1
|
Ruiz SE, Maul RW, Gearhart PJ. Optimized CUT&RUN protocol for activated primary mouse B cells. PLoS One 2025; 20:e0322139. [PMID: 40273386 PMCID: PMC12021426 DOI: 10.1371/journal.pone.0322139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/17/2025] [Indexed: 04/26/2025] Open
Abstract
ChIP-seq has long been the standard for study of chromatin-protein interactions. However, development of a new technique, CUT&RUN, showed substantial advantages compared to ChIP-seq including higher quality signal while using substantially less sample. While a powerful technique, the original protocol was designed using cell lines and histones as targets. Due to their fragility, this was unsuitable for obtaining high-quality data from activated primary B lymphocytes. To adapt this protocol for B cells, cells were fixed prior to nuclear isolation, and several critical adjustments were introduced to the procedure and reagents. We measured binding of H3K4me3 histone and RNA Polymerase II, detecting robust peaks with as little as 100k nuclei. Additionally, freeze-thaw of B cells prior to processing did not affect results, emphasizing the flexibility of this modified technique. Using the protocol described here will allow one to quantify non-histone proteins bound to DNA from limited numbers of B cells with more efficiency than can be achieved from the current standard, ChIP-seq.
Collapse
Affiliation(s)
- Stormy E. Ruiz
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Robert W. Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Patricia J. Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| |
Collapse
|
2
|
Abbasova L, Urbanaviciute P, Hu D, Ismail JN, Schilder BM, Nott A, Skene NG, Marzi SJ. CUT&Tag recovers up to half of ENCODE ChIP-seq histone acetylation peaks. Nat Commun 2025; 16:2993. [PMID: 40148272 PMCID: PMC11950320 DOI: 10.1038/s41467-025-58137-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
DNA-protein interactions have traditionally been profiled via chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq). Cleavage Under Targets & Tagmentation (CUT&Tag) is a rapidly expanding technique that enables the profiling of such interactions in situ at high sensitivity. However, thorough evaluation and benchmarking against established ChIP-seq datasets are lacking. Here, we comprehensively benchmarked CUT&Tag for H3K27ac and H3K27me3 against published ChIP-seq profiles from ENCODE in K562 cells. Combining multiple new and published CUT&Tag datasets, there was an average recall of 54% known ENCODE peaks for both histone modifications. We tested peak callers MACS2 and SEACR and identified optimal peak calling parameters. Overall, peaks identified by CUT&Tag represent the strongest ENCODE peaks and show the same functional and biological enrichments as ChIP-seq peaks identified by ENCODE. Our workflow systematically evaluates the merits of methodological adjustments, providing a benchmarking framework for the experimental design and analysis of CUT&Tag studies.
Collapse
Affiliation(s)
- Leyla Abbasova
- UK Dementia Research Institute at Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Paulina Urbanaviciute
- UK Dementia Research Institute at King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Di Hu
- UK Dementia Research Institute at Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Joy N Ismail
- UK Dementia Research Institute at King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Brian M Schilder
- UK Dementia Research Institute at Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Alexi Nott
- UK Dementia Research Institute at Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Nathan G Skene
- UK Dementia Research Institute at Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Sarah J Marzi
- Department of Brain Sciences, Imperial College London, London, UK.
- UK Dementia Research Institute at King's College London, London, UK.
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
3
|
Park BJ, Hua S, Casler KD, Cefaloni E, Ayers MC, Lake RF, Murphy KE, Vertino PM, O'Connell MR, Murphy PJ. CUT&Tag Identifies Repetitive Genomic Loci that are Excluded from ChIP Assays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636299. [PMID: 39974916 PMCID: PMC11838576 DOI: 10.1101/2025.02.03.636299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Determining the genomic localization of chromatin features is an essential aspect of investigating gene expression control, and ChIP-Seq has long been the gold standard technique for interrogating chromatin landscapes. Recently, the development of alternative methods, such as CUT&Tag, have provided researchers with alternative strategies that eliminate the need for chromatin purification, and allow for in situ investigation of histone modifications and chromatin bound factors. Mindful of technical differences, we set out to investigate whether distinct chromatin modifications were equally compatible with these different chromatin interrogation techniques. We found that ChIP-Seq and CUT&Tag performed similarly for modifications known to reside at gene regulatory regions, such as promoters and enhancers, but major differences were observed when we assessed enrichment over heterochromatin-associated loci. Unlike ChIP-Seq, CUT&Tag detects robust levels of H3K9me3 at a substantial number of repetitive elements, with especially high sensitivity over evolutionarily young retrotransposons. IAPEz-int elements for example, exhibited underrepresentation in mouse ChIP-Seq datasets but strong enrichment using CUT&Tag. Additionally, we identified several euchromatin-associated proteins that co-purify with repetitive loci and are similarly depleted when applying ChIP-based methods. This study reveals that our current knowledge of chromatin states across the heterochromatin portions of the mammalian genome is extensively incomplete, largely due to limitations of ChIP-Seq. We also demonstrate that newer in situ chromatin fragmentation-based techniques, such as CUT&Tag and CUT&RUN, are more suitable for studying chromatin modifications over repetitive elements and retrotransposons.
Collapse
Affiliation(s)
- Brandon J Park
- University of Rochester Medical Center, Wilmot Cancer Center, Department of Biomedical Genetics
- University of Rochester Medical Center, The Department of Biochemistry & Biophysics
| | - Shan Hua
- University of Rochester Medical Center, Wilmot Cancer Center, Department of Biomedical Genetics
- University of Rochester, Department of Biology
| | - Karli D Casler
- University of Rochester Medical Center, Wilmot Cancer Center, Department of Biomedical Genetics
- University of Rochester, Department of Biology
| | - Eric Cefaloni
- University of Rochester Medical Center, Wilmot Cancer Center, Department of Biomedical Genetics
- University of Rochester, Department of Biology
| | - Michael C Ayers
- University of Rochester Medical Center, Wilmot Cancer Center, Department of Biomedical Genetics
| | - Rahiim F Lake
- University of Rochester Medical Center, The Department of Biochemistry & Biophysics
| | - Kristin E Murphy
- University of Rochester Medical Center, Wilmot Cancer Center, Department of Biomedical Genetics
| | - Paula M Vertino
- University of Rochester Medical Center, Wilmot Cancer Center, Department of Biomedical Genetics
| | - Mitchell R O'Connell
- University of Rochester Medical Center, The Department of Biochemistry & Biophysics
| | - Patrick J Murphy
- University of Rochester Medical Center, Wilmot Cancer Center, Department of Biomedical Genetics
- University of Rochester, Department of Biology
- Cornell University, Department of Molecular Biology and Genetics
| |
Collapse
|
4
|
Mizi A, Tsitsianopoulos M, Papantonis A. Selective Sorting of Senescent Cell Subpopulations Compatible with Downstream Genomics Applications. Methods Mol Biol 2025; 2906:45-55. [PMID: 40082349 DOI: 10.1007/978-1-0716-4426-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The dynamic character of senescence renders detection and selection of senescent cells challenging. One key feature of senescence is the alteration of chromatin features, and many methods for studying chromatin require only mild fixation of cells. The recent development of GLF16 compound allows for the selection of senescent cells in a population via fluorescence-activated cell sorting. Here, we detail two versions of a modified protocol that uses GLF16 to selectively sort senescent cells so as to be used in downstream genomics applications that require special fixation and permeabilization conditions. As proof of principle, we sort a subpopulation of senescent fetal lung fibroblasts and subject it to standard transcriptomics analysis, while the same procedure could potentially be coupled to other assays like CUT&RUN, CUT&Tag, ATAC-seq, or Hi-C/Micro-C.
Collapse
Affiliation(s)
- Athanasia Mizi
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
5
|
Pepin AS, Schneider R. Emerging toolkits for decoding the co-occurrence of modified histones and chromatin proteins. EMBO Rep 2024; 25:3202-3220. [PMID: 39095610 PMCID: PMC11316037 DOI: 10.1038/s44319-024-00199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
In eukaryotes, DNA is packaged into chromatin with the help of highly conserved histone proteins. Together with DNA-binding proteins, posttranslational modifications (PTMs) on these histones play crucial roles in regulating genome function, cell fate determination, inheritance of acquired traits, cellular states, and diseases. While most studies have focused on individual DNA-binding proteins, chromatin proteins, or histone PTMs in bulk cell populations, such chromatin features co-occur and potentially act cooperatively to accomplish specific functions in a given cell. This review discusses state-of-the-art techniques for the simultaneous profiling of multiple chromatin features in low-input samples and single cells, focusing on histone PTMs, DNA-binding, and chromatin proteins. We cover the origins of the currently available toolkits, compare and contrast their characteristic features, and discuss challenges and perspectives for future applications. Studying the co-occurrence of histone PTMs, DNA-binding proteins, and chromatin proteins in single cells will be central for a better understanding of the biological relevance of combinatorial chromatin features, their impact on genomic output, and cellular heterogeneity.
Collapse
Affiliation(s)
- Anne-Sophie Pepin
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, Neuherberg, Germany
| | - Robert Schneider
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, Neuherberg, Germany.
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
6
|
Ishii S, Kakizuka T, Park SJ, Tagawa A, Sanbo C, Tanabe H, Ohkawa Y, Nakanishi M, Nakai K, Miyanari Y. Genome-wide ATAC-see screening identifies TFDP1 as a modulator of global chromatin accessibility. Nat Genet 2024; 56:473-482. [PMID: 38361031 DOI: 10.1038/s41588-024-01658-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
Chromatin accessibility is a hallmark of active regulatory regions and is functionally linked to transcriptional networks and cell identity. However, the molecular mechanisms and networks that govern chromatin accessibility have not been thoroughly studied. Here we conducted a genome-wide CRISPR screening combined with an optimized ATAC-see protocol to identify genes that modulate global chromatin accessibility. In addition to known chromatin regulators like CREBBP and EP400, we discovered a number of previously unrecognized proteins that modulate chromatin accessibility, including TFDP1, HNRNPU, EIF3D and THAP11 belonging to diverse biological pathways. ATAC-seq analysis upon their knockouts revealed their distinct and specific effects on chromatin accessibility. Remarkably, we found that TFDP1, a transcription factor, modulates global chromatin accessibility through transcriptional regulation of canonical histones. In addition, our findings highlight the manipulation of chromatin accessibility as an approach to enhance various cell engineering applications, including genome editing and induced pluripotent stem cell reprogramming.
Collapse
Affiliation(s)
- Satoko Ishii
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Taishi Kakizuka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Sung-Joon Park
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ayako Tagawa
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Chiaki Sanbo
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Hideyuki Tanabe
- Research Center for Integrative Evolutionary Science, SOKENDAI, Hayama, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | - Kenta Nakai
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Miyanari
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Japan.
- Cancer Research Institute, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
7
|
Miller G, Rollosson LM, Saada C, Wade SJ, Schulz D. Adaptation of CUT&RUN for use in African trypanosomes. PLoS One 2023; 18:e0292784. [PMID: 37988382 PMCID: PMC10662711 DOI: 10.1371/journal.pone.0292784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/28/2023] [Indexed: 11/23/2023] Open
Abstract
This Cleavage Under Targets and Release Using Nuclease (CUT&RUN) protocol produces genomic occupancy data for a protein of interest in the protozoan parasite Trypanosoma brucei. The data produced is analyzed in a similar way as that produced by ChIP-seq. While we describe the protocol for parasites carrying an epitope tag for the protein of interest, antibodies against the native protein could be used for the same purpose.
Collapse
Affiliation(s)
- Geneva Miller
- Harvey Mudd College, Claremont, CA, United States of America
| | | | - Carrie Saada
- Harvey Mudd College, Claremont, CA, United States of America
| | | | - Danae Schulz
- Harvey Mudd College, Claremont, CA, United States of America
| |
Collapse
|
8
|
Yu Z, Spiegel J, Melidis L, Hui WWI, Zhang X, Radzevičius A, Balasubramanian S. Chem-map profiles drug binding to chromatin in cells. Nat Biotechnol 2023; 41:1265-1271. [PMID: 36690761 PMCID: PMC10497411 DOI: 10.1038/s41587-022-01636-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/06/2022] [Indexed: 01/25/2023]
Abstract
Characterizing drug-target engagement is essential to understand how small molecules influence cellular functions. Here we present Chem-map for in situ mapping of small molecules that interact with DNA or chromatin-associated proteins, utilizing small-molecule-directed transposase Tn5 tagmentation. We demonstrate Chem-map for three distinct drug-binding modalities as follows: molecules that target a chromatin protein, a DNA secondary structure or that intercalate in DNA. We map the BET bromodomain protein-binding inhibitor JQ1 and provide interaction maps for DNA G-quadruplex structure-binding molecules PDS and PhenDC3. Moreover, we determine the binding sites of the widely used anticancer drug doxorubicin in human leukemia cells; using the Chem-map of doxorubicin in cells exposed to the histone deacetylase inhibitor tucidinostat reveals the potential clinical advantages of this combination therapy. In situ mapping with Chem-map of small-molecule interactions with DNA and chromatin proteins provides insights that will enhance understanding of genome and chromatin function and therapeutic interventions.
Collapse
Affiliation(s)
- Zutao Yu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jochen Spiegel
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Larry Melidis
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Winnie W I Hui
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Xiaoyun Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Antanas Radzevičius
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Shankar Balasubramanian
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
9
|
Salma M, Andrieu-Soler C, Deleuze V, Soler E. High-throughput methods for the analysis of transcription factors and chromatin modifications: Low input, single cell and spatial genomic technologies. Blood Cells Mol Dis 2023; 101:102745. [PMID: 37121019 DOI: 10.1016/j.bcmd.2023.102745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
Genome-wide analysis of transcription factors and epigenomic features is instrumental to shed light on DNA-templated regulatory processes such as transcription, cellular differentiation or to monitor cellular responses to environmental cues. Two decades of technological developments have led to a rich set of approaches progressively pushing the limits of epigenetic profiling towards single cells. More recently, disruptive technologies using innovative biochemistry came into play. Assays such as CUT&RUN, CUT&Tag and variations thereof show considerable potential to survey multiple TFs or histone modifications in parallel from a single experiment and in native conditions. These are in the path to become the dominant assays for genome-wide analysis of TFs and chromatin modifications in bulk, single-cell, and spatial genomic applications. The principles together with pros and cons are discussed.
Collapse
Affiliation(s)
- Mohammad Salma
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Université de Paris, Laboratory of Excellence GR-Ex, France
| | - Charlotte Andrieu-Soler
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Université de Paris, Laboratory of Excellence GR-Ex, France
| | - Virginie Deleuze
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Université de Paris, Laboratory of Excellence GR-Ex, France
| | - Eric Soler
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Université de Paris, Laboratory of Excellence GR-Ex, France.
| |
Collapse
|
10
|
Teng X, Dai Y, Li K, Wu Y, Hou H, Li J. LiveG4ID-Seq for Profiling the Dynamic Landscape of Chromatin G-Quadruplexes During Cell Cycle in Living Cells. SMALL METHODS 2023; 7:e2201487. [PMID: 36739600 DOI: 10.1002/smtd.202201487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/11/2023] [Indexed: 06/18/2023]
Abstract
G-quadruplex (G4) structures exist in the single-stranded DNA of chromatin and regulate genome function. However, the native chromatin G4 landscape in living cells has yet to be fully characterized. Herein, a genetic-encoded live-cell G4 identifier probe (LiveG4ID) is constructed and its cellular localization, biocompatibility, and G4-binding specificity is evaluated. By coupling LiveG4ID with cleavage under targets and tagmentation (CUT&Tag), LiveG4ID-seq, a method for mapping native chromatin G4 landscape in living cells with high accuracy is established. Compared to the conventional G4 CUT&Tag method, LiveG4ID-seq can identify more chromatin G4 signals and have a higher ratio of true positive signals. Using LiveG4ID-seq, the dynamic landscape of chromatin G4 structures during the cell cycle is profiled. It is discovered that chromatin G4 structures are prevalent in the promoter regions of cell cycle-specific genes, even in the early M phase when the chromatin is condensed. These data demonstrate the capacity of LiveG4ID-seq to profile a more accurate G4 landscape in living cells and promote future studies on chromatin G4 structures.
Collapse
Affiliation(s)
- Xucong Teng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yicong Dai
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Ke Li
- Novoprotein Scientific Inc., Shanghai, 201210, China
| | - Yuncong Wu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, 450001, China
- Beijing Institute of Life Science and Technology, Beijing, 100101, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
11
|
Neill G, Masson GR. A stay of execution: ATF4 regulation and potential outcomes for the integrated stress response. Front Mol Neurosci 2023; 16:1112253. [PMID: 36825279 PMCID: PMC9941348 DOI: 10.3389/fnmol.2023.1112253] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
ATF4 is a cellular stress induced bZIP transcription factor that is a hallmark effector of the integrated stress response. The integrated stress response is triggered by phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 complex that can be carried out by the cellular stress responsive kinases; GCN2, PERK, PKR, and HRI. eIF2α phosphorylation downregulates mRNA translation initiation en masse, however ATF4 translation is upregulated. The integrated stress response can output two contradicting outcomes in cells; pro-survival or apoptosis. The mechanism for choice between these outcomes is unknown, however combinations of ATF4 heterodimerisation partners and post-translational modifications have been linked to this regulation. This semi-systematic review article covers ATF4 target genes, heterodimerisation partners and post-translational modifications. Together, this review aims to be a useful resource to elucidate the mechanisms controlling the effects of the integrated stress response. Additional putative roles of the ATF4 protein in cell division and synaptic plasticity are outlined.
Collapse
Affiliation(s)
- Graham Neill
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | | |
Collapse
|
12
|
Wang M, Li Q, Liu L. Factors and Methods for the Detection of Gene Expression Regulation. Biomolecules 2023; 13:biom13020304. [PMID: 36830673 PMCID: PMC9953580 DOI: 10.3390/biom13020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Gene-expression regulation involves multiple processes and a range of regulatory factors. In this review, we describe the key factors that regulate gene expression, including transcription factors (TFs), chromatin accessibility, histone modifications, DNA methylation, and RNA modifications. In addition, we also describe methods that can be used to detect these regulatory factors.
Collapse
|
13
|
Morillo RC, Harris CT, Kennedy K, Henning SR, Kafsack BF. Genome-wide profiling of histone modifications in Plasmodium falciparum using CUT&RUN. Life Sci Alliance 2023; 6:e202201778. [PMID: 36379668 PMCID: PMC9670794 DOI: 10.26508/lsa.202201778] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
We recently adapted a CUT&RUN protocol for genome-wide profiling of chromatin modifications in the human malaria parasite Plasmodium Using the step-by-step protocol described below, we were able to generate high-quality profiles of multiple histone modifications using only a small fraction of the cells required for ChIP-seq. Using antibodies against two commonly profiled histone modifications, H3K4me3 and H3K9me3, we show here that CUT&RUN profiling is highly reproducible and closely recapitulates previously published ChIP-seq-based abundance profiles of histone marks. Finally, we show that CUT&RUN requires substantially lower sequencing coverage for accurate profiling compared with ChIP-seq.
Collapse
Affiliation(s)
| | - Chantal T Harris
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, New York, NY, USA
| | - Kit Kennedy
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Samuel R Henning
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Björn Fc Kafsack
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
14
|
Ding D, Braun T. Efficient Genome-Wide Chromatin Profiling by CUT&RUN with Low Numbers of Muscle Stem Cells. Methods Mol Biol 2023; 2640:413-430. [PMID: 36995610 DOI: 10.1007/978-1-0716-3036-5_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Adult muscle stem cells (MuSCs), also called satellite cells, are situated under the basal lamina of myofibers in skeletal muscles. MuSCs are instrumental for postnatal muscle growth and regeneration of skeletal muscles. Under physiological conditions, the majority of MuSCs is actively maintained in a quiescent state but becomes rapidly activated during muscle regeneration, which is accompanied with massive changes in the epigenome. Moreover, aging, but also pathological conditions, such as in muscle dystrophy, results in profound changes of the epigenome, which can be monitored with different approaches. However, a better understanding of the role of chromatin dynamics in MuSCs and its function for skeletal muscle physiology and disease has been hampered by technical limitations, mostly due to the relatively low number of MuSCs but also due to the strongly condensed chromatin state of quiescent MuSCs. Traditional chromatin immunoprecipitation (ChIP) usually requires large amounts of cells and has several other shortcomings. Cleavage Under Targets and Release Using Nuclease (CUT&RUN) is a simple alternative to ChIP for chromatin profiling, providing higher efficiency and better resolution at lower costs. CUT&RUN maps genome-wide chromatin features, including genome-wide localization of transcription factor binding in small numbers of freshly isolated MuSCs, facilitating analysis of different subpopulations of MuSCs. Here we describe an optimized protocol to profile global chromatin in freshly isolated MuSCs using CUT&RUN.
Collapse
Affiliation(s)
- Dong Ding
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany.
| |
Collapse
|
15
|
Cell-type specific profiling of histone post-translational modifications in the adult mouse striatum. Nat Commun 2022; 13:7720. [PMID: 36513652 PMCID: PMC9747932 DOI: 10.1038/s41467-022-35384-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
Epigenetic gene regulation in the heterogeneous brain remains challenging to decipher with current strategies. Bulk tissue analysis from pooled subjects reflects the average of cell-type specific changes across cell-types and individuals, which obscures causal relationships between epigenetic modifications, regulation of gene expression, and complex pathology. To address these limitations, we optimized a hybrid protocol, ICuRuS, for the isolation of nuclei tagged in specific cell-types and histone post translational modification profiling from the striatum of a single mouse. We combined affinity-based isolation of the medium spiny neuron subtypes, Adenosine 2a Receptor or Dopamine Receptor D1, with cleavage of histone-DNA complexes using an antibody-targeted micrococcal nuclease to release DNA complexes for paired end sequencing. Unlike fluorescence activated cell sorting paired with chromatin immunoprecipitation, ICuRuS allowed for robust epigenetic profiling at cell-type specific resolution. Our analysis provides a framework to understand combinatorial relationships between neuronal-subtype-specific epigenetic modifications and gene expression.
Collapse
|
16
|
Angelov D, Boopathi R, Lone IN, Menoni H, Dimitrov S, Cadet J. Capturing Protein-Nucleic Acid Interactions by High-Intensity Laser-Induced Covalent Crosslinking. Photochem Photobiol 2022; 99:296-312. [PMID: 35997098 DOI: 10.1111/php.13699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022]
Abstract
Interactions of DNA with structural proteins such as histones, regulatory proteins, and enzymes play a crucial role in major cellular processes such as transcription, replication and repair. The in vivo mapping and characterization of the binding sites of the involved biomolecules are of primary importance for a better understanding of genomic deployment that is implicated in tissue and developmental stage-specific gene expression regulation. The most powerful and commonly used approach to date is immunoprecipitation of chemically cross-linked chromatin (XChIP) coupled with sequencing analysis (ChIP-seq). While the resolution and the sensitivity of the high-throughput sequencing techniques have been constantly improved little progress has been achieved in the crosslinking step. Because of its low efficiency the use of the conventional UVC lamps remains very limited while the formaldehyde method was established as the "gold standard" crosslinking agent. Efficient biphotonic crosslinking of directly interacting nucleic acid-protein complexes by a single short UV laser pulse has been introduced as an innovative technique for overcoming limitations of conventionally used chemical and photochemical approaches. In this survey, the main available methods including the laser approach are critically reviewed for their ability to generate DNA-protein crosslinks in vitro model systems and cells.
Collapse
Affiliation(s)
- Dimitar Angelov
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule LBMC, CNRS UMR 5239, 46 Allée d'Italie, 69007, Lyon, France.,Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balçova, Izmir 35330, Turkey
| | - Ramachandran Boopathi
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule LBMC, CNRS UMR 5239, 46 Allée d'Italie, 69007, Lyon, France.,Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000, Grenoble, France
| | - Imtiaz Nisar Lone
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balçova, Izmir 35330, Turkey
| | - Hervé Menoni
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700, La Tronche, France
| | - Stefan Dimitrov
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700, La Tronche, France
| | - Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| |
Collapse
|
17
|
An improved CUT&RUN method for regulation network reconstruction of low abundance transcription factor. Cell Signal 2022; 96:110361. [DOI: 10.1016/j.cellsig.2022.110361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022]
|
18
|
Abstract
Cleavage under targets and release using nuclease (CUT&RUN) is a recently developed chromatin profiling technique that uses a targeted micrococcal nuclease cleavage strategy to obtain high-resolution binding profiles of protein factors or to map histones with specific post-translational modifications. Due to its high sensitivity, CUT&RUN allows quality binding profiles to be obtained with only a fraction of the starting material and sequencing depth typically required for other chromatin profiling techniques such as chromatin immunoprecipitation. Although CUT&RUN has been widely adopted in multiple model systems, it has rarely been utilized in Caenorhabditis elegans, a model system of great importance to genomic research. Cell dissociation techniques, which are required for this approach, can be challenging in C. elegans due to the toughness of the worm's cuticle and the sensitivity of the cells themselves. Here, we describe a robust CUT&RUN protocol for use in C. elegans to determine the genome-wide localization of protein factors and specific histone marks. With a simple protocol utilizing live, uncrosslinked tissue as the starting material, performing CUT&RUN in worms has the potential to produce physiologically relevant data at a higher resolution than chromatin immunoprecipitation. This protocol involves a simple dissociation step to uniformly permeabilize worms while avoiding sample loss or cell damage, resulting in high-quality CUT&RUN profiles with as few as 100 worms and detectable signal with as few as 10 worms. This represents a significant advancement over chromatin immunoprecipitation, which typically uses thousands or hundreds of thousands of worms for a single experiment. The protocols presented here provide a detailed description of worm growth, sample preparation, CUT&RUN workflow, library preparation for high-throughput sequencing, and a basic overview of data analysis, making CUT&RUN simple and accessible for any worm lab. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Growth and synchronization of C. elegans Basic Protocol 2: Worm dissociation, sample preparation, and optimization Basic Protocol 3: CUT&RUN chromatin profiling Alternate Protocol: Improving CUT&RUN signal using a secondary antibody Basic Protocol 4: CUT&RUN library preparation for Illumina high-throughput sequencing Basic Protocol 5: Basic data analysis using Linux.
Collapse
Affiliation(s)
- Felicity J. Emerson
- Department of Molecular Biology and Genetics, Cornell
University, Ithaca, NY, 14850
- Biomedical and Biological Sciences Ph.D. Program, Cornell
University, Ithaca, NY, 14850
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell
University, Ithaca, NY, 14850
| |
Collapse
|
19
|
Cao H, Wang Y, Zhang N, Xia S, Tian P, Lu L, Du J, Du Y. Progress of CRISPR-Cas13 Mediated Live-Cell RNA Imaging and Detection of RNA-Protein Interactions. Front Cell Dev Biol 2022; 10:866820. [PMID: 35356276 PMCID: PMC8959342 DOI: 10.3389/fcell.2022.866820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 12/26/2022] Open
Abstract
Ribonucleic acid (RNA) and proteins play critical roles in gene expression and regulation. The relevant study increases the understanding of various life processes and contributes to the diagnosis and treatment of different diseases. RNA imaging and mapping RNA-protein interactions expand the understanding of RNA biology. However, the existing methods have some limitations. Recently, precise RNA targeting of CRISPR-Cas13 in cells has been reported, which is considered a new promising platform for RNA imaging in living cells and recognition of RNA-protein interactions. In this review, we first described the current findings on Cas13. Furthermore, we introduced current tools of RNA real-time imaging and mapping RNA-protein interactions and highlighted the latest advances in Cas13-mediated tools. Finally, we discussed the advantages and disadvantages of Cas13-based methods, providing a set of new ideas for the optimization of Cas13-mediated methods.
Collapse
Affiliation(s)
- Huake Cao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yuechen Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Ning Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siyuan Xia
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Pengfei Tian
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Lu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Juan Du
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
- Longgang District People’s Hospital of Shenzhen & The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
- *Correspondence: Yinan Du, ; Juan Du,
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du, ; Juan Du,
| |
Collapse
|
20
|
Blombach F, Smollett KL, Werner F. ChIP-Seq Occupancy Mapping of the Archaeal Transcription Machinery. Methods Mol Biol 2022; 2522:209-222. [PMID: 36125752 DOI: 10.1007/978-1-0716-2445-6_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Genome-wide occupancy studies for RNA polymerases and their basal transcription factors deliver information about transcription dynamics and the recruitment of transcription elongation and termination factors in eukaryotes and prokaryotes. The primary method to determine genome-wide occupancies is chromatin immunoprecipitation combined with deep sequencing (ChIP-seq). Archaea possess a transcription machinery that is evolutionarily closer related to its eukaryotic counterpart but it operates in a prokaryotic cellular context. Studies on archaeal transcription brought insight into the evolution of transcription machineries and the universality of transcription mechanisms. Because of the limited resolution of ChIP-seq, the close spacing of promoters and transcription units found in archaeal genomes pose a challenge for ChIP-seq and the ensuing data analysis. The extreme growth temperature of many established archaeal model organisms necessitates further adaptations. This chapter describes a version of ChIP-seq adapted for the basal transcription machinery of thermophilic archaea and some modifications to the data analysis.
Collapse
Affiliation(s)
- Fabian Blombach
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK.
| | - Kathy L Smollett
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Finn Werner
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK.
| |
Collapse
|
21
|
Bartlett DA, Dileep V, Handa T, Ohkawa Y, Kimura H, Henikoff S, Gilbert DM. High-throughput single-cell epigenomic profiling by targeted insertion of promoters (TIP-seq). J Cell Biol 2021; 220:e202103078. [PMID: 34783858 PMCID: PMC8600797 DOI: 10.1083/jcb.202103078] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 09/15/2021] [Accepted: 10/27/2021] [Indexed: 12/16/2022] Open
Abstract
Chromatin profiling in single cells has been extremely challenging and almost exclusively limited to histone proteins. In cases where single-cell methods have shown promise, many require highly specialized equipment or cell type-specific protocols and are relatively low throughput. Here, we combine the advantages of tagmentation, linear amplification, and combinatorial indexing to produce a high-throughput single-cell DNA binding site mapping method that is simple, inexpensive, and capable of multiplexing several independent samples per experiment. Targeted insertion of promoters sequencing (TIP-seq) uses Tn5 fused to proteinA to insert a T7 RNA polymerase promoter adjacent to a chromatin protein of interest. Linear amplification of flanking DNA with T7 polymerase before sequencing library preparation provides ∼10-fold higher unique reads per single cell compared with other methods. We applied TIP-seq to map histone modifications, RNA polymerase II (RNAPII), and transcription factor CTCF binding sites in single human and mouse cells.
Collapse
Affiliation(s)
- Daniel A. Bartlett
- Department of Biological Science, Florida State University, Tallahassee, FL
- San Diego Biomedical Research Institute, La Jolla, CA
| | - Vishnu Dileep
- Department of Biological Science, Florida State University, Tallahassee, FL
| | - Tetsuya Handa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Steven Henikoff
- Basic Sciences Division and Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - David M. Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL
- San Diego Biomedical Research Institute, La Jolla, CA
| |
Collapse
|
22
|
Leo L, Colonna Romano N. Emerging Single-Cell Technological Approaches to Investigate Chromatin Dynamics and Centromere Regulation in Human Health and Disease. Int J Mol Sci 2021; 22:ijms22168809. [PMID: 34445507 PMCID: PMC8395756 DOI: 10.3390/ijms22168809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic regulators play a crucial role in establishing and maintaining gene expression states. To date, the main efforts to study cellular heterogeneity have focused on elucidating the variable nature of the chromatin landscape. Specific chromatin organisation is fundamental for normal organogenesis and developmental homeostasis and can be affected by different environmental factors. The latter can lead to detrimental alterations in gene transcription, as well as pathological conditions such as cancer. Epigenetic marks regulate the transcriptional output of cells. Centromeres are chromosome structures that are epigenetically regulated and are crucial for accurate segregation. The advent of single-cell epigenetic profiling has provided finer analytical resolution, exposing the intrinsic peculiarities of different cells within an apparently homogenous population. In this review, we discuss recent advances in methodologies applied to epigenetics, such as CUT&RUN and CUT&TAG. Then, we compare standard and emerging single-cell techniques and their relevance for investigating human diseases. Finally, we describe emerging methodologies that investigate centromeric chromatin specification and neocentromere formation.
Collapse
|
23
|
Jerkovic I, Cavalli G. Understanding 3D genome organization by multidisciplinary methods. Nat Rev Mol Cell Biol 2021; 22:511-528. [PMID: 33953379 DOI: 10.1038/s41580-021-00362-w] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 02/03/2023]
Abstract
Understanding how chromatin is folded in the nucleus is fundamental to understanding its function. Although 3D genome organization has been historically difficult to study owing to a lack of relevant methodologies, major technological breakthroughs in genome-wide mapping of chromatin contacts and advances in imaging technologies in the twenty-first century considerably improved our understanding of chromosome conformation and nuclear architecture. In this Review, we discuss methods of 3D genome organization analysis, including sequencing-based techniques, such as Hi-C and its derivatives, Micro-C, DamID and others; microscopy-based techniques, such as super-resolution imaging coupled with fluorescence in situ hybridization (FISH), multiplex FISH, in situ genome sequencing and live microscopy methods; and computational and modelling approaches. We describe the most commonly used techniques and their contribution to our current knowledge of nuclear architecture and, finally, we provide a perspective on up-and-coming methods that open possibilities for future major discoveries.
Collapse
Affiliation(s)
- Ivana Jerkovic
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
24
|
Almeida N, Chung MWH, Drudi EM, Engquist EN, Hamrud E, Isaacson A, Tsang VSK, Watt FM, Spagnoli FM. Employing core regulatory circuits to define cell identity. EMBO J 2021; 40:e106785. [PMID: 33934382 PMCID: PMC8126924 DOI: 10.15252/embj.2020106785] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
The interplay between extrinsic signaling and downstream gene networks controls the establishment of cell identity during development and its maintenance in adult life. Advances in next-generation sequencing and single-cell technologies have revealed additional layers of complexity in cell identity. Here, we review our current understanding of transcription factor (TF) networks as key determinants of cell identity. We discuss the concept of the core regulatory circuit as a set of TFs and interacting factors that together define the gene expression profile of the cell. We propose the core regulatory circuit as a comprehensive conceptual framework for defining cellular identity and discuss its connections to cell function in different contexts.
Collapse
Affiliation(s)
- Nathalia Almeida
- Centre for Stem Cells and Regenerative MedicineGuy’s HospitalKing’s College LondonLondonUK
| | - Matthew W H Chung
- Centre for Stem Cells and Regenerative MedicineGuy’s HospitalKing’s College LondonLondonUK
| | - Elena M Drudi
- Centre for Stem Cells and Regenerative MedicineGuy’s HospitalKing’s College LondonLondonUK
| | - Elise N Engquist
- Centre for Stem Cells and Regenerative MedicineGuy’s HospitalKing’s College LondonLondonUK
| | - Eva Hamrud
- Centre for Stem Cells and Regenerative MedicineGuy’s HospitalKing’s College LondonLondonUK
| | - Abigail Isaacson
- Centre for Stem Cells and Regenerative MedicineGuy’s HospitalKing’s College LondonLondonUK
| | - Victoria S K Tsang
- Centre for Stem Cells and Regenerative MedicineGuy’s HospitalKing’s College LondonLondonUK
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative MedicineGuy’s HospitalKing’s College LondonLondonUK
| | - Francesca M Spagnoli
- Centre for Stem Cells and Regenerative MedicineGuy’s HospitalKing’s College LondonLondonUK
| |
Collapse
|
25
|
Xu J, Kudron MM, Victorsen A, Gao J, Ammouri HN, Navarro FCP, Gevirtzman L, Waterston RH, White KP, Reinke V, Gerstein M. To mock or not: a comprehensive comparison of mock IP and DNA input for ChIP-seq. Nucleic Acids Res 2021; 49:e17. [PMID: 33347581 PMCID: PMC7897498 DOI: 10.1093/nar/gkaa1155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 10/26/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
Chromatin immunoprecipitation (IP) followed by sequencing (ChIP-seq) is the gold standard to detect transcription-factor (TF) binding sites in the genome. Its success depends on appropriate controls removing systematic biases. The predominantly used controls, i.e. DNA input, correct for uneven sonication, but not for nonspecific interactions of the IP antibody. Another type of controls, 'mock' IP, corrects for both of the issues, but is not widely used because it is considered susceptible to technical noise. The tradeoff between the two control types has not been investigated systematically. Therefore, we generated comparable DNA input and mock IP experiments. Because mock IPs contain only nonspecific interactions, the sites predicted from them using DNA input indicate the spurious-site abundance. This abundance is highly correlated with the 'genomic activity' (e.g. chromatin openness). In particular, compared to cell lines, complex samples such as whole organisms have more spurious sites-probably because they contain multiple cell types, resulting in more expressed genes and more open chromatin. Consequently, DNA input and mock IP controls performed similarly for cell lines, whereas for complex samples, mock IP substantially reduced the number of spurious sites. However, DNA input is still informative; thus, we developed a simple framework integrating both controls, improving binding site detection.
Collapse
Affiliation(s)
- Jinrui Xu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | - Alec Victorsen
- Institute for Genomics and Systems Biology, Department of Human Genetics, University of Chicago, IL 60637, USA
| | - Jiahao Gao
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Haneen N Ammouri
- Institute for Genomics and Systems Biology, Department of Human Genetics, University of Chicago, IL 60637, USA
| | - Fabio C P Navarro
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Louis Gevirtzman
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Robert H Waterston
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Kevin P White
- Institute for Genomics and Systems Biology, Department of Human Genetics, University of Chicago, IL 60637, USA
| | - Valerie Reinke
- Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.,Department of Computer Science, Yale University, New Haven, CT 06520, USA.,Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
26
|
Chromatin Immunoprecipitation (ChIP) to Study DNA-Protein Interactions. Methods Mol Biol 2021. [PMID: 33420999 DOI: 10.1007/978-1-0716-1186-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Chromatin immunoprecipitation (ChIP) is a method used to examine the genomic localization of a target of interest (e.g., proteins, protein posttranslational modifications, or DNA elements). As ChIP provides a snapshot of in vivo DNA-protein interactions, it lends insight to the mechanisms of gene expression and genome regulation. This chapter provides a detailed protocol focused on native-ChIP (N-ChIP), a robust approach to profile stable DNA-protein interactions. We also describe best practices for ChIP , including defined controls to ensure specific and efficient target enrichment and methods for data normalization.
Collapse
|
27
|
Cameron DP, Kuzin V, Baranello L. Analysis of Myc Chromatin Binding by Calibrated ChIP-Seq Approach. Methods Mol Biol 2021; 2318:161-185. [PMID: 34019290 DOI: 10.1007/978-1-0716-1476-1_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here, we present a strategy to map and quantify the interactions between Myc and chromatin using a calibrated Myc ChIP-seq approach. We recommend the use of an internal spike-in control for post-sequencing normalization to enable detection of broad changes in Myc binding as can occur under conditions with varied Myc abundance. We also highlight a range of bioinformatic analyses that can dissect the downstream effects of Myc binding. These methods include peak calling, mapping Myc onto an integrated metagenome, juxtaposing ChIP-seq data with matching RNA-seq data, and identifying gene ontologies enriched for genes with high Myc binding. Our aim is to provide a guided strategy, from cell harvest through to bioinformatic analysis, to elucidate the global effects of Myc on transcription.
Collapse
Affiliation(s)
- Donald P Cameron
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Vladislav Kuzin
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Baranello
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
28
|
Abstract
Chromatin immunoprecipitation (ChIP) followed by next-generation sequencing is a powerful technique that characterizes the genome-wide DNA-binding profile of a protein of interest. The general ChIP-seq workflow has been applied widely to many sample types and target proteins, but sample-specific optimization of various steps is necessary to achieve high-quality data. This protocol is specifically optimized for cultured human embryonic stem cells (hESCs), including steps to check sample quality and non-specific enrichment of “hyper-ChIPable” regions prior to sequencing. For complete details on the use and execution of this protocol, please refer to Gunne-Braden et al. (2020). ChIP-seq is used to characterize genome-wide DNA-binding profile for a protein of interest Conventional ChIP protocols produce poor or highly variable results in hESC cultures ChIP can be optimized for hESC cultures to ensure high-quality sequencing data Optimized ChIP includes improved chromatin fragmentation and sample quality checkpoints
Collapse
|
29
|
Liggett LA, Sankaran VG. Unraveling Hematopoiesis through the Lens of Genomics. Cell 2020; 182:1384-1400. [PMID: 32946781 PMCID: PMC7508400 DOI: 10.1016/j.cell.2020.08.030] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/14/2020] [Accepted: 08/17/2020] [Indexed: 01/07/2023]
Abstract
Hematopoiesis has long served as a paradigm of stem cell biology and tissue homeostasis. In the past decade, the genomics revolution has ushered in powerful new methods for investigating the hematopoietic system that have provided transformative insights into its biology. As part of the advances in genomics, increasingly accurate deep sequencing and novel methods of cell tracking have revealed hematopoiesis to be more of a continuous and less of a discrete and punctuated process than originally envisioned. In part, this continuous nature of hematopoiesis is made possible by the emergent outcomes of vast, interconnected regulatory networks that influence cell fates and lineage commitment. It is also becoming clear how these mechanisms are modulated by genetic variation present throughout the population. This review describes how these recently uncovered complexities are reshaping our concept of tissue development and homeostasis while opening up a more comprehensive future understanding of hematopoiesis.
Collapse
Affiliation(s)
- L Alexander Liggett
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
30
|
Timmers HTM. SAGA and TFIID: Friends of TBP drifting apart. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194604. [PMID: 32673655 DOI: 10.1016/j.bbagrm.2020.194604] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/24/2023]
Abstract
Transcription initiation constitutes a major checkpoint in gene regulation across all living organisms. Control of chromatin function is tightly linked to this checkpoint, which is best illustrated by the SAGA coactivator. This evolutionary conserved complex of 18-20 subunits was first discovered as a Gcn5p-containing histone acetyltransferase, but it also integrates a histone H2B deubiquitinase. The SAGA subunits are organized in a modular fashion around its central core. Strikingly, this central module of SAGA shares a number of proteins with the central core of the basal transcription factor TFIID. In this review I will compare the SAGA and TFIID complexes with respect to their shared subunits, structural organization, enzymatic activities and chromatin binding. I will place a special emphasis on the ancestry of SAGA and TFIID subunits, which suggests that these complexes evolved to control the activity of TBP (TATA-binding protein) in directing the assembly of transcription initiation complexes.
Collapse
Affiliation(s)
- H Th Marc Timmers
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK) partner site Freiburg, 79106 Freiburg, Germany; Department of Urology, Medical Center-University of Freiburg, Breisacher Straße 66, 79106 Freiburg, Germany.
| |
Collapse
|
31
|
Yi W, Li J, Zhu X, Wang X, Fan L, Sun W, Liao L, Zhang J, Li X, Ye J, Chen F, Taipale J, Chan KM, Zhang L, Yan J. CRISPR-assisted detection of RNA-protein interactions in living cells. Nat Methods 2020; 17:685-688. [PMID: 32572232 DOI: 10.1038/s41592-020-0866-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 05/18/2020] [Indexed: 02/04/2023]
Abstract
We have developed CRISPR-assisted RNA-protein interaction detection method (CARPID), which leverages CRISPR-CasRx-based RNA targeting and proximity labeling to identify binding proteins of specific long non-coding RNAs (lncRNAs) in the native cellular context. We applied CARPID to the nuclear lncRNA XIST, and it captured a list of known interacting proteins and multiple previously uncharacterized binding proteins. We generalized CARPID to explore binders of the lncRNAs DANCR and MALAT1, revealing the method's wide applicability in identifying RNA-binding proteins.
Collapse
Affiliation(s)
- Wenkai Yi
- School of Medicine, Northwest University, Xi'an, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Jingyu Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Xiaoxuan Zhu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Xi Wang
- School of Medicine, Northwest University, Xi'an, China
- Division of Theoretical Systems Biology, German Cancer Research Center, Heidelberg, Germany
| | - Ligang Fan
- School of Medicine, Northwest University, Xi'an, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Wenju Sun
- School of Medicine, Northwest University, Xi'an, China
| | - Linbu Liao
- School of Medicine, Northwest University, Xi'an, China
| | - Jilin Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoyu Li
- School of Medicine, Northwest University, Xi'an, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Jing Ye
- Department of Pathology, The Fourth Military Medical University, Xi'an, China
| | - Fulin Chen
- School of Medicine, Northwest University, Xi'an, China
| | - Jussi Taipale
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China.
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
| | - Liang Zhang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China.
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
| | - Jian Yan
- School of Medicine, Northwest University, Xi'an, China.
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
32
|
de Jonge WJ, Brok M, Kemmeren P, Holstege FCP. An Optimized Chromatin Immunoprecipitation Protocol for Quantification of Protein-DNA Interactions. STAR Protoc 2020; 1:100020. [PMID: 32685929 PMCID: PMC7357673 DOI: 10.1016/j.xpro.2020.100020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Transcription factors are important regulators of cell fate and function. Knowledge about where transcription factors are bound in the genome is crucial for understanding their function. A common method to study protein-DNA interactions is chromatin immunoprecipitation (ChIP). Here, we present a revised ChIP protocol to determine protein-DNA interactions for the yeast Saccharomyces cerevisiae. We optimized several aspects of the procedure, including cross-linking and quenching, cell lysis, and immunoprecipitation steps. This protocol facilitates sensitive and reproducible quantitation of protein-DNA interactions. For complete details on the use and execution of this protocol, please refer to (de Jonge et al., 2019). Chromatin immunoprecipitation protocol to quantify protein-DNA interactions Optimized for sensitivity and robustness Optimized for quantitative comparisons between experiments, e.g., in time series Highlights common ChIP pitfalls, variable steps, and how to increase reproducibility
Collapse
Affiliation(s)
- Wim J de Jonge
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Mariël Brok
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Patrick Kemmeren
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Frank C P Holstege
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| |
Collapse
|
33
|
Übelmesser N, Papantonis A. Technologies to study spatial genome organization: beyond 3C. Brief Funct Genomics 2020; 18:395-401. [PMID: 31609405 DOI: 10.1093/bfgp/elz019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/27/2019] [Accepted: 07/15/2019] [Indexed: 01/05/2023] Open
Abstract
The way that chromatin is organized in three-dimensional nuclear space is now acknowledged as a factor critical for the major cell processes, like transcription, replication and cell division. Researchers have been armed with new molecular and imaging technologies to study this structure-to-function link of genomes, spearheaded by the introduction of the 'chromosome conformation capture' technology more than a decade ago. However, this technology is not without shortcomings, and novel variants and orthogonal approaches are being developed to overcome these. As a result, the field of nuclear organization is constantly fueled by methods of increasing resolution and/or throughput that strive to eliminate systematic biases and increase precision. In this review, we attempt to highlight the most recent advances in technology that promise to provide novel insights on how chromosomes fold and function.
Collapse
Affiliation(s)
- Nadine Übelmesser
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
34
|
Kribelbauer JF, Loker RE, Feng S, Rastogi C, Abe N, Rube HT, Bussemaker HJ, Mann RS. Context-Dependent Gene Regulation by Homeodomain Transcription Factor Complexes Revealed by Shape-Readout Deficient Proteins. Mol Cell 2020; 78:152-167.e11. [PMID: 32053778 DOI: 10.1016/j.molcel.2020.01.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/01/2019] [Accepted: 01/27/2020] [Indexed: 01/09/2023]
Abstract
Eukaryotic transcription factors (TFs) form complexes with various partner proteins to recognize their genomic target sites. Yet, how the DNA sequence determines which TF complex forms at any given site is poorly understood. Here, we demonstrate that high-throughput in vitro DNA binding assays coupled with unbiased computational analysis provide unprecedented insight into how different DNA sequences select distinct compositions and configurations of homeodomain TF complexes. Using inferred knowledge about minor groove width readout, we design targeted protein mutations that destabilize homeodomain binding both in vitro and in vivo in a complex-specific manner. By performing parallel systematic evolution of ligands by exponential enrichment sequencing (SELEX-seq), chromatin immunoprecipitation sequencing (ChIP-seq), RNA sequencing (RNA-seq), and Hi-C assays, we not only classify the majority of in vivo binding events in terms of complex composition but also infer complex-specific functions by perturbing the gene regulatory network controlled by a single complex.
Collapse
Affiliation(s)
- Judith F Kribelbauer
- Department of Biological Sciences, Columbia University, New York, NY 10025, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ryan E Loker
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Siqian Feng
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Chaitanya Rastogi
- Department of Biological Sciences, Columbia University, New York, NY 10025, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Namiko Abe
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - H Tomas Rube
- Department of Biological Sciences, Columbia University, New York, NY 10025, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Harmen J Bussemaker
- Department of Biological Sciences, Columbia University, New York, NY 10025, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Richard S Mann
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Neuroscience, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
35
|
Rakow S, Pullamsetti SS, Bauer UM, Bouchard C. Assaying epigenome functions of PRMTs and their substrates. Methods 2019; 175:53-65. [PMID: 31542509 DOI: 10.1016/j.ymeth.2019.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022] Open
Abstract
Among the widespread and increasing number of identified post-translational modifications (PTMs), arginine methylation is catalyzed by the protein arginine methyltransferases (PRMTs) and regulates fundamental processes in cells, such as gene regulation, RNA processing, translation, and signal transduction. As epigenetic regulators, PRMTs play key roles in pluripotency, differentiation, proliferation, survival, and apoptosis, which are essential biological programs leading to development, adult homeostasis but also pathological conditions including cancer. A full understanding of the molecular mechanisms that underlie PRMT-mediated gene regulation requires the genome wide mapping of each player, i.e., PRMTs, their substrates and epigenetic marks, methyl-marks readers as well as interaction partners, in a thorough and unambiguous manner. However, despite the tremendous advances in high throughput sequencing technologies and the numerous efforts from the scientific community, the epigenomic profiling of PRMTs as well as their histone and non-histone substrates still remains a big challenge owing to obvious limitations in tools and methodologies. This review will summarize the present knowledge about the genome wide mapping of PRMTs and their substrates as well as the technical approaches currently in use. The limitations and pitfalls of the technical tools along with conventional approaches will be then discussed in detail. Finally, potential new strategies for chromatin profiling of PRMTs and histone substrates will be proposed and described.
Collapse
Affiliation(s)
- Sinja Rakow
- Institute for Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Hans-Meerwein-Str. 2, BMFZ, 35043 Marburg, Germany
| | - Soni Savai Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Uta-Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Hans-Meerwein-Str. 2, BMFZ, 35043 Marburg, Germany
| | - Caroline Bouchard
- Institute for Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Hans-Meerwein-Str. 2, BMFZ, 35043 Marburg, Germany.
| |
Collapse
|
36
|
Zhu Q, Liu N, Orkin SH, Yuan GC. CUT&RUNTools: a flexible pipeline for CUT&RUN processing and footprint analysis. Genome Biol 2019; 20:192. [PMID: 31500663 PMCID: PMC6734249 DOI: 10.1186/s13059-019-1802-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/26/2019] [Indexed: 01/20/2023] Open
Abstract
We introduce CUT&RUNTools as a flexible, general pipeline for facilitating the identification of chromatin-associated protein binding and genomic footprinting analysis from antibody-targeted CUT&RUN primary cleavage data. CUT&RUNTools extracts endonuclease cut site information from sequences of short-read fragments and produces single-locus binding estimates, aggregate motif footprints, and informative visualizations to support the high-resolution mapping capability of CUT&RUN. CUT&RUNTools is available at https://bitbucket.org/qzhudfci/cutruntools/ .
Collapse
Affiliation(s)
- Qian Zhu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard Chan School of Public Health, Boston, MA, USA
| | - Nan Liu
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stuart H Orkin
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
37
|
Trotta E. RNA polymerase II (RNAP II)-associated factors are recruited to tRNA loci, revealing that RNAP II- and RNAP III-mediated transcriptions overlap in yeast. J Biol Chem 2019; 294:12349-12358. [PMID: 31235518 PMCID: PMC6699833 DOI: 10.1074/jbc.ra119.008529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/19/2019] [Indexed: 07/24/2023] Open
Abstract
In yeast (Saccharomyces cerevisiae), the synthesis of tRNAs by RNA polymerase III (RNAP III) down-regulates the transcription of the nearby RNAP II-transcribed genes by a mechanism that is poorly understood. To clarify the basis of this tRNA gene-mediated (TGM) silencing, here, conducting a bioinformatics analysis of available ChIP-chip and ChIP-sequencing genomic data from yeast, we investigated whether the RNAP III transcriptional machinery can recruit protein factors required for RNAP II transcription. An analysis of 46 genome-wide protein-density profiles revealed that 12 factors normally implicated in RNAP II-mediated gene transcription are more enriched at tRNA than at mRNA loci. These 12 factors typically have RNA-binding properties, participate in the termination stage of the RNAP II transcription, and preferentially localize to the tRNA loci by a mechanism that apparently is based on the RNAP III transcription level. The factors included two kinases of RNAP II (Bur1 and Ctk1), a histone demethylase (Jhd2), and a mutated form of a nucleosome-remodeling factor (Spt6) that have never been reported to be recruited to tRNA loci. Moreover, we show that the expression levels of RNAP II-transcribed genes downstream of tRNA loci correlate with the distance from the tRNA gene by a mechanism that depends on their orientation. These results are consistent with the notion that pre-tRNAs recruit RNAP II-associated factors, thereby reducing the availability of these factors for RNAP II transcription and contributing, at least in part, to the TGM-silencing mechanism.
Collapse
Affiliation(s)
- Edoardo Trotta
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Roma 00133, Italy.
| |
Collapse
|
38
|
Nguyen TAT, Grimm SA, Bushel PR, Li J, Li Y, Bennett BD, Lavender CA, Ward JM, Fargo DC, Anderson CW, Li L, Resnick MA, Menendez D. Revealing a human p53 universe. Nucleic Acids Res 2019; 46:8153-8167. [PMID: 30107566 PMCID: PMC6144829 DOI: 10.1093/nar/gky720] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
p53 transcriptional networks are well-characterized in many organisms. However, a global understanding of requirements for in vivo p53 interactions with DNA and relationships with transcription across human biological systems in response to various p53 activating situations remains limited. Using a common analysis pipeline, we analyzed 41 data sets from genome-wide ChIP-seq studies of which 16 have associated gene expression data, including our recent primary data with normal human lymphocytes. The resulting extensive analysis, accessible at p53 BAER hub via the UCSC browser, provides a robust platform to characterize p53 binding throughout the human genome including direct influence on gene expression and underlying mechanisms. We establish the impact of spacers and mismatches from consensus on p53 binding in vivo and propose that once bound, neither significantly influences the likelihood of expression. Our rigorous approach revealed a large p53 genome-wide cistrome composed of >900 genes directly targeted by p53. Importantly, we identify a core cistrome signature composed of genes appearing in over half the data sets, and we identify signatures that are treatment- or cell-specific, demonstrating new functions for p53 in cell biology. Our analysis reveals a broad homeostatic role for human p53 that is relevant to both basic and translational studies.
Collapse
Affiliation(s)
- Thuy-Ai T Nguyen
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Sara A Grimm
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Pierre R Bushel
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Jianying Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yuanyuan Li
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Brian D Bennett
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Christopher A Lavender
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - James M Ward
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - David C Fargo
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA.,Office of Scientific Computing, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Carl W Anderson
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Leping Li
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Michael A Resnick
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Daniel Menendez
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
39
|
Oh KS, Ha J, Baek S, Sung MH. XL-DNase-seq: improved footprinting of dynamic transcription factors. Epigenetics Chromatin 2019; 12:30. [PMID: 31164146 PMCID: PMC6547507 DOI: 10.1186/s13072-019-0277-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/17/2019] [Indexed: 02/08/2023] Open
Abstract
Background As the cost of high-throughput sequencing technologies decreases, genome-wide chromatin accessibility profiling methods such as the assay of transposase-accessible chromatin using sequencing (ATAC-seq) are employed widely, with data accumulating at an unprecedented rate. However, accurate inference of protein occupancy requires higher-resolution footprinting analysis where major hurdles exist, including the sequence bias of nucleases and the short-lived chromatin binding of many transcription factors (TFs) with consequent lack of footprints. Results Here we introduce an assay termed cross-link (XL)-DNase-seq, designed to capture chromatin interactions of dynamic TFs. Mild cross-linking improved the detection of DNase-based footprints of dynamic TFs but interfered with ATAC-based footprinting of the same TFs. Conclusions XL-DNase-seq may help extract novel gene regulatory circuits involving previously undetectable TFs. The DNase-seq and ATAC-seq data generated in our systematic comparison of various cross-linking conditions also represent an unprecedented-scale resource derived from activated mouse macrophage-like cells which share many features of inflammatory macrophages. Electronic supplementary material The online version of this article (10.1186/s13072-019-0277-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyu-Seon Oh
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Jisu Ha
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, 41 Library Drive, Bethesda, MD, 20892, USA
| | - Myong-Hee Sung
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
40
|
Hainer SJ, Bošković A, McCannell KN, Rando OJ, Fazzio TG. Profiling of Pluripotency Factors in Single Cells and Early Embryos. Cell 2019; 177:1319-1329.e11. [PMID: 30955888 DOI: 10.1016/j.cell.2019.03.014] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/13/2019] [Accepted: 03/05/2019] [Indexed: 02/09/2023]
Abstract
Cell fate decisions are governed by sequence-specific transcription factors (TFs) that act in small populations of cells within developing embryos. To understand their functions in vivo, it is important to identify TF binding sites in these cells. However, current methods cannot profile TFs genome-wide at or near the single-cell level. Here we adapt the cleavage under targets and release using nuclease (CUT&RUN) method to profile TFs in low cell numbers, including single cells and individual pre-implantation embryos. Single-cell experiments suggest that only a fraction of TF binding sites are occupied in most cells, in a manner broadly consistent with measurements of peak intensity from multi-cell studies. We further show that chromatin binding by the pluripotency TF NANOG is highly dependent on the SWI/SNF chromatin remodeling complex in individual blastocysts but not in cultured cells. Ultra-low input CUT&RUN (uliCUT&RUN) therefore enables interrogation of TF binding from rare cell populations of particular importance in development or disease.
Collapse
Affiliation(s)
- Sarah J Hainer
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Ana Bošković
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kurtis N McCannell
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
41
|
Hainer SJ, Fazzio TG. High-Resolution Chromatin Profiling Using CUT&RUN. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2019; 126:e85. [PMID: 30688406 PMCID: PMC6422702 DOI: 10.1002/cpmb.85] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Determining the genomic location of DNA-binding proteins is essential to understanding their function. Cleavage Under Targets and Release Using Nuclease (CUT&RUN) is a powerful method for mapping protein-DNA interactions at high resolution. In CUT&RUN, a recombinant protein A-microccocal nuclease (pA-MN) fusion is recruited by an antibody targeting the chromatin protein of interest; this can be done with either uncrosslinked or formaldehyde-crosslinked cells. DNA fragments near sites of antibody binding are released from the insoluble bulk chromatin through endonucleolytic cleavage and used to build barcoded DNA-sequencing libraries that can be sequenced in pools of at least 30. Therefore, CUT&RUN provides an alternative to ChIP-seq approaches for mapping chromatin proteins, which typically have relatively high signal-to-noise ratios, while using fewer cells and at a lower cost. Here, we describe the methods for performing CUT&RUN, generating DNA-sequencing libraries, and analyzing the resulting datasets. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Sarah J. Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Thomas G. Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01604, USA
| |
Collapse
|
42
|
Policastro RA, Zentner GE. Enzymatic methods for genome-wide profiling of protein binding sites. Brief Funct Genomics 2019; 17:138-145. [PMID: 29028882 DOI: 10.1093/bfgp/elx030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Genome-wide mapping of protein-DNA interactions is a staple approach in many areas of modern molecular biology. Genome-wide profiles of protein-binding sites are most commonly generated by chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq). Although ChIP-seq has played a central role in studying genome-wide protein binding, recent work has highlighted systematic biases in the technique that warrant technical and interpretive caution and underscore the need for orthogonal techniques to both confirm the results of ChIP-seq studies and uncover new insights not accessible to ChIP. Several such techniques, based on genetic or immunological targeting of enzymatic activity to specific genomic loci, have been developed. Here, we review the development, applications and future prospects of these methods as complements to ChIP-based approaches and as powerful techniques in their own right.
Collapse
|
43
|
Sun D. Chromatin Immunoprecipitation Assay to Analyze the Effect of G-Quadruplex Interactive Agents on the Binding of RNA Polymerase II and Transcription Factors to a Target Promoter Region. Methods Mol Biol 2019; 2035:233-242. [PMID: 31444753 DOI: 10.1007/978-1-4939-9666-7_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Growing evidence suggests the existence of G-quadruplexes and their involvement in transcriptional regulation of many human genes, including VEGF. These studies also provide strong evidence that G-quadruplex structures are stabilized by binding to small molecules, resulting in the modulation of the transcription of genes whose promoters form G-quadruplexes. Here, we describe a chromatin immunoprecipitation (ChIP) assay to determine whether G-quadruplex-interactive agents influence the recruitment of cellular transcription factors, such as Sp1, nucleolin, or hnRNP-K to target genes that contain potential G-quadruplex (G4)-forming sequences in their promoters, subsequently modulating the occupancy of RNA Pol II on the same promoter region.
Collapse
Affiliation(s)
- Daekyu Sun
- College of Pharmacy, University of Arizona, Tucson, AZ, USA.
- BIO5 Institute, Tucson, AZ, USA.
- Arizona Cancer Center, Tucson, AZ, USA.
| |
Collapse
|
44
|
Schneider A, Niemeyer CM. DNA Surface Technology: From Gene Sensors to Integrated Systems for Life and Materials Sciences. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ann‐Kathrin Schneider
- Institute for Biological Interfaces (IBG 1) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Germany
| | - Christof M. Niemeyer
- Institute for Biological Interfaces (IBG 1) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
45
|
Schneider A, Niemeyer CM. DNA Surface Technology: From Gene Sensors to Integrated Systems for Life and Materials Sciences. Angew Chem Int Ed Engl 2018; 57:16959-16967. [DOI: 10.1002/anie.201811713] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/15/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Ann‐Kathrin Schneider
- Institute for Biological Interfaces (IBG 1) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Germany
| | - Christof M. Niemeyer
- Institute for Biological Interfaces (IBG 1) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
46
|
Skene PJ, Henikoff JG, Henikoff S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat Protoc 2018; 13:1006-1019. [PMID: 29651053 DOI: 10.1038/nprot.2018.015] [Citation(s) in RCA: 513] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cleavage under targets and release using nuclease (CUT&RUN) is an epigenomic profiling strategy in which antibody-targeted controlled cleavage by micrococcal nuclease releases specific protein-DNA complexes into the supernatant for paired-end DNA sequencing. As only the targeted fragments enter into solution, and the vast majority of DNA is left behind, CUT&RUN has exceptionally low background levels. CUT&RUN outperforms the most widely used chromatin immunoprecipitation (ChIP) protocols in resolution, signal-to-noise ratio and depth of sequencing required. In contrast to ChIP, CUT&RUN is free of solubility and DNA accessibility artifacts and has been used to profile insoluble chromatin and to detect long-range 3D contacts without cross-linking. Here, we present an improved CUT&RUN protocol that does not require isolation of nuclei and provides high-quality data when starting with only 100 cells for a histone modification and 1,000 cells for a transcription factor. From cells to purified DNA, CUT&RUN requires less than a day at the laboratory bench and requires no specialized skills.
Collapse
Affiliation(s)
- Peter J Skene
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Howard Hughes Medical Institute, Seattle, Washington, USA
| | - Jorja G Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Howard Hughes Medical Institute, Seattle, Washington, USA
| |
Collapse
|
47
|
Tosti L, Ashmore J, Tan BSN, Carbone B, Mistri TK, Wilson V, Tomlinson SR, Kaji K. Mapping transcription factor occupancy using minimal numbers of cells in vitro and in vivo. Genome Res 2018; 28:592-605. [PMID: 29572359 PMCID: PMC5880248 DOI: 10.1101/gr.227124.117] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 03/05/2018] [Indexed: 01/11/2023]
Abstract
The identification of transcription factor (TF) binding sites in the genome is critical to understanding gene regulatory networks (GRNs). While ChIP-seq is commonly used to identify TF targets, it requires specific ChIP-grade antibodies and high cell numbers, often limiting its applicability. DNA adenine methyltransferase identification (DamID), developed and widely used in Drosophila, is a distinct technology to investigate protein–DNA interactions. Unlike ChIP-seq, it does not require antibodies, precipitation steps, or chemical protein–DNA crosslinking, but to date it has been seldom used in mammalian cells due to technical limitations. Here we describe an optimized DamID method coupled with next-generation sequencing (DamID-seq) in mouse cells and demonstrate the identification of the binding sites of two TFs, POU5F1 (also known as OCT4) and SOX2, in as few as 1000 embryonic stem cells (ESCs) and neural stem cells (NSCs), respectively. Furthermore, we have applied this technique in vivo for the first time in mammals. POU5F1 DamID-seq in the gastrulating mouse embryo at 7.5 d post coitum (dpc) successfully identified multiple POU5F1 binding sites proximal to genes involved in embryo development, neural tube formation, and mesoderm-cardiac tissue development, consistent with the pivotal role of this TF in post-implantation embryo. This technology paves the way to unprecedented investigation of TF–DNA interactions and GRNs in specific cell types of limited availability in mammals, including in vivo samples.
Collapse
Affiliation(s)
- Luca Tosti
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, Scotland, United Kingdom
| | - James Ashmore
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, Scotland, United Kingdom
| | - Boon Siang Nicholas Tan
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, Scotland, United Kingdom
| | - Benedetta Carbone
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, Scotland, United Kingdom
| | - Tapan K Mistri
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, Scotland, United Kingdom
| | - Valerie Wilson
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, Scotland, United Kingdom
| | - Simon R Tomlinson
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, Scotland, United Kingdom
| | - Keisuke Kaji
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, Scotland, United Kingdom
| |
Collapse
|
48
|
Aughey GN, Estacio Gomez A, Thomson J, Yin H, Southall TD. CATaDa reveals global remodelling of chromatin accessibility during stem cell differentiation in vivo. eLife 2018; 7:32341. [PMID: 29481322 PMCID: PMC5826290 DOI: 10.7554/elife.32341] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/30/2018] [Indexed: 01/09/2023] Open
Abstract
During development eukaryotic gene expression is coordinated by dynamic changes in chromatin structure. Measurements of accessible chromatin are used extensively to identify genomic regulatory elements. Whilst chromatin landscapes of pluripotent stem cells are well characterised, chromatin accessibility changes in the development of somatic lineages are not well defined. Here we show that cell-specific chromatin accessibility data can be produced via ectopic expression of E. coli Dam methylase in vivo, without the requirement for cell-sorting (CATaDa). We have profiled chromatin accessibility in individual cell-types of Drosophila neural and midgut lineages. Functional cell-type-specific enhancers were identified, as well as novel motifs enriched at different stages of development. Finally, we show global changes in the accessibility of chromatin between stem-cells and their differentiated progeny. Our results demonstrate the dynamic nature of chromatin accessibility in somatic tissues during stem cell differentiation and provide a novel approach to understanding gene regulatory mechanisms underlying development. For an embryo to successfully develop into an adult animal, specific genes must act in different types of cells. Though all the cells have the same genes encoded within their DNA, looking at the way that the DNA is packaged can indicate which parts of the DNA are important for that particular cell type. If regions of DNA are “open” one can infer that those regions are actively involved in gene regulation, whereas “closed” regions are considered less important. It is currently difficult to determine which parts of the DNA are open within an individual cell type in a complex organ, such as the brain. Existing methods require the cells to be physically isolated from the tissue, which is technically challenging. To overcome this issue, Aughey et al. have now developed a method that does not require isolation of the cells. The new technique involves using genetic engineering to introduce an enzyme called Dam into specific cell types in living fruit flies. This enzyme adds a chemical label on regions of open DNA, which can then be detected. Aughey et al. tested this technique on various cells of the developing brain and gut, and were able to see differences in the openness of DNA that corresponded to the action of genes that are important in each cell type. The data also contain trends that help to understand the role of open DNA in development. For example, mature cells were shown to overall have less open DNA than the stem cells that divide to generate them. Aughey et al. hope their new technique will be of use to other researchers working with either fruit flies or mammalian tissues. The knowledge that scientists will gain from identifying how open DNA contributes to gene regulation, in both healthy and diseased tissues, will further our understanding of human development and the biology of diseases such as cancer.
Collapse
Affiliation(s)
- Gabriel N Aughey
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Jamie Thomson
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Hang Yin
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Tony D Southall
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
49
|
Abstract
Chromatin immunoprecipitation (ChIP) allows determination of the locations to which a select protein is bound in chromatin. Chemical crosslinking of DNA and protein with bi-functional reagents such as formaldehyde and precipitation of the protein with a specific antibody permit PCR amplification (ChIP) or sequencing (ChIP-seq) to identify the bound sites. Here, we present methodology for these approaches that are widely applicable to erythroid cell lines, progenitor cells, and tissues.
Collapse
Affiliation(s)
- Ivan Krivega
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, MSC 8028, Bethesda, MD, 20892, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, MSC 8028, Bethesda, MD, 20892, USA.
| |
Collapse
|
50
|
Imre L, Simándi Z, Horváth A, Fenyőfalvi G, Nánási P, Niaki EF, Hegedüs É, Bacsó Z, Weyemi U, Mauser R, Ausio J, Jeltsch A, Bonner W, Nagy L, Kimura H, Szabó G. Nucleosome stability measured in situ by automated quantitative imaging. Sci Rep 2017; 7:12734. [PMID: 28986581 PMCID: PMC5630628 DOI: 10.1038/s41598-017-12608-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023] Open
Abstract
Current approaches have limitations in providing insight into the functional properties of particular nucleosomes in their native molecular environment. Here we describe a simple and powerful method involving elution of histones using intercalators or salt, to assess stability features dependent on DNA superhelicity and relying mainly on electrostatic interactions, respectively, and measurement of the fraction of histones remaining chromatin-bound in the individual nuclei using histone type- or posttranslational modification- (PTM-) specific antibodies and automated, quantitative imaging. The method has been validated in H3K4me3 ChIP-seq experiments, by the quantitative assessment of chromatin loop relaxation required for nucleosomal destabilization, and by comparative analyses of the intercalator and salt induced release from the nucleosomes of different histones. The accuracy of the assay allowed us to observe examples of strict association between nucleosome stability and PTMs across cell types, differentiation state and throughout the cell-cycle in close to native chromatin context, and resolve ambiguities regarding the destabilizing effect of H2A.X phosphorylation. The advantages of the in situ measuring scenario are demonstrated via the marked effect of DNA nicking on histone eviction that underscores the powerful potential of topological relaxation in the epigenetic regulation of DNA accessibility.
Collapse
Affiliation(s)
- László Imre
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - Zoltán Simándi
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4032, Hungary.,Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Attila Horváth
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - György Fenyőfalvi
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - Péter Nánási
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - Erfaneh Firouzi Niaki
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - Éva Hegedüs
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - Zsolt Bacsó
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - Urbain Weyemi
- Center for Cancer Research National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - Rebekka Mauser
- Institute of Biochemistry, Stuttgart University, Stuttgart, Germany
| | - Juan Ausio
- University of Victoria, Department of Biochemistry, Victoria, BC, V8W 3P6, Canada
| | - Albert Jeltsch
- Institute of Biochemistry, Stuttgart University, Stuttgart, Germany
| | - William Bonner
- Center for Cancer Research National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - László Nagy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4032, Hungary.,Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA.,MTA-DE "Lendulet" Immunogenomics Research Group, University of Debrecen, Debrecen, Hungary
| | - Hiroshi Kimura
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Gábor Szabó
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4032, Hungary.
| |
Collapse
|