exposures and Canine Bladder Cancer: A Case Control Study Using Silicone Passive Samplers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1121-1132. [PMID: 39786168 DOI: 10.1021/acs.est.4c09271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Pet dogs offer valuable models for studying environmental impacts on human health due to shared environments and a shorter latency period for cancer development. We assessed environmental chemical exposures in a case-control study involving dogs at high risk of urothelial carcinoma, identified by a BRAF V595E mutation in urinary epithelial cells. Cases (n = 25) exhibited low-level BRAF mutations, while controls (n = 76) were matched dogs without the mutation. Each dog wore a silicone sampler for five continuous days to assess environmental exposures. Silicone samplers were analyzed using targeted and suspect screening (i.e., nontargeted) methods. Of 115 targeted chemicals, 39 were detected in >50% of samplers, with cases showing significantly higher levels (2-3×) of BDE-47, BDE-99, anthracene, and benzyl butyl phthalate (p < 0.05). Suspect screening identified that cases were exposed to more chemicals, often at higher exposure levels. For example, cases had significantly higher levels of 25 chemical features compared to controls (p < 0.05). This is the largest study to date to quantify such a wide breadth of contaminant exposure levels associated with canine urothelial carcinoma and the first to assess a population with subclinical disease, highlighting pet dogs as models to study environmental contributions to cancer risk, advancing both human and veterinary health.
Collapse
Affiliation(s)
- Catherine F Wise
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
- Duke Cancer Institute, Durham, North Carolina 27710, United States
| | - Nicholas J Herkert
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Shelly Vaden
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Matthew Breen
- Duke Cancer Institute, Durham, North Carolina 27710, United States
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27607, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
- Duke Cancer Institute, Durham, North Carolina 27710, United States
| |
Collapse
|
2
|
Aupperle-Lellbach H, Kehl A, de Brot S, van der Weyden L. Clinical Use of Molecular Biomarkers in Canine and Feline Oncology: Current and Future. Vet Sci 2024; 11:199. [PMID: 38787171 PMCID: PMC11126050 DOI: 10.3390/vetsci11050199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Molecular biomarkers are central to personalised medicine for human cancer patients. It is gaining traction as part of standard veterinary clinical practice for dogs and cats with cancer. Molecular biomarkers can be somatic or germline genomic alterations and can be ascertained from tissues or body fluids using various techniques. This review discusses how these genomic alterations can be determined and the findings used in clinical settings as diagnostic, prognostic, predictive, and screening biomarkers. We showcase the somatic and germline genomic alterations currently available to date for testing dogs and cats in a clinical setting, discussing their utility in each biomarker class. We also look at some emerging molecular biomarkers that are promising for clinical use. Finally, we discuss the hurdles that need to be overcome in going 'bench to bedside', i.e., the translation from discovery of genomic alterations to adoption by veterinary clinicians. As we understand more of the genomics underlying canine and feline tumours, molecular biomarkers will undoubtedly become a mainstay in delivering precision veterinary care to dogs and cats with cancer.
Collapse
Affiliation(s)
- Heike Aupperle-Lellbach
- Laboklin GmbH&Co.KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (H.A.-L.); (A.K.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 80333 München, Germany
| | - Alexandra Kehl
- Laboklin GmbH&Co.KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (H.A.-L.); (A.K.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 80333 München, Germany
| | - Simone de Brot
- Institute of Animal Pathology, COMPATH, University of Bern, 3012 Bern, Switzerland;
| | | |
Collapse
|
3
|
Varvil MS, Clark SL, Bailey TW, Ramos-Vara JA, dos Santos AP. Canine urothelial carcinoma: a pilot study of microRNA detection in formalin-fixed, paraffin-embedded tissue samples and in normal urine. J Vet Diagn Invest 2024; 36:70-77. [PMID: 38014733 PMCID: PMC10734577 DOI: 10.1177/10406387231211908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
We assessed the effects of fixation time in formalin and inclusion of surrounding tissue on microRNA (miRNA) cycle quantification (Cq) values in formalin-fixed, paraffin-embedded (FFPE) urothelial carcinoma (UC) tissue (n = 3), and the effect of conditions on miRNAs in urine from 1 healthy dog. MiRNAs were extracted using commercial kits and quantified using miRNA-specific fluorometry in normal bladder tissue scrolls, UC tissue cores, and bladder muscularis tissue cores from 4 FFPE bladder sections (3 UCs, 1 normal), plus 1 UC stored in formalin for 1, 8, 15, and 22 d before paraffin-embedding. Urine was collected from a healthy dog on 4 occasions; 1-mL aliquots were stored at 20, 4, -20, and -80°C for 4, 8, 24, and 48 h, and 1 and 2 wk. For both FFPE tissue and urine, we used reverse-transcription quantitative real-time PCR (RT-qPCR) to quantify miR-143, miR-152, miR-181a, miR-214, miR-1842, and RNU6B in each tissue or sample, using miR-39 as an exogenous control gene. The Cq values were compared with ANOVA and t-tests. The time of tissue-fixation in formalin did not alter miRNA Cq values; inclusion of the muscularis layer resulted in a statistically different miRNA Cq profile for miR-152, miR-181a, and RNU6B in bladder tissue. MiRNAs in acellular urine were stable for up to 2 wk regardless of the storage temperature. Our findings support using stored FFPE and urine samples for miRNA detection; we recommend measuring miRNA only in the tissue of interest in FFPE sections.
Collapse
Affiliation(s)
- Mara S. Varvil
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Samuel L. Clark
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Taylor W. Bailey
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - José A. Ramos-Vara
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Andrea Pires dos Santos
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
4
|
Chon E, Sakthikumar S, Tang M, Hamilton MJ, Vaughan A, Smith A, Sommer B, Robat C, Manley C, Mullin C, Ohashi E, Manor E, Custis J, Intile J, Shiu KB, Parshley L, Bergman N, Sheppard‐Olivares S, Hafeman S, Wright Z, Haworth D, Hendricks W, Wang G. Novel genomic prognostic biomarkers for dogs with cancer. J Vet Intern Med 2023; 37:2410-2421. [PMID: 37801037 PMCID: PMC10658597 DOI: 10.1111/jvim.16893] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Growing evidence from dogs and humans supports the abundance of mutation-based biomarkers in tumors of dogs. Increasing the use of clinical genomic diagnostic testing now provides another powerful data source for biomarker discovery. HYPOTHESIS Analyzed clinical outcomes in dogs with cancer profiled using SearchLight DNA, a cancer gene panel for dogs, to identify mutations with prognostic value. ANIMALS A total of 127 cases of cancer in dogs were analyzed using SearchLight DNA and for which clinical outcome information was available. METHODS Clinical data points were collected by medical record review. Variables including mutated genes, mutations, signalment, and treatment were fitted using Cox proportional hazard models to identify factors associated with progression-free survival (PFS). The log-rank test was used to compare PFS between patients receiving and not receiving targeted treatment before first progression. RESULTS Combined genomic and outcomes analysis identified 336 unique mutations in 89 genes across 26 cancer types. Mutations in 6 genes (CCND1, CCND3, SMARCB1, FANCG, CDKN2A/B, and MSH6) were significantly associated with shorter PFS. Dogs that received targeted treatment before first progression (n = 45) experienced significantly longer PFS compared with those that did not (n = 82, P = .01). This significance held true for 29 dogs that received genomically informed targeted treatment compared with those that did not (P = .05). CONCLUSION AND CLINICAL IMPORTANCE We identified novel mutations with prognostic value and demonstrate the benefit of targeted treatment across multiple cancer types. These results provide clinical evidence of the potential for genomics and precision medicine in dogs with cancer.
Collapse
Affiliation(s)
- Esther Chon
- Vidium Animal HealthA Subsidiary of The Translational Genomics Research Institute (TGen)ScottsdaleArizonaUSA
| | - Sharadha Sakthikumar
- Vidium Animal HealthA Subsidiary of The Translational Genomics Research Institute (TGen)ScottsdaleArizonaUSA
| | - Min Tang
- STATBEYOND Consulting LLCIrvineCaliforniaUSA
| | | | | | - Ashley Smith
- Department of Clinical SciencesAuburn University College of Veterinary MedicineAuburnAlabamaUSA
| | - Breann Sommer
- Wisconsin Veterinary Referral Center by EthosWaukeshaWisconsinUSA
| | - Cecilia Robat
- VCA Veterinary Emergency Service & Veterinary Specialty CenterMiddletonWisconsinUSA
| | | | | | - Emi Ohashi
- VCA Animal Specialty GroupLos AngelesCaliforniaUSA
| | - Emily Manor
- VCA Advanced Veterinary Care CenterFishersIndianaUSA
| | | | - Joanne Intile
- North Carolina State UniversityRaleighNorth CarolinaUSA
| | - Kai Biu Shiu
- VCA Veterinary Emergency Service & Veterinary Specialty CenterMiddletonWisconsinUSA
| | - Lisa Parshley
- Olympia Veterinary Specialists – The Cancer CenterOlympiaWashingtonUSA
| | - Noelle Bergman
- Department of Clinical SciencesAuburn University College of Veterinary MedicineAuburnAlabamaUSA
| | | | - Scott Hafeman
- VCA Highlands Ranch Animal Specialty and Emergency CenterHighlands RanchColoradoUSA
| | | | - David Haworth
- Vidium Animal HealthA Subsidiary of The Translational Genomics Research Institute (TGen)ScottsdaleArizonaUSA
| | - William Hendricks
- Vidium Animal HealthA Subsidiary of The Translational Genomics Research Institute (TGen)ScottsdaleArizonaUSA
| | - Guannan Wang
- Vidium Animal HealthA Subsidiary of The Translational Genomics Research Institute (TGen)ScottsdaleArizonaUSA
| |
Collapse
|
5
|
Wong K, Abascal F, Ludwig L, Aupperle-Lellbach H, Grassinger J, Wright CW, Allison SJ, Pinder E, Phillips RM, Romero LP, Gal A, Roady PJ, Pires I, Guscetti F, Munday JS, Peleteiro MC, Pinto CA, Carvalho T, Cota J, Du Plessis EC, Constantino-Casas F, Plog S, Moe L, de Brot S, Bemelmans I, Amorim RL, Georgy SR, Prada J, Del Pozo J, Heimann M, de Carvalho Nunes L, Simola O, Pazzi P, Steyl J, Ubukata R, Vajdovich P, Priestnall SL, Suárez-Bonnet A, Roperto F, Millanta F, Palmieri C, Ortiz AL, Barros CSL, Gava A, Söderström ME, O'Donnell M, Klopfleisch R, Manrique-Rincón A, Martincorena I, Ferreira I, Arends MJ, Wood GA, Adams DJ, van der Weyden L. Cross-species oncogenomics offers insight into human muscle-invasive bladder cancer. Genome Biol 2023; 24:191. [PMID: 37635261 PMCID: PMC10464500 DOI: 10.1186/s13059-023-03026-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND In humans, muscle-invasive bladder cancer (MIBC) is highly aggressive and associated with a poor prognosis. With a high mutation load and large number of altered genes, strategies to delineate key driver events are necessary. Dogs and cats develop urothelial carcinoma (UC) with histological and clinical similarities to human MIBC. Cattle that graze on bracken fern also develop UC, associated with exposure to the carcinogen ptaquiloside. These species may represent relevant animal models of spontaneous and carcinogen-induced UC that can provide insight into human MIBC. RESULTS Whole-exome sequencing of domestic canine (n = 87) and feline (n = 23) UC, and comparative analysis with human MIBC reveals a lower mutation rate in animal cases and the absence of APOBEC mutational signatures. A convergence of driver genes (ARID1A, KDM6A, TP53, FAT1, and NRAS) is discovered, along with common focally amplified and deleted genes involved in regulation of the cell cycle and chromatin remodelling. We identify mismatch repair deficiency in a subset of canine and feline UCs with biallelic inactivation of MSH2. Bovine UC (n = 8) is distinctly different; we identify novel mutational signatures which are recapitulated in vitro in human urinary bladder UC cells treated with bracken fern extracts or purified ptaquiloside. CONCLUSION Canine and feline urinary bladder UC represent relevant models of MIBC in humans, and cross-species analysis can identify evolutionarily conserved driver genes. We characterize mutational signatures in bovine UC associated with bracken fern and ptaquiloside exposure, a human-linked cancer exposure. Our work demonstrates the relevance of cross-species comparative analysis in understanding both human and animal UC.
Collapse
Affiliation(s)
- Kim Wong
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Federico Abascal
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Latasha Ludwig
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Heike Aupperle-Lellbach
- Laboklin GmbH & Co. KG, Bad Kissingen, Germany and Institute of Pathology, Department Comparative Experimental Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Grassinger
- Laboklin GmbH & Co. KG, Bad Kissingen, Germany and Institute of Pathology, Department Comparative Experimental Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Colin W Wright
- School of Pharmacy and Medical Sciences, University of Bradford, West Yorkshire, UK
| | - Simon J Allison
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield, UK
| | - Emma Pinder
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield, UK
| | - Roger M Phillips
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield, UK
| | - Laura P Romero
- Departmento de Patología, Facultad de Medicina Veterinaria Y Zootecnia, Universidad Nacional Autónoma de México (UNAM), CDMX, Mexico City, México
| | - Arnon Gal
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Patrick J Roady
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Isabel Pires
- Department of Veterinary Science, CECAV-Veterinary and Animal Research Center, University of Trás-Os-Montes and Alto Douro, Vila Real, Portugal
| | - Franco Guscetti
- Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - John S Munday
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Maria C Peleteiro
- Faculty of Veterinary Medicine, Centre for Interdisciplinary Research in Animal Health (CIISA), University of Lisbon, Lisbon, Portugal
| | - Carlos A Pinto
- Faculty of Veterinary Medicine, Centre for Interdisciplinary Research in Animal Health (CIISA), University of Lisbon, Lisbon, Portugal
| | | | - João Cota
- Faculty of Veterinary Medicine, Centre for Interdisciplinary Research in Animal Health (CIISA), University of Lisbon, Lisbon, Portugal
| | | | | | | | - Lars Moe
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Simone de Brot
- Institute of Animal Pathology, COMPATH, University of Bern, Bern, Switzerland
| | | | - Renée Laufer Amorim
- Veterinary Clinic Department, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, Brazil
| | - Smitha R Georgy
- Department of Anatomic Pathology, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria, Australia
| | - Justina Prada
- Department of Veterinary Science, CECAV-Veterinary and Animal Research Center, University of Trás-Os-Montes and Alto Douro, Vila Real, Portugal
| | - Jorge Del Pozo
- Royal Dick School of Veterinary Sciences, University of Edinburgh, Roslin, Scotland, UK
| | | | | | | | - Paolo Pazzi
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Johan Steyl
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Rodrigo Ubukata
- E+ Especialidades Veterinárias - Veterinary Oncology, São Paulo, Brazil
| | - Peter Vajdovich
- Department of Clinical Pathology and Oncology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Simon L Priestnall
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK
| | - Alejandro Suárez-Bonnet
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK
| | - Franco Roperto
- Dipartimento Di Biologia, Università Degli Studi Di Napoli Federico II, Napoli, Italy
| | | | - Chiara Palmieri
- School of Veterinary Science, The University of Queensland, Brisbane, QLD, Australia
| | - Ana L Ortiz
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Claudio S L Barros
- Faculdade de Medicina Veterinária E Zootecnia, Universidade Federal de Mato Grosso Do Sul, Campo Grande, MS, Brazil
| | - Aldo Gava
- Pathology Laboratory of the Centro de Ciencias Agro-Veterinarias, Universidade Do Estado de Santa Catarina, Lages, SC, Brazil
| | - Minna E Söderström
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Marie O'Donnell
- Department of Pathology, Western General Hospital, Edinburgh, Scotland, UK
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Andrea Manrique-Rincón
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Inigo Martincorena
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Ingrid Ferreira
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Mark J Arends
- University of Edinburgh Division of Pathology, Cancer Research UK Edinburgh Cancer Centre, Institute of Genetics & Cancer, Edinburgh, Scotland, UK
| | - Geoffrey A Wood
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Louise van der Weyden
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
6
|
Abugomaa A, Elbadawy M, Ishihara Y, Yamamoto H, Kaneda M, Yamawaki H, Shinohara Y, Usui T, Sasaki K. Anti-cancer activity of Chaga mushroom ( Inonotus obliquus) against dog bladder cancer organoids. Front Pharmacol 2023; 14:1159516. [PMID: 37153767 PMCID: PMC10154587 DOI: 10.3389/fphar.2023.1159516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Despite its disadvantages, chemotherapy is still commonly used for the treatment of bladder cancer (BC). Developing natural supplements that can target cancer stem cells (CSCs) which cause drug resistance and distant metastasis is necessary. Chaga mushrooms are popular to have several health-promoting and anti-cancer potentials. Organoid culture can recapitulate tumor heterogeneity, epithelial environment, and genetic and molecular imprints of the original tissues. In the previous study, we generated dog bladder cancer organoids (DBCO) as a novel experimental model of muscle-invasive BCO. Therefore, the present study aimed to examine the anti-tumor potentials of Chaga mushroom extract (Chaga) against DBCO. Four strains of DBCO were used in the present study. Treatment with Chaga inhibited the cell viability of DBCO in a concentration-dependent way. Treatment of DBCO with Chaga has significantly arrested its cell cycle and induced apoptosis. Expression of bladder CSC markers, CD44, C-MYC, SOX2, and YAP1, declined in the Chaga-treated DBCO. Also, Chaga inhibited the phosphorylation of ERK in DBCO. Expression of downstream signals of ERK, C-MYC, and Cyclins (Cyclin-A2, Cyclin-D1, Cyclin-E1, and CDK4) was also inhibited by Chaga in DBCO. Interestingly, the combinational treatment of DBCO with Chaga and anti-cancer drugs, vinblastine, mitoxantrone, or carboplatin, showed a potentiating activity. In vivo, Chaga administration decreased tumor growth and weight of DBCO-derived xenograft in mice with the induction of necrotic lesions. In conclusion, Chaga diminished the cell viability of DBCO by inhibiting proliferation-related signals and stemness conditions as well as by arresting the cell cycle. Collectively, these data suggest the value of Chaga as a promising natural supplement that could potentiate the effect of adjuvant chemotherapy, lower its adverse effects, and thus, limit the recurrence and metastasis of BC.
Collapse
Affiliation(s)
- Amira Abugomaa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Egypt
| | - Yusuke Ishihara
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Haru Yamamoto
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Yuta Shinohara
- Pet Health & Food Division, Iskara Industry Co., Ltd., Tokyo, Japan
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazuaki Sasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
7
|
Oh JH, Cho JY. Comparative oncology: overcoming human cancer through companion animal studies. Exp Mol Med 2023; 55:725-734. [PMID: 37009802 PMCID: PMC10167357 DOI: 10.1038/s12276-023-00977-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 04/04/2023] Open
Abstract
Comparative oncology is a field of study that has been recently adopted for studying cancer and developing cancer therapies. Companion animals such as dogs can be used to evaluate novel biomarkers or anticancer targets before clinical translation. Thus, the value of canine models is increasing, and numerous studies have been conducted to analyze similarities and differences between many types of spontaneously occurring cancers in canines and humans. A growing number of canine cancer models as well as research-grade reagents for these models are becoming available, leading to substantial growth in comparative oncology research spanning from basic science to clinical trials. In this review, we summarize comparative oncology studies that have been conducted on the molecular landscape of various canine cancers and highlight the importance of the integration of comparative biology into cancer research.
Collapse
Affiliation(s)
- Ji Hoon Oh
- Department of Biochemistry, Brain Korea 21 Project and Research Institute for Veterinary Science, Seoul National University College of Veterinary Medicine, Seoul, 08826, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Je-Yoel Cho
- Department of Biochemistry, Brain Korea 21 Project and Research Institute for Veterinary Science, Seoul National University College of Veterinary Medicine, Seoul, 08826, Republic of Korea.
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
8
|
Thomas R, Wiley CA, Droste EL, Robertson J, Inman BA, Breen M. Whole exome sequencing analysis of canine urothelial carcinomas without BRAF V595E mutation: Short in-frame deletions in BRAF and MAP2K1 suggest alternative mechanisms for MAPK pathway disruption. PLoS Genet 2023; 19:e1010575. [PMID: 37079639 PMCID: PMC10153751 DOI: 10.1371/journal.pgen.1010575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 05/02/2023] [Accepted: 12/16/2022] [Indexed: 04/21/2023] Open
Abstract
Molecular profiling studies have shown that 85% of canine urothelial carcinomas (UC) harbor an activating BRAF V595E mutation, which is orthologous to the V600E variant found in several human cancer subtypes. In dogs, this mutation provides both a powerful diagnostic marker and a potential therapeutic target; however, due to their relative infrequency, the remaining 15% of cases remain understudied at the molecular level. We performed whole exome sequencing analysis of 28 canine urine sediments exhibiting the characteristic DNA copy number signatures of canine UC, in which the BRAF V595E mutation was undetected (UDV595E specimens). Among these we identified 13 specimens (46%) harboring short in-frame deletions within either BRAF exon 12 (7/28 cases) or MAP2K1 exons 2 or 3 (6/28 cases). Orthologous variants occur in several human cancer subtypes and confer structural changes to the protein product that are predictive of response to different classes of small molecule MAPK pathway inhibitors. DNA damage response and repair genes, and chromatin modifiers were also recurrently mutated in UDV595E specimens, as were genes that are positive predictors of immunotherapy response in human cancers. Our findings suggest that short in-frame deletions within BRAF exon 12 and MAP2K1 exons 2 and 3 in UDV595E cases are alternative MAPK-pathway activating events that may have significant therapeutic implications for selecting first-line treatment for canine UC. We developed a simple, cost-effective capillary electrophoresis genotyping assay for detection of these deletions in parallel with the BRAF V595E mutation. The identification of these deletion events in dogs offers a compelling cross-species platform in which to study the relationship between somatic alteration, protein conformation, and therapeutic sensitivity.
Collapse
Affiliation(s)
- Rachael Thomas
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Claire A. Wiley
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Emma L. Droste
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - James Robertson
- Office of Research (Biostatistics), College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Brant A. Inman
- Department of Surgery, School of Medicine, Duke University, Durham, North Carolina, United States of America
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
9
|
Lewis AM, Thomas R, Breen M, Peden K, Teferedegne B, Foseh G, Motsinger-Reif A, Rotroff D, Lewis G. The AGMK1-9T7 cell model of neoplasia: Evolution of DNA copy-number aberrations and miRNA expression during transition from normal to metastatic cancer cells. PLoS One 2022; 17:e0275394. [PMID: 36279283 PMCID: PMC9591059 DOI: 10.1371/journal.pone.0275394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/15/2022] [Indexed: 01/24/2023] Open
Abstract
To study neoplasia in tissue culture, cell lines representing the evolution of normal cells to tumor cells are needed. To produce such cells, we developed the AGMK1-9T7 cell line, established cell banks at 10-passage intervals, and characterized their biological properties. Here we examine the evolution of chromosomal DNA copy-number aberrations and miRNA expression in this cell line from passage 1 to the acquisition of a tumorigenic phenotype at passage 40. We demonstrated the use of a human microarray platform for DNA copy-number profiling of AGMK1-9T7 cells using knowledge of synteny to 'recode' data from human chromosome coordinates to those of the African green monkey. This approach revealed the accumulation of DNA copy-number gains and losses in AGMK1-9T7 cells from passage 3 to passage 40, which spans the period in which neoplastic transformation occurred. These alterations occurred in the sequences of genes regulating DNA copy-number imbalance of several genes that regulate endothelial cell angiogenesis, survival, migration, and proliferation. Regarding miRNA expression, 195 miRNAs were up- or down-regulated at passage 1 at levels that appear to be biologically relevant (i.e., log2 fold change >2.0 (q<0.05)). At passage 10, the number of up/down-regulated miRNAs fell to 63; this number increased to 93 at passage 40. Principal-component analysis grouped these miRNAs into 3 clusters; miRNAs in sub-clusters of these groups could be correlated with initiation, promotion, and progression, stages that have been described for neoplastic development. Thirty-four of the AGMK1-9T7 miRNAs have been associated with these stages in human cancer. Based on these data, we propose that the evolution of AGMK1-9T7 cells represents a detailed model of neoplasia in vitro.
Collapse
Affiliation(s)
- Andrew M. Lewis
- Laboratory of DNA Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States of America
- * E-mail:
| | - Rachael Thomas
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, and Center for Comparative Medicine and Translational Research, Raleigh, NC, United States of America
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, and Center for Comparative Medicine and Translational Research, Raleigh, NC, United States of America
| | - Keith Peden
- Laboratory of DNA Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States of America
| | - Belete Teferedegne
- Laboratory of DNA Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States of America
| | - Gideon Foseh
- Laboratory of DNA Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States of America
| | - Alison Motsinger-Reif
- Bioinformatics Research Center, Department of Statistics, North Carolina State University, Raleigh NC, United States of America
| | - Daniel Rotroff
- Bioinformatics Research Center, Department of Statistics, North Carolina State University, Raleigh NC, United States of America
| | - Gladys Lewis
- TCL and M Associates, Leesburg, VA, United States of America
| |
Collapse
|
10
|
Varvil MS, Bailey T, Dhawan D, Knapp DW, Ramos-Vara JA, dos Santos AP. The miRNome of canine invasive urothelial carcinoma. Front Vet Sci 2022; 9:945638. [PMID: 36072391 PMCID: PMC9443663 DOI: 10.3389/fvets.2022.945638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Urothelial carcinoma (UC) comprises up to 2% of all naturally occurring neoplasia in dogs and can be challenging to diagnose. MicroRNAs (miRNAs) have been reported to be dysregulated in numerous diseases, including neoplasia. MiRNA expression has been evaluated in human UC, but there is limited information regarding the miRNA transcriptome of UC in dogs. Our study aimed to evaluate differential miRNA expression in bladder tissue collected from normal canine urothelium and canine invasive UC (iUC) to elucidate the dysregulated pathways in canine UC. Next-Generation RNA sequencing (RNA-Seq) was performed for dogs with UC (n = 29) and normal canine urothelium (n = 4). Raw RNA data were subjected to normalization, and pairwise comparison was performed using EdgeR with Benjamini-Hochberg FDR multiple testing correction (p < 0.05; >2-fold change) comparing tissue samples of normal urothelium to canine iUC samples. Principal component analysis and hierarchical cluster analysis were performed. MiRNA of FFPE tissue samples of separate iUC (n = 5) and normal urothelium (n = 5) were used to evaluate five miRNAs using RT-qPCR. Pathway analysis was performed utilizing miRWalk, STRING database, and Metascape utilizing KEGG pathways and GO terms databases. Twenty-eight miRNAs were differentially expressed (DE) by RNA-Seq. RT-qPCR confirmed that four miRNAs are significantly downregulated in UC compared to healthy urothelial samples (miR-105a, miR-143, miR-181a, and miR-214). Principal component analysis and hierarchical cluster analysis showed separation between miRNAs in iUC and the control group. The DE miRNAs are most often associated with gene silencing by miRNA, miRNAs in cancer, and miRNAs involved in DNA damage responses. Proteins involved include HRAS, KRAS, ARAF, RAF1, MAPK1, MAP2K1, MAPK3, FGFR3, EGFR, HBEGF, RASSF1, E2F2, E2F3, ERBB2, SRC, MMP1, and UP3KA. The differential expression of miRNAs in canine iUC compared to normal canine urothelial tissue indicates that these markers should be further evaluated for their potential role as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Mara S. Varvil
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Taylor Bailey
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Deepika Dhawan
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Deborah W. Knapp
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
- Center for Cancer Research, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - José A. Ramos-Vara
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
- Center for Cancer Research, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - Andrea P. dos Santos
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
11
|
Elbadawy M, Fujisaka K, Yamamoto H, Tsunedomi R, Nagano H, Ayame H, Ishihara Y, Mori T, Azakami D, Uchide T, Fukushima R, Abugomaa A, Kaneda M, Yamawaki H, Shinohara Y, Omatsu T, Mizutani T, Usui T, Sasaki K. Establishment of an experimental model of normal dog bladder organoid using a three-dimensional culture method. Biomed Pharmacother 2022; 151:113105. [PMID: 35605292 DOI: 10.1016/j.biopha.2022.113105] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022] Open
Abstract
Dog bladder cancer (BC) is mostly muscle-invasive (MI) with poor prognosis, and its pathogenesis is close to human MIBC. Three-dimensional (3D) organoid culture ensures novel knowledge on cancer diseases including BC. Recently, we have established dog BC organoids (BCO) using their urine samples. BCO recapitulated the epithelial structures, characteristics, and drug sensitivity of BC-diseased dogs. However, organoids from dog normal bladder epithelium are not established yet. Therefore, the present study aimed to establish dog normal bladder organoids (NBO) for further understanding the pathogenesis of dog BC and human MIBC. The established NBO underwent various analyzes including cell marker expressions, histopathological structures, cancer-related gene expression patterns, and drug sensitivity. NBO could be produced non-invasively with a continuous culturing and recapitulated the structures and characteristics of the dog's normal bladder mucosal tissues. Different drug sensitivities were observed in each NBO. The analysis of RNA sequencing revealed that several novel genes were changed in NBO compared with BCO. NBO showed a higher expression of p53 and E-cadherin, but a lower expression of MDM2 and Twist1 compared with BCO. These results suggest that NBO could be a promising experimental 3D model for studying the developmental mechanisms of dog BC and human MIBC.
Collapse
Affiliation(s)
- Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, 13736, Moshtohor, Toukh, Elqaliobiya, Egypt.
| | - Kodai Fujisaka
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Haru Yamamoto
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Hiromi Ayame
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Yusuke Ishihara
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Takashi Mori
- Laboratory of Veterinary Clinical Oncology, Faculty of Applied Biological Sciences, Gifu University, 1-1, Yanagido, Gifu, Gifu 501-1193, Japan
| | - Daigo Azakami
- Laboratory of Veterinary Clinical Oncology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Tsuyoshi Uchide
- Laboratory of Veterinary Surgery, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Ryuji Fukushima
- Animal Medical Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Amira Abugomaa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Faculty of Veterinary Medicine, Mansoura University, 35516 Mansoura, Egypt
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, 35-1, Higashi 23 ban-cho, Towada, Aomori 034-8628, Japan
| | - Yuta Shinohara
- Pet Health & Food Division, Iskara Industry CO., LTD, 1-14-2, Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Tsutomu Omatsu
- Center for Infectious Diseases of Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Tetsuya Mizutani
- Center for Infectious Diseases of Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| | - Kazuaki Sasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
12
|
YOKOTA S, YONEZAWA T, MOMOI Y, MAEDA S. Sorafenib inhibits tumor cell growth and angiogenesis in canine transitional cell carcinoma. J Vet Med Sci 2022; 84:666-674. [PMID: 35387955 PMCID: PMC9177404 DOI: 10.1292/jvms.21-0478] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/22/2022] [Indexed: 11/22/2022] Open
Abstract
Canine transitional cell carcinoma (cTCC) is the most common naturally occurring bladder cancer and accounts for 1-2% of canine tumors. The prognosis is poor due to the high rate of invasiveness and metastasis at diagnosis. Sorafenib is a multi-kinase inhibitor that targets rapidly accelerated fibrosarcoma (RAF), vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, VEGFR-3, platelet-derived growth factor receptor-β (PDGFR-β), and KIT. In previous studies, a somatic mutation of B-rapidly accelerated fibrosarcoma (BRAF) and expressions of VEGFR-2 and PDGFR-β were observed in over 80% of patients with cTCC. Therefore, in this study, we investigated the anti-tumor effects of sorafenib on cTCC. Five cTCC cell lines were used in the in vitro experiments. All five cTCC cell lines expressed VEGFR-2 and PDGFR-β and sorafenib showed growth inhibitory effect on cTCC cell lines. Cell cycle arrest at the G0/G1 phase and subsequent apoptosis were observed following sorafenib treatment. In the in vivo experiments, cTCC (Sora) cells were subcutaneously injected into nude mice. Mice were orally administered with sorafenib (30 mg/kg daily) for 14 days. Sorafenib inhibited tumor growth compared to vehicle control. The necrotic area in the tumor tissues was increased in the sorafenib-treated group. Sorafenib also inhibited angiogenesis in the tumor microenvironment. Thus, sorafenib may be potential therapeutic agent for cTCC via its direct anti-tumor effect and inhibition of angiogenesis.
Collapse
Affiliation(s)
- Shohei YOKOTA
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro YONEZAWA
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki MOMOI
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shingo MAEDA
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Cronise KE, Das S, Hernandez BG, Regan DP, Dailey DD, McGeachan RI, Lana SE, Page RL, Gustafson DL, Duval DL. Characterizing the molecular and immune landscape of canine bladder cancer. Vet Comp Oncol 2022; 20:69-81. [PMID: 34021685 PMCID: PMC8606617 DOI: 10.1111/vco.12740] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022]
Abstract
Transitional cell carcinoma (TCC), also known as urothelial carcinoma, is the most common bladder cancer in humans and dogs. Approximately one-quarter of human TCCs are muscle-invasive and associated with a high risk of death from metastasis. Canine TCC (cTCC) tumours are typically high-grade and muscle-invasive. Shared similarities in risk factors, histopathology, and clinical presentation suggest that cTCC may serve as a model for the assessment of novel therapeutics that may inform therapies for human muscle-invasive TCC. The goal of this study was to characterize cTCC at the molecular level to identify drivers of oncogenesis and druggable targets. We performed whole exome sequencing (WES) of 11 cTCC tumours and three matched normal samples, identifying 583 variants in protein-coding genes. The most common variant was a V-to-E missense mutation in BRAF, identified in 4 out of 11 samples (36%) via WES. Sanger sequencing identified BRAF variants in 8 out of the same 11 cTCC samples, as well as in 22 out of 32 formalin-fixed paraffin embedded (FFPE) cTCC samples, suggesting an overall prevalence of 70%. RNA-Seq was performed to compare the gene expression profiles of cTCC tumours to normal bladder tissue. cTCC tumours exhibited up-regulation of genes involved in the cell cycle, DNA repair, and antiviral immunity. We also analysed the immune landscape of cTCC using immune gene signatures and immunohistochemical analysis. A subset of tumours had characteristics of a hot tumour microenvironment and exhibited high expression of signatures associated with complete response to PD-1/PD-L1 blockade in human bladder cancer.
Collapse
Affiliation(s)
- Kathryn E. Cronise
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado, USA
| | - Sunetra Das
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Belen G. Hernandez
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Daniel P. Regan
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado, USA,University of Colorado Comprehensive Cancer Center, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Deanna D. Dailey
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Robert I. McGeachan
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Susan E. Lana
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Rodney L. Page
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA,University of Colorado Comprehensive Cancer Center, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Daniel L. Gustafson
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado, USA,University of Colorado Comprehensive Cancer Center, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dawn L. Duval
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado, USA,University of Colorado Comprehensive Cancer Center, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
14
|
Rasteiro AM, Sá e Lemos E, Oliveira PA, Gil da Costa RM. Molecular Markers in Urinary Bladder Cancer: Applications for Diagnosis, Prognosis and Therapy. Vet Sci 2022; 9:vetsci9030107. [PMID: 35324835 PMCID: PMC8950778 DOI: 10.3390/vetsci9030107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 12/18/2022] Open
Abstract
Cancer of the urinary bladder is a neoplasm with considerable importance in veterinary medicine, given its high incidence in several domestic animal species and its life-threatening character. Bladder cancer in companion animals shows a complex and still poorly understood biopathology, and this lack of knowledge has limited therapeutic progress over the years. Even so, important advances concerning the identification of tumour markers with clinical applications at the diagnosis, prognosis and therapeutic levels have recently been made, for example, the identification of pathological BRAF mutations. Those advances are now facilitating the introduction of targeted therapies. The present review will address such advances, focusing on small animal oncology and providing the reader with an update on this field. When appropriate, comparisons will be drawn with bladder cancer in human patients, as well as with experimental models of the disease.
Collapse
Affiliation(s)
- Ana Mafalda Rasteiro
- CEDIVET, Laboratório Clínico Veterinário, 4200-071 Porto, Portugal; (A.M.R.); (E.S.e.L.)
- Garden Veterinary Group, Chippenham SN15 1NQ, UK
| | - Eva Sá e Lemos
- CEDIVET, Laboratório Clínico Veterinário, 4200-071 Porto, Portugal; (A.M.R.); (E.S.e.L.)
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Rui M. Gil da Costa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto. CCC), 4200-072 Porto, Portugal
- Postgraduate Programme in Adult Health (PPGSAD), Department of Morphology, University Hospital (HUUFMA), Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence:
| |
Collapse
|
15
|
Peart CR, Williams C, Pophaly SD, Neely BA, Gulland FMD, Adams DJ, Ng BL, Cheng W, Goebel ME, Fedrigo O, Haase B, Mountcastle J, Fungtammasan A, Formenti G, Collins J, Wood J, Sims Y, Torrance J, Tracey A, Howe K, Rhie A, Hoffman JI, Johnson J, Jarvis ED, Breen M, Wolf JBW. Hi-C scaffolded short- and long-read genome assemblies of the California sea lion are broadly consistent for syntenic inference across 45 million years of evolution. Mol Ecol Resour 2021; 21:2455-2470. [PMID: 34097816 PMCID: PMC9732816 DOI: 10.1111/1755-0998.13443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/06/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
With the advent of chromatin-interaction maps, chromosome-level genome assemblies have become a reality for a wide range of organisms. Scaffolding quality is, however, difficult to judge. To explore this gap, we generated multiple chromosome-scale genome assemblies of an emerging wild animal model for carcinogenesis, the California sea lion (Zalophus californianus). Short-read assemblies were scaffolded with two independent chromatin interaction mapping data sets (Hi-C and Chicago), and long-read assemblies with three data types (Hi-C, optical maps and 10X linked reads) following the "Vertebrate Genomes Project (VGP)" pipeline. In both approaches, 18 major scaffolds recovered the karyotype (2n = 36), with scaffold N50s of 138 and 147 Mb, respectively. Synteny relationships at the chromosome level with other pinniped genomes (2n = 32-36), ferret (2n = 34), red panda (2n = 36) and domestic dog (2n = 78) were consistent across approaches and recovered known fissions and fusions. Comparative chromosome painting and multicolour chromosome tiling with a panel of 264 genome-integrated single-locus canine bacterial artificial chromosome probes provided independent evaluation of genome organization. Broad-scale discrepancies between the approaches were observed within chromosomes, most commonly in translocations centred around centromeres and telomeres, which were better resolved in the VGP assembly. Genomic and cytological approaches agreed on near-perfect synteny of the X chromosome, and in combination allowed detailed investigation of autosomal rearrangements between dog and sea lion. This study presents high-quality genomes of an emerging cancer model and highlights that even highly fragmented short-read assemblies scaffolded with Hi-C can yield reliable chromosome-level scaffolds suitable for comparative genomic analyses.
Collapse
Affiliation(s)
- Claire R. Peart
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Munchen, Germany
| | - Christina Williams
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Saurabh D. Pophaly
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Munchen, Germany
- Max Planck institute for Plant Breeding Research, Cologne, Germany
| | - Benjamin A. Neely
- National Institute of Standards and Technology, NIST Charleston, Charleston, South Carolina, USA
| | - Frances M. D. Gulland
- Karen Dryer Wildlife Health Center, University of California Davis, Davis, California, USA
| | - David J. Adams
- Cytometry Core Facility, Wellcome Sanger Institute, Cambridge, UK
| | - Bee Ling Ng
- Cytometry Core Facility, Wellcome Sanger Institute, Cambridge, UK
| | - William Cheng
- Cytometry Core Facility, Wellcome Sanger Institute, Cambridge, UK
| | - Michael E. Goebel
- Institute of Marine Science, University of California Santa Cruz, Santa Cruz, California, USA
| | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York City, New York, USA
| | - Bettina Haase
- Vertebrate Genome Lab, The Rockefeller University, New York City, New York, USA
| | | | | | - Giulio Formenti
- Vertebrate Genome Lab, The Rockefeller University, New York City, New York, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York City, New York, USA
| | - Joanna Collins
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Jonathan Wood
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Ying Sims
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - James Torrance
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Alan Tracey
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Kerstin Howe
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Joseph I. Hoffman
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
- British Antarctic Survey, Cambridge, UK
| | - Jeremy Johnson
- Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Erich D. Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York City, New York, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Jochen B. W. Wolf
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Munchen, Germany
| |
Collapse
|
16
|
Tawa GJ, Braisted J, Gerhold D, Grewal G, Mazcko C, Breen M, Sittampalam G, LeBlanc AK. Transcriptomic profiling in canines and humans reveals cancer specific gene modules and biological mechanisms common to both species. PLoS Comput Biol 2021; 17:e1009450. [PMID: 34570764 PMCID: PMC8523068 DOI: 10.1371/journal.pcbi.1009450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 10/18/2021] [Accepted: 09/14/2021] [Indexed: 12/25/2022] Open
Abstract
Understanding relationships between spontaneous cancer in companion (pet) canines and humans can facilitate biomarker and drug development in both species. Towards this end we developed an experimental-bioinformatic protocol that analyzes canine transcriptomics data in the context of existing human data to evaluate comparative relevance of canine to human cancer. We used this protocol to characterize five canine cancers: melanoma, osteosarcoma, pulmonary carcinoma, B- and T-cell lymphoma, in 60 dogs. We applied an unsupervised, iterative clustering method that yielded five co-expression modules and found that each cancer exhibited a unique module expression profile. We constructed cancer models based on the co-expression modules and used the models to successfully classify the canine data. These canine-derived models also successfully classified human tumors representing the same cancers, indicating shared cancer biology between canines and humans. Annotation of the module genes identified cancer specific pathways relevant to cells-of-origin and tumor biology. For example, annotations associated with melanin production (PMEL, GPNMB, and BACE2), synthesis of bone material (COL5A2, COL6A3, and COL12A1), synthesis of pulmonary surfactant (CTSH, LPCAT1, and NAPSA), ribosomal proteins (RPL8, RPS7, and RPLP0), and epigenetic regulation (EDEM1, PTK2B, and JAK1) were unique to melanoma, osteosarcoma, pulmonary carcinoma, B- and T-cell lymphoma, respectively. In total, 152 biomarker candidates were selected from highly expressing modules for each cancer type. Many of these biomarker candidates are under-explored as drug discovery targets and warrant further study. The demonstrated transferability of classification models from canines to humans enforces the idea that tumor biology, biomarker targets, and associated therapeutics, discovered in canines, may translate to human medicine.
Collapse
Affiliation(s)
- Gregory J. Tawa
- National Institutes of Health, National Center for Advancing Translational Sciences, Division of Preclinical Innovation, Therapeutic Development Branch, Rockville, Maryland, United States of America
| | - John Braisted
- National Institutes of Health, National Center for Advancing Translational Sciences, Division of Preclinical Innovation, Therapeutic Development Branch, Rockville, Maryland, United States of America
| | - David Gerhold
- National Institutes of Health, National Center for Advancing Translational Sciences, Division of Preclinical Innovation, Therapeutic Development Branch, Rockville, Maryland, United States of America
| | - Gurmit Grewal
- National Institutes of Health, National Center for Advancing Translational Sciences, Division of Preclinical Innovation, Therapeutic Development Branch, Rockville, Maryland, United States of America
| | - Christina Mazcko
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Comparative Oncology Program, Bethesda, Maryland, United States of America
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| | - Gurusingham Sittampalam
- National Institutes of Health, National Center for Advancing Translational Sciences, Division of Preclinical Innovation, Therapeutic Development Branch, Rockville, Maryland, United States of America
| | - Amy K. LeBlanc
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Comparative Oncology Program, Bethesda, Maryland, United States of America
| |
Collapse
|
17
|
Inkol JM, Hocker SE, Mutsaers AJ. Combination therapy with cannabidiol and chemotherapeutics in canine urothelial carcinoma cells. PLoS One 2021; 16:e0255591. [PMID: 34352013 PMCID: PMC8341525 DOI: 10.1371/journal.pone.0255591] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023] Open
Abstract
Background Canine urothelial carcinoma is the most common form of canine bladder cancer. Treatment with chemotherapy has variable response rates leading to most dogs succumbing to their disease within a year. Cannabidiol is an emerging treatment within the field of oncology. In reported in vivo studies, cannabidiol has induced apoptosis, reduced cell migration, and acted as a chemotherapy sensitizer in various human tumor types. The aim of this study was to characterize the effects of cannabidiol on canine urothelial carcinoma cell viability and apoptosis as both a single agent and in combination with chemotherapy in vitro. Results Cannabidiol reduced cell viability and induced apoptosis in canine urothelial cells as determined by crystal violet viability assay and annexin V/propidium iodide flow cytometry. Furthermore, combinations of cannabidiol with mitoxantrone and vinblastine chemotherapy yielded significantly reduced cell viability and increased apoptosis compared to single agent treatment alone. The drug interactions were deemed synergistic based on combination index calculations. Conversely, the combination of cannabidiol and carboplatin did not result in decreased cell viability and increased apoptosis compared to single agent treatment. Combination index calculations suggested an antagonistic interaction between these drugs. Finally, the combination of the non-steroidal anti-inflammatory drug piroxicam with cannabidiol did not significantly affect cell viability, although, some cell lines demonstrated decreased cell viability when mitoxantrone was combined with piroxicam. Conclusions Cannabidiol showed promising results as a single agent or in combination with mitoxantrone and vinblastine for treatment of canine urothelial carcinoma cells. Further studies are justified to investigate whether these results are translatable in vivo.
Collapse
Affiliation(s)
- Jordon M. Inkol
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Samuel E. Hocker
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| | - Anthony J. Mutsaers
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
18
|
Mestrinho LA, Santos RR. Translational oncotargets for immunotherapy: From pet dogs to humans. Adv Drug Deliv Rev 2021; 172:296-313. [PMID: 33705879 DOI: 10.1016/j.addr.2021.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/10/2021] [Accepted: 02/27/2021] [Indexed: 12/21/2022]
Abstract
Preclinical studies in rodent models have been a pivotal role in human clinical research, but many of them fail in the translational process. Spontaneous tumors in pet dogs have the potential to bridge the gap between preclinical models and human clinical trials. Their natural occurrence in an immunocompetent system overcome the limitations of preclinical rodent models. Due to its reasonable cellular, molecular, and genetic homology to humans, the pet dog represents a valuable model to accelerate the translation of preclinical studies to clinical trials in humans, actually with benefits for both species. Moreover, their unique genetic features of breeding and breed-related mutations have contributed to assess and optimize therapeutics in individuals with different genetic backgrounds. This review aims to outline four main immunotherapy approaches - cancer vaccines, adaptive T-cell transfer, antibodies, and cytokines -, under research in veterinary medicine and how they can serve the clinical application crosstalk with humans.
Collapse
|
19
|
Butty EM, Hahn S, Labato MA. Presumptive malignant transformation of chronic polypoid cystitis into an apical transitional cell carcinoma without BRAF mutation in a young female dog. J Vet Intern Med 2021; 35:1551-1557. [PMID: 33739477 PMCID: PMC8163141 DOI: 10.1111/jvim.16107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 01/10/2023] Open
Abstract
A 3-year-old spayed female English Springer Spaniel was presented twice 4 months apart for investigation of hematuria and pollakiuria without urinary tract infection. Both ultrasound examinations identified a stable craniodorsal bladder wall thickening. The first cystoscopic biopsy samples indicated lymphoplasmacytic cystitis and the second polypoid cystitis. The dog was represented 8 months later for recurrent clinical signs despite medical management. Although the ultrasound examination showed stable disease, repeat cystoscopic biopsy identified transitional cell carcinoma (TCC), confirmed on tissue removed by partial cystectomy. No BRAF mutation was ever detected in urine or tissue samples. To our knowledge, this case represents the first report of presumptive malignant transformation of polypoid cystitis into an apical TCC in a dog. Dogs with polypoid cystitis should be followed closely and surgical management considered if rapid resolution is not achieved with medical management.
Collapse
Affiliation(s)
- Emmanuelle Marie Butty
- Tufts University Cummings School of Veterinary Medicine, Internal Medicine, North Grafton, Massachusetts, USA
| | - Shelley Hahn
- Tufts University Cummings School of Veterinary Medicine, Internal Medicine, North Grafton, Massachusetts, USA
| | - Mary Anna Labato
- Tufts University Cummings School of Veterinary Medicine, Internal Medicine, North Grafton, Massachusetts, USA
| |
Collapse
|
20
|
Harrison BM, Loukopoulos P. Genomics and transcriptomics in veterinary oncology. Oncol Lett 2021; 21:336. [PMID: 33692868 PMCID: PMC7933772 DOI: 10.3892/ol.2021.12597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
The sequencing of the canine genome, combined with additional genomic technologies, has created opportunities for research linking veterinary genomics with naturally occurring cancer in dogs. Also, as numerous canine cancers have features in common with human cancers, comparative studies can be performed to evaluate the use of cancers in dogs as models for human cancer. There have been several reviews of veterinary genomics but, to the best of our knowledge, there has been no comprehensive review of the literature of canine cancer genomics. PubMed and CAB Abstracts databases were searched to retrieve relevant literature using the search terms ‘veterinary’, ‘cancer’ or ‘oncology’, and ‘genomics’ or ‘transcriptomics’. Results were manually assessed and grouped based on the techniques used, the cancer type investigated and genomic lesions targeted. The search resulted in the retrieval of 44 genomic and transcriptomic studies, with the most common technique employed being comparative genomic hybridization. Across both fields, the most commonly studied cancer type was canine osteosarcoma. Genomic and transcriptomic aberrations in canine cancer often reflected those reported in the corresponding human cancers. Analysis of the literature indicated that employing genomic and transcriptomic technologies has been instrumental in developing the understanding of the origin, development and pathogenesis of several canine cancers. However, their use in canine oncology is at an early phase, and there appears to be comparatively little understanding of certain canine cancer types in contrast to their human forms. Aberrations detected in all tumors were tabulated, and the results for osteosarcoma, lymphoma and leukemia, mast cell tumor, transmissible venereal tumor and urothelial carcinoma discussed in detail.
Collapse
Affiliation(s)
- Bridget Marie Harrison
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria 3030, Australia
| | - Panayiotis Loukopoulos
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria 3030, Australia
| |
Collapse
|
21
|
Abstract
Comparative oncology clinical trials play an important and growing role in cancer research and drug development efforts. These trials, typically conducted in companion (pet) dogs, allow assessment of novel anticancer agents and combination therapies in a veterinary clinical setting that supports serial biologic sample collections and exploration of dose, schedule and corresponding pharmacokinetic/pharmacodynamic relationships. Further, an intact immune system and natural co-evolution of tumour and microenvironment support exploration of novel immunotherapeutic strategies. Substantial improvements in our collective understanding of the molecular landscape of canine cancers have occurred in the past 10 years, facilitating translational research and supporting the inclusion of comparative studies in drug development. The value of the approach is demonstrated in various clinical trial settings, including single-agent or combination response rates, inhibition of metastatic progression and randomized comparison of multiple agents in a head-to-head fashion. Such comparative oncology studies have been purposefully included in the developmental plan for several US FDA-approved and up-and-coming anticancer drugs. Challenges for this field include keeping pace with technology and data dissemination/harmonization, improving annotation of the canine genome and immune system, and generation of canine-specific validated reagents to support integration of correlative biology within clinical trial efforts.
Collapse
Affiliation(s)
- Amy K LeBlanc
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Christina N Mazcko
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
22
|
Thomas R, Pontius JU, Borst LB, Breen M. Development of a Genome-Wide Oligonucleotide Microarray Platform for Detection of DNA Copy Number Aberrations in Feline Cancers. Vet Sci 2020; 7:vetsci7030088. [PMID: 32645884 PMCID: PMC7560183 DOI: 10.3390/vetsci7030088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
The utility of the domestic cat as a model system for biomedical studies was constrained for many years by the absence of a comprehensive feline reference genome sequence assembly. While such a resource now exists, the cat continues to lag behind the domestic dog in terms of integration into the ‘One Health’ era of molecular medicine. Stimulated by the advances being made within the evolving field of comparative cancer genomics, we developed a microarray platform that allows rapid and sensitive detection of DNA copy number aberrations in feline tumors using comparative genomic hybridization analysis. The microarray comprises 110,456 unique oligonucleotide probes anchored at mean intervals of 22.6 kb throughout the feline reference genome sequence assembly, providing ~350-fold higher resolution than was previously possible using this technique. We demonstrate the utility of this resource through genomic profiling of a feline injection-site sarcoma case, revealing a highly disrupted profile of DNA copy number imbalance involving several key cancer-associated genes including KIT,TP53, PTEN, FAS and RB1. These findings were supported by targeted fluorescence in-situ hybridization analysis, which identified major alterations in chromosome structure, including complex intrachromosomal reorganization events typical of those seen in aggressive soft-tissue sarcomas of other species. We then characterized a second mass that was identified at a nearby site in the same patient almost 12 months later. This mass demonstrated a remarkably conserved genomic profile consistent with a recurrence of the original tumor; however the detection of subtle differences reflected evolution of the tumor over time. These findings exemplify the diverse potential of this microarray platform to incorporate domestic cat cancers into comparative and translational research efforts in molecular oncology.
Collapse
Affiliation(s)
- Rachael Thomas
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA;
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27606, USA
- Correspondence:
| | - Joan U Pontius
- Laboratory of Genomic Diversity, Basic Research Program, Science Applications International Corporation-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD 21702, USA;
- Present address: JP Solutions, Ellicott City MD 21042, USA
| | - Luke B Borst
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA;
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA;
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27606, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27607, USA
- Cancer Genetics Program, UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27514, USA
| |
Collapse
|
23
|
Wise CF, Hammel SC, Herkert N, Ma J, Motsinger-Reif A, Stapleton HM, Breen M. Comparative Exposure Assessment Using Silicone Passive Samplers Indicates That Domestic Dogs Are Sentinels To Support Human Health Research. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7409-7419. [PMID: 32401030 PMCID: PMC7655112 DOI: 10.1021/acs.est.9b06605] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Silicone wristbands are promising passive samplers to support epidemiological studies in characterizing exposure to organic contaminants; however, investigating associated health risks remains challenging because of the latency period for many chronic diseases that take years to manifest. Dogs provide valuable insights as sentinels for exposure-related human disease because they share similar exposures in the home, have shorter life spans, share many clinical/biological features, and have closely related genomes. Here, we evaluated exposures among pet dogs and their owners using silicone dog tags and wristbands to determine if contaminant levels were correlated with validated exposure biomarkers. Significant correlations between measures on dog tags and wristbands were observed (rs = 0.38-0.90; p < 0.05). Correlations with their respective urinary biomarkers were stronger in dog tags compared to that in human wristbands (rs = 0.50-0.71; p < 0.01) for several organophosphate esters. This supports the value of using silicone bands with dogs to investigate health impacts on humans from shared exposures.
Collapse
Affiliation(s)
- Catherine F. Wise
- Department of Biological Sciences, Environmental and Molecular Toxicology Program, North Carolina State University, 850 Main Campus Drive, Raleigh, North Carolina 27606, United States
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, North Carolina 27607, United States
| | - Stephanie C. Hammel
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Nicholas Herkert
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Jun Ma
- Department of Statistics, North Carolina State University, Raleigh, North Carolina 27607, United States
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Alison Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, United States
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
- Duke Cancer Institute, Durham, North Carolina, United States
| | - Matthew Breen
- Department of Biological Sciences, Environmental and Molecular Toxicology Program, North Carolina State University, 850 Main Campus Drive, Raleigh, North Carolina 27606, United States
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, North Carolina 27607, United States
- Duke Cancer Institute, Durham, North Carolina, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27607, United States
| |
Collapse
|
24
|
Parker HG, Dhawan D, Harris AC, Ramos-Vara JA, Davis BW, Knapp DW, Ostrander EA. RNAseq expression patterns of canine invasive urothelial carcinoma reveal two distinct tumor clusters and shared regions of dysregulation with human bladder tumors. BMC Cancer 2020; 20:251. [PMID: 32209086 PMCID: PMC7092566 DOI: 10.1186/s12885-020-06737-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/11/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Invasive urothelial carcinoma (iUC) is highly similar between dogs and humans in terms of pathologic presentation, molecular subtypes, response to treatment and age at onset. Thus, the dog is an established and relevant model for testing and development of targeted drugs benefiting both canine and human patients. We sought to identify gene expression patterns associated with two primary types of canine iUC tumors: those that express a common somatic mutation in the BRAF gene, and those that do not. METHODS We performed RNAseq on tumor and normal tissues from pet dogs. Analysis of differential expression and clustering, and positional and individual expression was used to develop gene set enrichment profiles distinguishing iUC tumors with and without BRAFV595E mutations, as well as genomic regions harboring excessive numbers of dysregulated genes. RESULTS We identified two expression clusters that are defined by the presence/absence of a BRAFV595E (BRAFV600E in humans) somatic mutation. BRAFV595E tumors shared significantly more dysregulated genes than BRAF wild-type tumors, and vice versa, with 398 genes differentiating the two clusters. Key genes fall into clades of limited function: tissue development, cell cycle regulation, immune response, and membrane transport. The genomic site with highest number of dysregulated genes overall lies in a locus corresponding to human chromosome 8q24, a region frequently amplified in human urothelial cancers. CONCLUSIONS These data identify critical sets of genes that are differently regulated in association with an activating mutation in the MAPK/ERK pathway in canine iUC tumors. The experiments also highlight the value of the canine system in identifying expression patterns associated with a common, shared cancer.
Collapse
Affiliation(s)
- Heidi G Parker
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Bldg 50, Room 5351, Bethesda, MD, 20892, USA
| | - Deepika Dhawan
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Alex C Harris
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Bldg 50, Room 5351, Bethesda, MD, 20892, USA
| | - Jose A Ramos-Vara
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
| | - Brian W Davis
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Bldg 50, Room 5351, Bethesda, MD, 20892, USA
- Department of Integrative Biological Sciences, Texas A and M University, College Station, TX, 77840, USA
| | - Deborah W Knapp
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Bldg 50, Room 5351, Bethesda, MD, 20892, USA.
| |
Collapse
|
25
|
Packeiser EM, Hewicker-Trautwein M, Thiemeyer H, Mohr A, Junginger J, Schille JT, Murua Escobar H, Nolte I. Characterization of six canine prostate adenocarcinoma and three transitional cell carcinoma cell lines derived from primary tumor tissues as well as metastasis. PLoS One 2020; 15:e0230272. [PMID: 32168360 PMCID: PMC7069630 DOI: 10.1371/journal.pone.0230272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
Canine prostate adenocarcinoma (PAC) and transitional cell carcinoma (TCC) of prostate and urinary bladder are highly invasive and metastatic tumors of closely neighbored organs. Cell lines are valuable tools to investigate tumor mechanisms and therapeutic approaches in vitro. PAC in dogs is infrequent, difficult to differentiate from TCC and usually characterized by poor prognosis, enhancing the value of the few available cell lines. However, as cell lines adapt to culturing conditions, a thorough characterization, ideally compared to original tissue, is indispensable. Herein, six canine PAC cell lines and three TCC cell lines were profiled by immunophenotype in comparison to respective original tumor tissues. Three of the six PAC cell lines were derived from primary tumor and metastases of the same patient. Further, two of the three TCC cell lines were derived from TCCs invading into or originating from the prostate. Cell biologic parameters as doubling times and chemoresistances to commonly used drugs in cancer treatment (doxorubicin, carboplatin and meloxicam) were assessed. All cell lines were immunohistochemically close to the respective original tissue. Compared to primary tumor cell lines, metastasis-derived cell lines were more chemoresistant to doxorubicin, but equally susceptive to carboplatin treatment. Two cell lines were multiresistant. COX-2 enzyme activity was demonstrated in all cell lines. However, meloxicam inhibited prostaglandin E2 production in only seven of nine cell lines and did neither influence metabolic activity, nor proliferation. The characterized nine cell lines represent excellent tools to investigate PAC as well as TCC in prostate and urinary bladder of the dog. Furthermore, the profiled paired cell lines from PAC primary tumor and metastasis provide the unique opportunity to investigate metastasis-associated changes PAC cells undergo in tumor progression. The combination of nine differently chemoresistant PAC and TCC cell lines resembles the heterogeneity of canine lower urinary tract cancer.
Collapse
Affiliation(s)
- Eva-Maria Packeiser
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Internal Medicine, Medical Clinic III, Clinic for Hematology, Oncology and Palliative Care, University Medical Centre Rostock, Rostock, Germany
| | | | - Heike Thiemeyer
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Annika Mohr
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Johannes Junginger
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jan Torben Schille
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Internal Medicine, Medical Clinic III, Clinic for Hematology, Oncology and Palliative Care, University Medical Centre Rostock, Rostock, Germany
| | - Hugo Murua Escobar
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Internal Medicine, Medical Clinic III, Clinic for Hematology, Oncology and Palliative Care, University Medical Centre Rostock, Rostock, Germany
- * E-mail: (HME); (IN)
| | - Ingo Nolte
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- * E-mail: (HME); (IN)
| |
Collapse
|
26
|
Overgaard NH, Fan TM, Schachtschneider KM, Principe DR, Schook LB, Jungersen G. Of Mice, Dogs, Pigs, and Men: Choosing the Appropriate Model for Immuno-Oncology Research. ILAR J 2019; 59:247-262. [PMID: 30476148 DOI: 10.1093/ilar/ily014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 07/30/2018] [Indexed: 02/06/2023] Open
Abstract
The immune system plays dual roles in response to cancer. The host immune system protects against tumor formation via immunosurveillance; however, recognition of the tumor by immune cells also induces sculpting mechanisms leading to a Darwinian selection of tumor cell variants with reduced immunogenicity. Cancer immunoediting is the concept used to describe the complex interplay between tumor cells and the immune system. This concept, commonly referred to as the three E's, is encompassed by 3 distinct phases of elimination, equilibrium, and escape. Despite impressive results in the clinic, cancer immunotherapy still has room for improvement as many patients remain unresponsive to therapy. Moreover, many of the preclinical results obtained in the widely used mouse models of cancer are lost in translation to human patients. To improve the success rate of immuno-oncology research and preclinical testing of immune-based anticancer therapies, using alternative animal models more closely related to humans is a promising approach. Here, we describe 2 of the major alternative model systems: canine (spontaneous) and porcine (experimental) cancer models. Although dogs display a high rate of spontaneous tumor formation, an increased number of genetically modified porcine models exist. We suggest that the optimal immuno-oncology model may depend on the stage of cancer immunoediting in question. In particular, the spontaneous canine tumor models provide a unique platform for evaluating therapies aimed at the escape phase of cancer, while genetically engineered swine allow for elucidation of tumor-immune cell interactions especially during the phases of elimination and equilibrium.
Collapse
Affiliation(s)
- Nana H Overgaard
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana-Champaign, Illinois
| | | | - Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, Illinois
| | - Lawrence B Schook
- Department of Radiology, University of Illinois, Chicago, Illinois.,Department of Animal Sciences, University of Illinois, Urbana-Champaign, Illinois
| | - Gregers Jungersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
27
|
Sakai K, Maeda S, Saeki K, Yoshitake R, Goto-Koshino Y, Nakagawa T, Nishimura R, Yonezawa T, Matsuki N. ErbB2 Copy Number Aberration in Canine Urothelial Carcinoma Detected by a Digital Polymerase Chain Reaction Assay. Vet Pathol 2019; 57:56-65. [PMID: 31640537 DOI: 10.1177/0300985819879445] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Urothelial carcinoma (UC) is the most common tumor affecting the urinary bladder of dogs. Protein overexpression of ErbB2 (the canine homolog of HER2) has been observed in dogs with UC. However, no study regarding ErbB2 copy number aberration (CNA) is reported in dogs with UC. In this study, a digital PCR assay for detecting CNA of canine ErbB2 was developed. DNA samples were isolated from 83 formalin-fixed, paraffin-embedded urinary bladder tissues (36 UC, 8 polypoid cystitis, and 39 normal) and 94 urinary sediments (54 UC, 30 nonneoplastic, and 10 normal). The copy number of canine chromosome 8 (CFA8) was used as a control. In the urinary bladder tissues, ErbB2 CNA was detected in 12 of 36 (33%) UC, 2 of 8 (25%) polypoid cystitis, and 0 of 39 (0%) normal controls. In the urinary sediments, ErbB2 CNA was also detected in 19 of 54 (35%) UC; however, no ErbB2 CNA was detected in nonneoplastic diseases or normal controls. The sensitivity and specificity of ErbB2 CNA in urinary sediment for the detection of UC were 35% and 100%, respectively. There was a positive correlation between the copy number ratios of ErbB2 to CFA8 in the urinary bladder tissues and urinary sediments. Our findings indicate that the digital PCR assay of urinary sediments may be a useful, noninvasive method for detecting ErbB2 CNA in dogs with UC.
Collapse
Affiliation(s)
- Kosei Sakai
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shingo Maeda
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kohei Saeki
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryohei Yoshitake
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuko Goto-Koshino
- Molecular Diagnostic Laboratory, Veterinary Medical Center, The University of Tokyo, Tokyo, Japan
| | - Takayuki Nakagawa
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryohei Nishimura
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Yonezawa
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoaki Matsuki
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Abstract
Molecular diagnostics have revolutionized human oncology to allow early detection, targeted therapy, monitoring throughout treatment, and evidence of recurrence. By identifying genetic signatures associated with cancers, liquid biopsy techniques have been developed to diagnose and monitor cancer in noninvasive or minimally invasive ways. These techniques offer new opportunities for improving cancer screening, diagnosis, and monitoring the impact of therapy on the patients over time. Liquid biopsy also drives drug development programs. Similar diagnostics hold promise for comparable results in the veterinary field. Several noninvasive/minimally invasive techniques have been described in veterinary medicine that could be referred to as liquid biopsy.
Collapse
Affiliation(s)
- Claire Wiley
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, CVM Research Building, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Catherine F Wise
- Program in Environmental and Molecular Toxicology, Department of Biological Sciences, North Carolina State University, NC State College of Veterinary Medicine, CVM Research Building, 1060 William Moore Drive, Raleigh, NC 27606, USA; NC State College of Veterinary Medicine, North Carolina State University, CVM Research Building, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, CVM Research Building, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| |
Collapse
|
29
|
Kennedy K, Thomas R, Durrant J, Jiang T, Motsinger-Reif A, Breen M. Genome-wide DNA copy number analysis and targeted transcriptional analysis of canine histiocytic malignancies identifies diagnostic signatures and highlights disruption of spindle assembly complex. Chromosome Res 2019; 27:179-202. [PMID: 31011867 DOI: 10.1007/s10577-019-09606-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/16/2022]
Abstract
Canine histiocytic malignancies (HM) are rare across the general dog population, but overrepresented in certain breeds, such as Bernese mountain dog and flat-coated retriever. Accurate diagnosis relies on immunohistochemical staining to rule out histologically similar cancers with different prognoses and treatment strategies (e.g., lymphoma and hemangiosarcoma). HM are generally treatment refractory with overall survival of less than 6 months. A lack of understanding regarding the mechanisms of disease development and progression hinders development of novel therapeutics. While the study of human tumors can benefit veterinary medicine, the rarity of the suggested orthologous disease (dendritic cell sarcoma) precludes this. This study aims to improve the understanding of underlying disease mechanisms using genome-wide DNA copy number and gene expression analysis of spontaneous HM across several dog breeds. Extensive DNA copy number disruption was evident, with losses of segments of chromosomes 16 and 31 detected in 93% and 72% of tumors, respectively. Droplet digital PCR (ddPCR) evaluation of these regions in numerous cancer specimens effectively discriminated HM from other common round cell tumors, including lymphoma and hemangiosarcoma, resulting in a novel, rapid diagnostic aid for veterinary medicine. Transcriptional analysis demonstrated disruption of the spindle assembly complex, which is linked to genomic instability and reduced therapeutic impact in humans. A key signature detected was up-regulation of Matrix Metalloproteinase 9 (MMP9), supported by an immunohistochemistry-based assessment of MMP9 protein levels. Since MMP9 has been linked with rapid metastasis and tumor aggression in humans, the data in this study offer a possible mechanism of aggression in HM.
Collapse
Affiliation(s)
- Katherine Kennedy
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA.,Sentinel Biomedical Incorporated, Centennial Biomedical Campus, Raleigh, NC, 27607, USA
| | - Rachael Thomas
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
| | - Jessica Durrant
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27607, USA
| | - Tao Jiang
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA.,Department of Statistics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Alison Motsinger-Reif
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA.,Department of Statistics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA. .,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA. .,Cancer Genetics Program, University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, 27599, USA. .,Duke Cancer Institute, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
30
|
de Brot S, Robinson BD, Scase T, Grau-Roma L, Wilkinson E, Boorjian SA, Gardner D, Mongan NP. The dog as an animal model for bladder and urethral urothelial carcinoma: Comparative epidemiology and histology. Oncol Lett 2018; 16:1641-1649. [PMID: 30008848 PMCID: PMC6036476 DOI: 10.3892/ol.2018.8837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/21/2018] [Indexed: 12/18/2022] Open
Abstract
Despite the recent approval of several novel agents for patients with metastatic urothelial carcinoma (UC), survival in this setting remains poor. As such, continued investigation into novel therapeutic options remains warranted. Pre-clinical development of novel treatments requires an animal model that accurately simulates the disease in humans. The aim of the present study was to evaluate the dog as an animal model for human UC. A total of 260 cases of spontaneous, untreated canine primary urethral and urinary bladder UC, were epidemiologically and histologically assessed and classified based on the current 2016 World Health Organization (WHO) tumor classification system. Canine data was compared with human data available from scientific literature. The mean age of dogs diagnosed with UC was 10.22 years (range, 4–15 years), which is equivalent to 60–70 human years. The results revealed a high association between UC diagnosis with the female sex [odds ratio (OR) 3.51; 95% confidence interval (CI) 2.57–4.79; P<0.001], surgical neutering (OR 4.57; 95% CI 1.87–11.12; P<0.001) and breed (OR 15.11 for Scottish terriers; 95% CI 8.99–25.41; P<0.001). Based on the 2016 WHO tumor (T), node and metastasis staging system, the primary tumors were characterized as T1 (38%), T2a (28%), T2b (13%) and T3 (22%). Non-papillary, flat subgross tumor growth was strongly associated with muscle invasion (OR 31.00; P<0.001). Irrespective of subgross growth pattern, all assessable tumors were invading beyond the basement membrane compatible with infiltrating UC. Conventional, not further classifiable infiltrating UC was the most common type of tumor (90%), followed by UC with divergent, squamous and/or glandular differentiation (6%). Seven out of the 260 (2.8%) cases were classified as non-urothelial based on their histological morphology. These cases included 5 (2%) squamous cell carcinomas, 1 (0.4%) adenocarcinoma and 1 (0.4%) neuroendocrine tumor. The 2 most striking common features of canine and human UC included high sex predilection and histological tumor appearance. The results support the suitability of the dog as an animal model for UC and confirm that dogs also spontaneously develop rare UC subtypes and bladder tumors, including plasmacytoid UC and neuroendocrine tumor, which are herein described for the first time in a non-experimental animal species.
Collapse
Affiliation(s)
- Simone de Brot
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Brian D Robinson
- Department of Pathology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Tim Scase
- Bridge Pathology Ltd., Bristol, BS7 0BJ, UK
| | - Llorenç Grau-Roma
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Eleanor Wilkinson
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | | | - David Gardner
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Nigel P Mongan
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK.,Department of Pathology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
31
|
Sommer BC, Dhawan D, Ratliff TL, Knapp DW. Naturally-Occurring Canine Invasive Urothelial Carcinoma: A Model for Emerging Therapies. Bladder Cancer 2018; 4:149-159. [PMID: 29732386 PMCID: PMC5929349 DOI: 10.3233/blc-170145] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of targeted therapies and the resurgence of immunotherapy offer enormous potential to dramatically improve the outlook for patients with invasive urothelial carcinoma (InvUC). Optimization of these therapies, however, is crucial as only a minority of patients achieve dramatic remission, and toxicities are common. With the complexities of the therapies, and the growing list of possible drug combinations to test, highly relevant animal models are needed to assess and select the most promising approaches to carry forward into human trials. The animal model(s) should possess key features that dictate success or failure of cancer drugs in humans including tumor heterogeneity, genetic-epigenetic crosstalk, immune cell responsiveness, invasive and metastatic behavior, and molecular subtypes (e.g., luminal, basal). While it may not be possible to create these collective features in experimental models, these features are present in naturally-occurring InvUC in pet dogs. Naturally occurring canine InvUC closely mimics muscle-invasive bladder cancer in humans in regards to cellular and molecular features, molecular subtypes, biological behavior (sites and frequency of metastasis), and response to therapy. Clinical treatment trials in pet dogs with InvUC are considered a win-win scenario; the individual dog benefits from effective treatment, the results are expected to help other dogs, and the findings are expected to translate to better treatment outcomes in humans. This review will provide an overview of canine InvUC, the similarities to the human condition, and the potential for dogs with InvUC to serve as a model to predict the outcomes of targeted therapy and immunotherapy in humans.
Collapse
Affiliation(s)
- Breann C Sommer
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA
| | - Deepika Dhawan
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA
| | - Timothy L Ratliff
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Deborah W Knapp
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
32
|
Heilmann RM, McNiel EA, Grützner N, Lanerie DJ, Suchodolski JS, Steiner JM. Diagnostic performance of the urinary canine calgranulins in dogs with lower urinary or urogenital tract carcinoma. BMC Vet Res 2017; 13:112. [PMID: 28431528 PMCID: PMC5401473 DOI: 10.1186/s12917-017-1032-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/17/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Onset of canine transitional cell carcinoma (TCC) and prostatic carcinoma (PCA) is usually insidious with dogs presenting at an advanced stage of the disease. A biomarker that can facilitate early detection of TCC/PCA and improve patient survival would be useful. S100A8/A9 (calgranulin A/B or calprotectin) and S100A12 (calgranulin C) are expressed by cells of the innate immune system and are associated with several inflammatory disorders. S100A8/A9 is also expressed by epithelial cells after malignant transformation and is involved in the regulation of cell proliferation and metastasis. S100A8/A9 is up-regulated in human PCA and TCC, whereas the results for S100A12 have been ambiguous. Also, the urine S100A8/A9-to-S100A12 ratio (uCalR) may have potential as a marker for canine TCC/PCA. Aim of the study was to evaluate the diagnostic accuracy of the urinary S100/calgranulins to detect TCC/PCA in dogs by using data and urine samples from 164 dogs with TCC/PCA, non-neoplastic urinary tract disease, other neoplasms, or urinary tract infections, and 75 healthy controls (nested case-control study). Urine S100A8/A9 and S100A12 (measured by species-specific radioimmunoassays and normalized against urine specific gravity [S100A8/A9USG; S100A12USG], urine creatinine concentration, and urine protein concentration and the uCalR were compared among the groups of dogs. RESULTS S100A8/A9USG had the highest sensitivity (96%) and specificity (66%) to detect TCC/PCA, with specificity reaching 75% after excluding dogs with a urinary tract infection. The uCalR best distinguished dogs with TCC/PCA from dogs with a urinary tract infection (sensitivity: 91%, specificity: 60%). Using a S100A8/A9USG ≥ 109.9 to screen dogs ≥6 years of age for TCC/PCA yielded a negative predictive value of 100%. CONCLUSIONS S100A8/A9USG and uCalR may have utility for diagnosing TCC/PCA in dogs, and S100A8/A9USG may be a good screening test for canine TCC/PCA.
Collapse
Affiliation(s)
- Romy M Heilmann
- College of Veterinary Medicine, University of Leipzig, An den Tierkliniken 23, DE-04103, Leipzig, Germany. .,Gastrointestinal Laboratory, Texas A&M University, TAMU 4474, College Station, TX, 77843-4474, USA.
| | - Elizabeth A McNiel
- Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Rd, North Grafton, MA, 01536, USA.,College of Veterinary Medicine, Michigan State University, 784 Wilson Rd, East Lansing, MI, 48824, USA
| | - Niels Grützner
- Gastrointestinal Laboratory, Texas A&M University, TAMU 4474, College Station, TX, 77843-4474, USA.,Farm Animal Clinic, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, CH-3012, Bern, BE, Switzerland
| | - David J Lanerie
- Gastrointestinal Laboratory, Texas A&M University, TAMU 4474, College Station, TX, 77843-4474, USA
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Texas A&M University, TAMU 4474, College Station, TX, 77843-4474, USA
| | - Jörg M Steiner
- Gastrointestinal Laboratory, Texas A&M University, TAMU 4474, College Station, TX, 77843-4474, USA
| |
Collapse
|
33
|
Naturally Occurring Canine Invasive Urinary Bladder Cancer: A Complementary Animal Model to Improve the Success Rate in Human Clinical Trials of New Cancer Drugs. Int J Genomics 2017; 2017:6589529. [PMID: 28487862 PMCID: PMC5401760 DOI: 10.1155/2017/6589529] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/13/2017] [Indexed: 12/01/2022] Open
Abstract
Genomic analyses are defining numerous new targets for cancer therapy. Therapies aimed at specific genetic and epigenetic targets in cancer cells as well as expanded development of immunotherapies are placing increased demands on animal models. Traditional experimental models do not possess the collective features (cancer heterogeneity, molecular complexity, invasion, metastasis, and immune cell response) critical to predict success or failure of emerging therapies in humans. There is growing evidence, however, that dogs with specific forms of naturally occurring cancer can serve as highly relevant animal models to complement traditional models. Invasive urinary bladder cancer (invasive urothelial carcinoma (InvUC)) in dogs, for example, closely mimics the cancer in humans in pathology, molecular features, biological behavior including sites and frequency of distant metastasis, and response to chemotherapy. Genomic analyses are defining further intriguing similarities between InvUC in dogs and that in humans. Multiple canine clinical trials have been completed, and others are in progress with the aim of translating important findings into humans to increase the success rate of human trials, as well as helping pet dogs. Examples of successful targeted therapy studies and the challenges to be met to fully utilize naturally occurring dog models of cancer will be reviewed.
Collapse
|
34
|
Ramsey SA, Xu T, Goodall C, Rhodes AC, Kashyap A, He J, Bracha S. Cross-species analysis of the canine and human bladder cancer transcriptome and exome. Genes Chromosomes Cancer 2017; 56:328-343. [DOI: 10.1002/gcc.22441] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/27/2016] [Accepted: 12/29/2016] [Indexed: 02/06/2023] Open
Affiliation(s)
- Stephen A. Ramsey
- Department of Biomedical Sciences; Oregon State University; Corvallis Oregon USA
- School of Electrical Engineering and Computer Science; Oregon State University; Corvallis Oregon USA
| | - Tanjin Xu
- Department of Biomedical Sciences; Oregon State University; Corvallis Oregon USA
- School of Electrical Engineering and Computer Science; Oregon State University; Corvallis Oregon USA
| | - Cheri Goodall
- Department of Clinical Sciences; Oregon State University; Corvallis Oregon USA
| | - Adelaide C. Rhodes
- Department of Biomedical Sciences; Oregon State University; Corvallis Oregon USA
- Center for Genome Research and Biocomputing, Oregon State University; Corvallis Oregon USA
| | - Amita Kashyap
- Department of Biomedical Sciences; Oregon State University; Corvallis Oregon USA
| | - Jun He
- Department of Biomedical Sciences; Oregon State University; Corvallis Oregon USA
- School of Electrical Engineering and Computer Science; Oregon State University; Corvallis Oregon USA
| | - Shay Bracha
- Department of Clinical Sciences; Oregon State University; Corvallis Oregon USA
| |
Collapse
|
35
|
Genomic profiling of canine mast cell tumors identifies DNA copy number aberrations associated with KIT mutations and high histological grade. Chromosome Res 2017; 25:129-143. [DOI: 10.1007/s10577-016-9543-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 10/20/2022]
|
36
|
Rogers N. Canine clues: Dog genomes explored in effort to bring human cancer to heel. Nat Med 2016; 21:1374-5. [PMID: 26646483 DOI: 10.1038/nm1215-1374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Knapp DW, Ruple-Czerniak A, Ramos-Vara JA, Naughton JF, Fulkerson CM, Honkisz SI. A Nonselective Cyclooxygenase Inhibitor Enhances the Activity of Vinblastine in a Naturally-Occurring Canine Model of Invasive Urothelial Carcinoma. Bladder Cancer 2016; 2:241-250. [PMID: 27376143 PMCID: PMC4927831 DOI: 10.3233/blc-150044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Chemotherapy is expected to remain an important part of invasive urothelial carcinoma (UC) treatment. Strategies to enhance chemotherapy efficacy are needed. Objective: To determine the chemotherapy-enhancing effects of a nonselective cyclooxygenase (COX) inhibitor on vinblastine in a naturally-occurring canine model of invasive UC. Methods: With IACUC approval, privately-owned dogs with naturally-occurring histologically-diagnosed invasive UC, expected survival ≥6 weeks, and informed owner consent were randomly allocated to receive vinblastine (2.5 mg/m2 intravenously every 2 weeks) plus piroxicam (0.3 mg/kg daily per os) or vinblastine alone (same dose) with the option to receive piroxicam alone when vinblastine failed. Scheduled evaluations included physical exam, standard laboratory analyses, thoracic radiography, abdominal ultrasonography, and standardized measurement of urinary tract tumors. Results: Dogs receiving vinblastine alone (n = 27) and vinblastine-piroxicam (n = 24) were similar in age, sex, breed, tumor stage, and grade. Remission occurred more frequently (P < 0.02) with vinblastine-piroxicam (58.3%) than with vinblastine alone (22.2%). The median progression free interval was 143 days with vinblastine alone and 199 days with the combination. Interestingly, the overall median survival time was significantly longer (P < 0.03) in dogs receiving vinblastine alone followed by piroxicam alone (n = 20, 531 days) than in dogs receiving the combination (299 days). Treatment was well tolerated in both arms. Conclusions: Piroxicam significantly enhanced the activity of vinblastine in dogs with UC where the cancer closely mimics the human condition, clearly justifying further study. The study suggest the potential importance of tracking COX inhibitor use in patients in clinical trials as COX inhibitors could affect treatment response.
Collapse
Affiliation(s)
- Deborah W Knapp
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | | | - José A Ramos-Vara
- Department of Comparative Pathobiology, Purdue University , West Lafayette, IN, USA
| | | | | | - Sonia I Honkisz
- Department of Veterinary Clinical Sciences, Purdue University , West Lafayette, IN, USA
| |
Collapse
|
38
|
Schiffman JD, Breen M. Comparative oncology: what dogs and other species can teach us about humans with cancer. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0231. [PMID: 26056372 DOI: 10.1098/rstb.2014.0231] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Over 1.66 million humans (approx. 500/100,000 population rate) and over 4.2 million dogs (approx. 5300/100,000 population rate) are diagnosed with cancer annually in the USA. The interdisciplinary field of comparative oncology offers a unique and strong opportunity to learn more about universal cancer risk and development through epidemiology, genetic and genomic investigations. Working across species, researchers from human and veterinary medicine can combine scientific findings to understand more quickly the origins of cancer and translate these findings to novel therapies to benefit both human and animals. This review begins with the genetic origins of canines and their advantage in cancer research. We next focus on recent findings in comparative oncology related to inherited, or genetic, risk for tumour development. We then detail the somatic, or genomic, changes within tumours and the similarities between species. The shared cancers between humans and dogs that we discuss include sarcoma (osteosarcoma, soft tissue sarcoma, histiocytic sarcoma, hemangiosarcoma), haematological malignancies (lymphoma, leukaemia), bladder cancer, intracranial neoplasms (meningioma, glioma) and melanoma. Tumour risk in other animal species is also briefly discussed. As the field of genomics advances, we predict that comparative oncology will continue to benefit both humans and the animals that live among us.
Collapse
Affiliation(s)
- Joshua D Schiffman
- Department of Pediatrics and Oncological Sciences, Primary Children's Hospital, Intermountain Healthcare, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, Center for Comparative Medicine and Translational Research, Center for Human Health and the Environment, Cancer Genetics, UNC Lineberger Comprehensive Cancer Center, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
39
|
Kennedy K, Thomas R, Breen M. Canine Histiocytic Malignancies-Challenges and Opportunities. Vet Sci 2016; 3:vetsci3010002. [PMID: 29056712 PMCID: PMC5644619 DOI: 10.3390/vetsci3010002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 12/04/2015] [Accepted: 12/14/2015] [Indexed: 12/30/2022] Open
Abstract
Canine histiocytic malignancies (HM) are aggressive tumors that occur with particularly high frequency in certain breeds including Bernese mountain dogs and flat-coated retrievers. Robust diagnosis of HM commonly utilizes immunohistochemical stains that are broadly ineffective on formalin-fixed tissues; thus the diagnosis is often one of exclusion. Clinical outcomes are generally poor, with frequent metastasis and therapeutic failure lowering overall survival at time of diagnosis to an average of less than two months in the majority of published work. The limited understanding of the molecular mechanisms underlying HM has hindered the development of more effective diagnostic modalities and the identification of therapeutic targets. A potential avenue exists for advancing clinical management of canine cancers through extrapolation from a close counterpart in human medicine. Historically, HM have been compared to the rare and understudied subset of human cancers involving the dendritic lineage, such as dendritic cell sarcoma or Langerhans cell sarcoma. Recent data have now thrown into question the cellular origin of HM, suggesting that the disease may originate from the macrophage lineage. This review summarizes existing knowledge of HM from the clinical, histologic and molecular perspectives, and highlights avenues for future research that may aid the development of novel diagnostic and therapeutic approaches. In turn, a more advanced appreciation of the mechanisms underlying HM should clarify their cellular origin and identify appropriate opportunities for synergistic extrapolation between related canine and human cancers.
Collapse
Affiliation(s)
- Katherine Kennedy
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA.
| | - Rachael Thomas
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA.
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA.
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA.
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA.
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27607, USA.
- Cancer Genetics Program, University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA.
| |
Collapse
|
40
|
Mochizuki H, Shapiro SG, Breen M. Detection of BRAF Mutation in Urine DNA as a Molecular Diagnostic for Canine Urothelial and Prostatic Carcinoma. PLoS One 2015; 10:e0144170. [PMID: 26649430 PMCID: PMC4674145 DOI: 10.1371/journal.pone.0144170] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/14/2015] [Indexed: 12/22/2022] Open
Abstract
Urothelial carcinoma (UC) of the lower urinary tract and prostatic carcinoma (PC) are aggressive genitourinary cancers in dogs, characterized by invasion to surrounding tissues and high metastatic potential. Current diagnosis of canine UC and PC requires histopathological examination of a biopsy. Such specimens require specialized medical equipment and are invasive procedures, limiting the availability of diagnosis by histopathology for many canine patients. Access to a non-invasive means to confirm diagnosis is currently an unmet need. Recently, the canine BRAF V595E mutation was detected in ~80% of canine UCs and PCs. In this study, we developed a droplet digital PCR (ddPCR) assay for detection of the canine BRAF V595E mutation in canine urogenital tumors. The assay was evaluated in DNA samples prepared from biopsy specimens of UC (n = 48) and PC (n = 27), as well and non-neoplastic bladder epithelium (n = 38). In addition the assay was assessed for use with DNA isolated from free catch urine samples derived from canine patients with UC (n = 23), PC (n = 3), as well as from dogs with cystitis and healthy controls (n = 37). In all cases the sensitivity to detect the mutant allele was compared with conventional Sanger sequencing. ddPCR had superior sensitivity for detection of the V595E mutation: 75% of UC, 85% of PC, and 0% of control samples were mutation positive, respectively, and the V595E mutation was detected at a level as low as just 1 in 10,000 alleles (~0.01%). Furthermore, the ddPCR assay identified the mutation in free catch urine samples from 83% of canine UC and PC patients, demonstrating its utility as a non-invasive means of diagnosis. We have shown that ddPCR is a sensitive molecular technique with the potential to facilitate accurate and non-invasive means of canine UC and PC diagnosis.
Collapse
Affiliation(s)
- Hiroyuki Mochizuki
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Susan G. Shapiro
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
41
|
Detection of Copy Number Imbalance in Canine Urothelial Carcinoma With Droplet Digital Polymerase Chain Reaction. Vet Pathol 2015; 53:764-72. [DOI: 10.1177/0300985815614975] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Urothelial carcinoma (UC) is the most common neoplasm of the canine urinary tract. Clinical presentation of UC is shared with several other, more common urinary tract disorders, and this often delays diagnosis of the UC. Definitive diagnosis of UC requires histopathologic examination of a biopsy specimen, but the cost and invasiveness for these diagnostic tests often result in most diagnoses being made on the basis of clinical findings, diagnostic imaging, and cytologic examination of urine sediment. Regardless of the diagnostic process used, most UCs currently are not diagnosed until they are at an advanced clinical stage and so are associated with poor prognosis. Improved methods for earlier and less invasive detection are needed. In a previous study, the authors demonstrated the presence of highly recurrent DNA copy number aberrations (CNAs) in canine UC and hypothesized that detection of these CNAs in tumor cells can be used as a molecular diagnostic for UC. In this study, a multiplexed droplet digital polymerase chain reaction (ddPCR) assay was detected to detect and quantify CNAs of specific regions of canine chromosomes 8, 13, 19, and 36. The assay was effective at differentiating 31 neoplastic and 25 nonneoplastic bladder tissues based on copy number, with 100% sensitivity and specificity in tissue samples. CNAs were also detected by ddPCR in 67% (12 of 18) of urine DNA specimens derived from UC patients. The findings show that ddPCR is a useful molecular technique to detect CNAs and may be used as a noninvasive molecular diagnostic test for canine UC.
Collapse
|
42
|
Shapiro SG, Knapp DW, Breen M. A cultured approach to canine urothelial carcinoma: molecular characterization of five cell lines. Canine Genet Epidemiol 2015; 2:15. [PMID: 26401343 PMCID: PMC4579363 DOI: 10.1186/s40575-015-0028-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/26/2015] [Indexed: 01/08/2023] Open
Abstract
Background Urothelial carcinoma (UC), also known as transitional cell carcinoma (TCC), of the bladder is the most common neoplasm affecting the canine urogenital system. To facilitate study of the disease in vitro, cell line models have been established from primary tumor biopsies. Their resemblance to the primary disease, however, has not been well defined. In the present study, we evaluated five canine UC cell lines via oligonucleotide array comparative genomic hybridization (oaCGH), fluorescence in situ hybridization (FISH), and gene expression analysis. Results Comparison of genome wide DNA copy number profiles of the cell lines with primary biopsy specimens revealed redundancies in genomic aberrations, indicating that the cell lines retain the gross genomic architecture of primary tumors. As in the primary tumors, gain of canine chromosomes 13 and 36 and loss of chromosome 19 were among the most frequent aberrations evident in the cell lines. FISH analysis revealed chromosome structural aberrations, including tandem duplications, bi-armed chromosomes, and chromosome fusions, suggesting genome instability during neoplastic transformation. Gene expression profiling highlighted numerous differentially expressed genes, including many previously shown as dysregulated in primary canine UC and human bladder cancer. Pathway enrichment analysis emphasized pathways suspected to be at the crux of UC pathogenesis, including xenobiotic and lipid compound metabolism. Conclusions These data support valid use of the canine UC cell lines evaluated by confirming they provide an accurate and practical means to interrogate the UC at a molecular level. Moreover, the cell lines may provide a valuable model for furthering our understanding of aberrant metabolic pathways in UC development. Electronic supplementary material The online version of this article (doi:10.1186/s40575-015-0028-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- S G Shapiro
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607 USA
| | - D W Knapp
- Department of Veterinary Clinical Sciences, Purdue University, College of Veterinary Medicine, West Lafayette, IN USA ; Purdue University Center for Cancer Research, West Lafayette, IN USA
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607 USA ; Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC USA ; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC USA ; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
43
|
Comparative Aspects of BRAF Mutations in Canine Cancers. Vet Sci 2015; 2:231-245. [PMID: 29061943 PMCID: PMC5644641 DOI: 10.3390/vetsci2030231] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/14/2015] [Accepted: 08/19/2015] [Indexed: 01/07/2023] Open
Abstract
Activating mutations of the BRAF gene lead to constitutive activation of the MAPK pathway. The characterization and discovery of BRAF mutations in a variety of human cancers has led to the development of specific inhibitors targeting the BRAF/MAPK pathway and dramatically changed clinical outcomes in BRAF-mutant melanoma patients. Recent discovery of BRAF mutation in canine cancers underscores the importance of MAPK pathway activation as an oncogenic molecular alteration evolutionarily conserved between species. A comparative approach using the domestic dog as a spontaneous cancer model will provide new insights into the dysregulation of BRAF/MAPK pathway in carcinogenesis and facilitate in vivo studies to evaluate therapeutic strategies targeting this pathway's molecules for cancer therapy. The BRAF mutation in canine cancers may also represent a molecular marker and therapeutic target in veterinary oncology. This review article summarizes the current knowledge on BRAF mutations in human and canine cancers and discusses the potential applications of this abnormality in veterinary oncology.
Collapse
|
44
|
Roode SC, Rotroff D, Avery AC, Suter SE, Bienzle D, Schiffman JD, Motsinger-Reif A, Breen M. Genome-wide assessment of recurrent genomic imbalances in canine leukemia identifies evolutionarily conserved regions for subtype differentiation. Chromosome Res 2015; 23:681-708. [PMID: 26037708 DOI: 10.1007/s10577-015-9475-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/02/2015] [Accepted: 05/05/2015] [Indexed: 11/30/2022]
Abstract
Leukemia in dogs is a heterogeneous disease with survival ranging from days to years, depending on the subtype. Strides have been made in both human and canine leukemia to improve classification and understanding of pathogenesis through immunophenotyping, yet classification and choosing appropriate therapy remains challenging. In this study, we assessed 123 cases of canine leukemia (28 ALLs, 24 AMLs, 25 B-CLLs, and 46 T-CLLs) using high-resolution oligonucleotide array comparative genomic hybridization (oaCGH) to detect DNA copy number alterations (CNAs). For the first time, such data were used to identify recurrent CNAs and inclusive genes that may be potential drivers of subtype-specific pathogenesis. We performed predictive modeling to identify CNAs that could reliably differentiate acute subtypes (ALL vs. AML) and chronic subtypes (B-CLL vs. T-CLL) and used this model to differentiate cases with up to 83.3 and 95.8 % precision, respectively, based on CNAs at only one to three genomic regions. In addition, CGH datasets for canine and human leukemia were compared to reveal evolutionarily conserved copy number changes between species, including the shared gain of HSA 21q in ALL and ∼25 Mb of shared gain of HSA 12 and loss of HSA 13q14 in CLL. These findings support the use of canine leukemia as a relevant in vivo model for human leukemia and justify the need to further explore the conserved genomic regions of interest for their clinical impact.
Collapse
Affiliation(s)
- Sarah C Roode
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| | - Daniel Rotroff
- Bioinformatics Research Center, Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | - Anne C Avery
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, CO, USA
| | - Steven E Suter
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC, USA.,Cancer Genetics Program, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Dorothee Bienzle
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Joshua D Schiffman
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA.,Department of Oncological Sciences, Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Alison Motsinger-Reif
- Bioinformatics Research Center, Department of Statistics, North Carolina State University, Raleigh, NC, USA.,Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC, USA
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA. .,Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC, USA. .,Cancer Genetics Program, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
45
|
Omeir R, Thomas R, Teferedegne B, Williams C, Foseh G, Macauley J, Brinster L, Beren J, Peden K, Breen M, Lewis AM. A novel canine kidney cell line model for the evaluation of neoplastic development: karyotype evolution associated with spontaneous immortalization and tumorigenicity. Chromosome Res 2015; 23:663-80. [PMID: 25957863 PMCID: PMC4666904 DOI: 10.1007/s10577-015-9474-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/12/2015] [Accepted: 04/14/2015] [Indexed: 01/01/2023]
Abstract
The molecular mechanisms underlying spontaneous neoplastic transformation in cultured mammalian cells remain poorly understood, confounding recognition of parallels with the biology of naturally occurring cancer. The broad use of tumorigenic canine cell lines as research tools, coupled with the accumulation of cytogenomic data from naturally occurring canine cancers, makes the domestic dog an ideal system in which to investigate these relationships. We developed a canine kidney cell line, CKB1-3T7, which allows prospective examination of the onset of spontaneous immortalization and tumorigenicity. We documented the accumulation of cytogenomic aberrations in CKB1-3T7 over 24 months in continuous culture. The majority of aberrations emerged in parallel with key phenotypic changes in cell morphology, growth kinetics, and tumor incidence and latency. Focal deletion of CDKN2A/B emerged first, preceding the onset and progression of tumorigenic potential, and progressed to a homozygous deletion across the cell population during extended culture. Interestingly, CKB1-3T7 demonstrated a tumorigenic phenotype in vivo prior to exhibiting loss of contact inhibition in vitro. We also performed the first genome-wide characterization of the canine tumorigenic cell line MDCK, which also exhibited CDKN2A/B deletion. MDCK and CKB1-3T7 cells shared several additional aberrations that we have reported previously as being highly recurrent in spontaneous canine cancers, many of which, as with CDKN2A/B deletion, are evolutionarily conserved in their human counterparts. The conservation of these molecular events across multiple species, in vitro and in vivo, despite their contrasting karyotypic architecture, is a powerful indicator of a common mechanism underlying emerging neoplastic activity. Through integrated cytogenomic and phenotypic characterization of serial passages of CKB1-3T7 from initiation to development of a tumorigenic phenotype, we present a robust and readily accessible model (to be made available through the American Type Culture Collection) of spontaneous neoplastic transformation that overcomes many of the limitations of earlier studies.
Collapse
Affiliation(s)
- R Omeir
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - R Thomas
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA.,Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC, 27607, USA
| | - B Teferedegne
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - C Williams
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| | - G Foseh
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - J Macauley
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - L Brinster
- Division of Veterinary Resources, National Institutes of Health, Bethesda, MD, 20892, USA
| | - J Beren
- Office of Counter-Terrorism and Emergency Coordination, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - K Peden
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - M Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA. .,Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC, 27607, USA. .,Cancer Genetics Program, University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, 27599, USA. .,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27607, USA.
| | - A M Lewis
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA.
| |
Collapse
|