1
|
Yang W, Pan Q, Huang F, Hu H, Shao Z. Research progress of bone metastases: From disease recognition to clinical practice. Front Oncol 2023; 12:1105745. [PMID: 36761418 PMCID: PMC9905420 DOI: 10.3389/fonc.2022.1105745] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023] Open
Abstract
Bone metastases, as one of the common types of metastatic tumors, have a great impact on the survival period and quality of life of patients. Bone metastases are usually characterized by bone destruction. Skeletal related events caused by bone destruction often lead to pain, pathological fractures and even paralysis. In this review, we provide a detailed explanation of bone metastases from the epidemiology, clinical features, pathogenesis, and recently developed clinical treatment viewpoints. We concluded that the incidence of bone metastases is increasing gradually, with serious clinical symptoms, complex pathogenesis and diverse clinical treatment. Tumor cells, immune cells, osteoblasts/osteoclasts and other cells as well as cytokines and enzymes all play a key role in the pathogenesis of bone metastases. We believe that the future treatment of bone metastases will be diversified and comprehensive. Some advanced technologies, such as nanomedicine, could be used for treatment, but this depends on understanding how disease occurs. With the development of treatment, the survival time and quality of life of patients will be improved.
Collapse
Affiliation(s)
| | | | | | - Hongzhi Hu
- *Correspondence: Hongzhi Hu, ; Zengwu Shao,
| | | |
Collapse
|
2
|
Bjørklund G, Dadar M, Doşa MD, Chirumbolo S, Pen JJ. Insights into the Effects of Dietary Omega-6/Omega-3 Polyunsaturated Fatty Acid (PUFA) Ratio on Oxidative Metabolic Pathways of Oncological Bone Disease and Global Health. Curr Med Chem 2021; 28:1672-1682. [PMID: 32338204 DOI: 10.2174/0929867327666200427095331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/14/2020] [Accepted: 03/20/2020] [Indexed: 11/22/2022]
Abstract
Various nutrients have been designated as antioxidants, with a possible effect on diseases like cancer. This is partly due to their effect on prostaglandins, thereby affecting local pathological metabolic acidosis. This paper aims to summarize the culprit pathophysiological mechanisms involved, with a focus on the bone microenvironment. The omega- 6/omega-3 PUFA ratio is particularly investigated for its antioxidative effects, countering these pathways to fight the disease. This feature is looked at concerning its impact on health in general, with a particular focus on malignant bone metastasis.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Monica Daniela Doşa
- Department of Pharmacology, Faculty of Medicine, Ovidius University, Constanta, Romania
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Joeri J Pen
- Diabetes Clinic, Department of Internal Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
3
|
Göbel A, Dell’Endice S, Jaschke N, Pählig S, Shahid A, Hofbauer LC, Rachner TD. The Role of Inflammation in Breast and Prostate Cancer Metastasis to Bone. Int J Mol Sci 2021; 22:5078. [PMID: 34064859 PMCID: PMC8151893 DOI: 10.3390/ijms22105078] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor metastasis to bone is a common event in multiple forms of malignancy. Inflammation holds essential functions in homeostasis as a defense mechanism against infections and is a strategy to repair injured tissue and to adapt to stress conditions. However, exaggerated and/or persistent (chronic) inflammation may eventually become maladaptive and evoke diseases such as autoimmunity, diabetes, inflammatory tissue damage, fibrosis, and cancer. In fact, inflammation is now considered a hallmark of malignancy with prognostic relevance. Emerging studies have revealed a central involvement of inflammation in several steps of the metastatic cascade of bone-homing tumor cells through supporting their survival, migration, invasion, and growth. The mechanisms by which inflammation favors these steps involve activation of epithelial-to-mesenchymal transition (EMT), chemokine-mediated homing of tumor cells, local activation of osteoclastogenesis, and a positive feedback amplification of the protumorigenic inflammation loop between tumor and resident cells. In this review, we summarize established and evolving concepts of inflammation-driven tumorigenesis, with a special focus on bone metastasis.
Collapse
Affiliation(s)
- Andy Göbel
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefania Dell’Endice
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Nikolai Jaschke
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- Center for Healthy Aging, Technische Universität Dresden, 01159 Dresden, Germany
| | - Sophie Pählig
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
| | - Amna Shahid
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
| | - Lorenz C. Hofbauer
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Healthy Aging, Technische Universität Dresden, 01159 Dresden, Germany
| | - Tilman D. Rachner
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Healthy Aging, Technische Universität Dresden, 01159 Dresden, Germany
| |
Collapse
|
4
|
The Role of Adipokines and Bone Marrow Adipocytes in Breast Cancer Bone Metastasis. Int J Mol Sci 2020; 21:ijms21144967. [PMID: 32674405 PMCID: PMC7404398 DOI: 10.3390/ijms21144967] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
The morbidity and mortality of breast cancer is mostly due to a distant metastasis, especially to the bone. Many factors may be responsible for bone metastasis in breast cancer, but interactions between tumor cells and other surrounding types of cells, and cytokines secreted by both, are expected to play the most important role. Bone marrow adipocyte (BMA) is one of the cell types comprising the bone, and adipokine is one of the cytokines secreted by both breast cancer cells and BMAs. These BMAs and adipokines are known to be responsible for cancer progression, and this review is focused on how BMAs and adipokines work in the process of breast cancer bone metastasis. Their potential as suppressive targets for bone metastasis is also explored in this review.
Collapse
|
5
|
Abstract
Accumulating evidence highlights the importance of interactions between tumour cells and stromal cells for tumour initiation, progression, and metastasis. In tumours that contain adipocyte in their stroma, adipocytes contribute to modification of tumour microenvironment and affect metabolism of tumour and tumour progression by production of cytokines and adipokines from the lipids. The omentum and bone marrow (BM) are highly adipocyte-rich and are also common metastatic and primary tumour developmental sites. Omental adipocytes exhibit metabolic cross-talk, immune modulation, and angiogenesis. BM adipocytes secrete adipokines, and participate in solid tumour metastasis through regulation of the CCL2/CCR2 axis and metabolic interactions. BM adipocytes also contribute to the progression of hematopoietic neoplasms. Here, we here provide an overview of research progress on the cross-talks between omental/BM adipocytes and tumour cells, which may be pivotal modulators of tumour biology, thus highlighting novel therapeutic targets. Abbreviations: MCP-1, monocyte chemoattractant protein 1IL, interleukinSTAT3, signal transducer and activator of transcription 3FABP4, fatty acid binding protein 4PI3K/AKT, phosphoinositide 3-kinase/protein kinase BPPAR, peroxisome proliferator-activated receptorPUFA, polyunsaturated fatty acidTAM, tumour-associated macrophagesVEGF, vascular endothelial growth factorVEGFR, vascular endothelial growth factor receptorBM, bone marrowBMA, bone marrow adipocytesrBMA, regulated BMAcBMA, constitutive BMAUCP-1, uncoupling protein-1TNF-α, tumour necrosis factor-alphaRANKL, receptor activator of nuclear factor kappa-Β ligandVCAM-1, vascular cell adhesion molecule 1JAK2, Janus kinase 2CXCL (C–X–C motif) ligandPGE2, prostaglandin E2COX-2, cyclooxygenase-2CCL2, C-C motif chemokine ligand 2NF-κB, nuclear factor-kappa BMM, multiple myelomaALL, acute lymphoblastic leukemiaAML, acute myeloid leukemiaGDF15, growth differentiation factor 15AMPK, AMP-activated protein kinaseMAPK, mitogen-activated protein kinaseAPL, acute promyelocytic leukemiaCCR2, C-C motif chemokine receptor 2SDF-1α, stromal cell-derived factor-1 alphaFFA, free fatty acidsLPrA, leptin peptide receptor antagonistMCD, malonyl-CoA decarboxylase.
Collapse
Affiliation(s)
- Yoon Jin Cha
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
6
|
Chen L, Yang R, Qiao W, Yuan X, Wang S, Goltzman D, Miao D. 1,25-Dihydroxy vitamin D prevents tumorigenesis by inhibiting oxidative stress and inducing tumor cellular senescence in mice. Int J Cancer 2018; 143:368-382. [PMID: 29441580 DOI: 10.1002/ijc.31317] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 01/24/2018] [Accepted: 02/01/2018] [Indexed: 12/30/2022]
Abstract
Human epidemiological studies suggest that 1,25(OH)2 D3 deficiency might increase cancer incidence, but no spontaneous tumors have been reported in mice lacking 1,25(OH)2 D3 or deficient in its receptor. In our study, we detected, for the first time, diverse types of spontaneous tumors in l,25(OH)2 D3 deficient mice more than 1 year of age. This was associated with increased oxidative stress, cellular senescence and senescence-associated secretory phenotype molecules, such as hepatocyte growth factor, mediated via its receptor c-Met. Furthermore, 1,25(OH)2 D3 prevented spontaneous tumor development. We also demonstrated that l,25(OH)2 D3 deficiency accelerates allograft tumor initiation and growth by increasing oxidative stress and DNA damage, activating oncogenes, inactivating tumor suppressor genes, stimulating malignant cell proliferation and inhibiting their senescence; in contrast, supplementation with exogenous l,25(OH)2 D3 or antioxidant, or knock-down of the Bmi1 or c-Met oncogene, largely rescued the phenotypes of allograft tumors. Results from our study suggest that 1,25(OH)2 D3 deficiency enhances tumorigenesis by increasing malignant cell oxidative stress and DNA damage, stimulating microenvironmental cell senescence and a senescence-associated secretory phenotype, and activating oncogenes and inactivating tumor suppressor genes, thus increasing malignant cell proliferation. Our study provides direct evidence supporting the role of vitamin D deficiency in increasing cancer incidence. Conversely, 1,25(OH)2 D3 prevented spontaneous tumor development, suggesting that this inhibitory effect prevents the initiation and progression of tumorigenesis, thus provides a mechanistic basis for 1,25(OH)2 D3 to prevent tumorigenesis in an aging organism.
Collapse
Affiliation(s)
- Lulu Chen
- State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China
| | - Renlei Yang
- State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China
| | - Wanxin Qiao
- State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China
| | - Xiaoqin Yuan
- State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China
| | - Shui Wang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - David Goltzman
- Calcium Research Laboratory, McGill University Health Centre and Department of Medicine, McGill University, Montreal, QC, Canada
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Chan KK, Matchett KB, McEnhill PM, Dakir EH, McMullin MF, El-Tanani Y, Patterson L, Faheem A, Rudland PS, McCarron PA, El-Tanani M. Protein deregulation associated with breast cancer metastasis. Cytokine Growth Factor Rev 2015; 26:415-423. [PMID: 26088937 DOI: 10.1016/j.cytogfr.2015.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/20/2015] [Indexed: 12/20/2022]
Abstract
Breast cancer is one of the most prevalent malignancies worldwide. It consists of a group of tumor cells that have the ability to grow uncontrollably, overcome replicative senescence (tumor progression) and metastasize within the body. Metastases are processes that consist of an array of complex gene dysregulation events. Although these processes are still not fully understood, the dysregulation of a number of key proteins must take place if the tumor cells are to disseminate and metastasize. It is now widely accepted that future effective and innovative treatments of cancer metastasis will have to encompass all the major components of malignant transformation. For this reason, much research is now being carried out into the mechanisms that govern the malignant transformation processes. Recent research has identified key genes involved in the development of metastases, as well as their mechanisms of action. A detailed understanding of the encoded proteins and their interrelationship generates the possibility of developing novel therapeutic approaches. This review will focus on a select group of proteins, often deregulated in breast cancer metastasis, which have shown therapeutic promise, notably, EMT, E-cadherin, Osteopontin, PEA3, Transforming Growth Factor Beta (TGF-β) and Ran.
Collapse
Affiliation(s)
- Ka Kui Chan
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, United Kingdom; Department of Pathology, The University of Hong Kong , Hong Kong Special Administrative Region
| | - Kyle B Matchett
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Paul M McEnhill
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - El Habib Dakir
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Mary Frances McMullin
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Yahia El-Tanani
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Laurence Patterson
- Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire BD7 1DP, United Kingdom
| | - Ahmed Faheem
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, United Kingdom
| | - Philip S Rudland
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Paul A McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, United Kingdom
| | - Mohamed El-Tanani
- Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire BD7 1DP, United Kingdom.
| |
Collapse
|
8
|
Ye ZB, Ma G, Zhao YH, Xiao Y, Zhan Y, Jing C, Gao K, Liu ZH, Yu SJ. miR-429 inhibits migration and invasion of breast cancer cells in vitro. Int J Oncol 2014; 46:531-8. [PMID: 25405387 PMCID: PMC4277243 DOI: 10.3892/ijo.2014.2759] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/23/2014] [Indexed: 12/25/2022] Open
Abstract
Accumulating evidence indicates that microRNAs (miRNAs) are involved in regulating cancer invasion and metastasis, and an increasing number of research demonstrates that miRNAs can promote or inhibit cell motility depending on genetic background of different cancers and the microenvironment. In the present study, we established an in vivo bone metastasis model of breast cancer by injecting MDA-MB-231 cells into the left ventricle of nude mice, and then screened the differentially expressed miRNAs between parental and bone-metastatic MDA-MB-231 cells using miRNA array. The results revealed that decreased expression of miR-429 was probably involved in negatively regulating bone metastasis of breast cancer cells. On the other hand, overexpression of miR-429 in MDA-MB-231 cells remarkably suppressed invasion in vitro. We identified ZEB1 and CRKL as potential targets of miR-429 by analyzing combined results from in silico search and global expression array of the same RNA samples. Immunoblot assay confirmed that miR-429 reduced their expression at protein level. Taken together, our results offer an opportunity for further understanding of the recondite mechanisms underlying the bone metastasis of breast cancer.
Collapse
Affiliation(s)
- Zhi-Bin Ye
- Department of Orthopedics, Cancer Hospital (Institute), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Gang Ma
- The State Key Laboratory of Molecular Oncology, Cancer Hospital (Institute), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Ya-Hui Zhao
- The State Key Laboratory of Molecular Oncology, Cancer Hospital (Institute), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yun Zhan
- The State Key Laboratory of Molecular Oncology, Cancer Hospital (Institute), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Chao Jing
- The State Key Laboratory of Molecular Oncology, Cancer Hospital (Institute), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Kai Gao
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Zhi-Hua Liu
- The State Key Laboratory of Molecular Oncology, Cancer Hospital (Institute), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Sheng-Ji Yu
- Department of Orthopedics, Cancer Hospital (Institute), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| |
Collapse
|
9
|
Karavitis J, Zhang M. COX2 regulation of breast cancer bone metastasis. Oncoimmunology 2014; 2:e23129. [PMID: 23802065 PMCID: PMC3661150 DOI: 10.4161/onci.23129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 12/05/2012] [Indexed: 11/25/2022] Open
Abstract
High expression levels of cyclooxygenase 2 expression and infiltration by regulatory T cells (Tregs) are often associated with tumor progression. We have recently reported a prostaglandin E2 (PGE2)-dependent recruitment of Tregs to the tumor, suggesting that targeting specific PGE2 receptors may constitute a valuable approach to ablate the immuno-editing that occurs along with disease progression.
Collapse
Affiliation(s)
- John Karavitis
- Departments of Molecular Pharmacology and Biological Chemistry; Northwestern University Feinberg School of Medicine; Chicago, IL USA ; Robert H. Lurie Comprehensive Cancer Center; Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | | |
Collapse
|
10
|
Hardaway AL, Herroon MK, Rajagurubandara E, Podgorski I. Bone marrow fat: linking adipocyte-induced inflammation with skeletal metastases. Cancer Metastasis Rev 2014; 33:527-43. [PMID: 24398857 PMCID: PMC4154371 DOI: 10.1007/s10555-013-9484-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adipocytes are important but underappreciated components of bone marrow microenvironment, and their numbers greatly increase with age, obesity, and associated metabolic pathologies. Age and obesity are also significant risk factors for development of metastatic prostate cancer. Adipocytes are metabolically active cells that secrete adipokines, growth factors, and inflammatory mediators; influence behavior and function of neighboring cells; and have a potential to disturb local milleu and dysregulate normal bone homeostasis. Increased marrow adiposity has been linked to bone marrow inflammation and osteoporosis of the bone, but its effects on growth and progression of prostate tumors that have metastasized to the skeleton are currently not known. This review focuses on fat-bone relationship in a context of normal bone homeostasis and metastatic tumor growth in bone. We discuss effects of marrow fat cells on bone metabolism, hematopoiesis, and inflammation. Special attention is given to CCL2- and COX-2-driven pathways and their potential as therapeutic targets for bone metastatic disease.
Collapse
Affiliation(s)
- Aimalie L. Hardaway
- Department of Pharmacology, Wayne State University School of, Medicine, 540 E. Canfield, Rm 6304, Detroit, MI 48201, USA
- Karmanos Cancer Institute, Wayne State University School of, Medicine, Detroit, MI 48201, USA
| | - Mackenzie K. Herroon
- Department of Pharmacology, Wayne State University School of, Medicine, 540 E. Canfield, Rm 6304, Detroit, MI 48201, USA
| | - Erandi Rajagurubandara
- Department of Pharmacology, Wayne State University School of, Medicine, 540 E. Canfield, Rm 6304, Detroit, MI 48201, USA
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of, Medicine, 540 E. Canfield, Rm 6304, Detroit, MI 48201, USA
- Karmanos Cancer Institute, Wayne State University School of, Medicine, Detroit, MI 48201, USA
| |
Collapse
|
11
|
Allard-Chamard H, Dufort P, Haroun S, de Brum-Fernandes AJ. Cytosolic phospholipase A2 and eicosanoids modulate life, death and function of human osteoclasts in vitro. Prostaglandins Leukot Essent Fatty Acids 2014; 90:117-23. [PMID: 24508380 DOI: 10.1016/j.plefa.2013.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Eicosanoids are important in bone physiology but the specific function of phopholipase enzymes has not been determined in osteoclasts. The objective of this is study was to determine the presence of cPLA2 in human in vitro-differentiated osteoclasts as well as osteoclasts in situ from bone biopsies. MATERIALS AND METHODS Osteoclastogenesis, apoptosis, bone resorption and the modulation of actin cytoskeleton assays were performed on osteoclasts differentiated in vitro. Immunohistochemistry was done in differentiated osteoclasts as well as on bone biopsies. RESULTS Human osteoclasts from normal, fetal, osteoarthritic, osteoporotic and Pagetic bone biopsies express cPLA2 and stimulation with RANKL increases cPLA2 phosphorylation in vitro. Inhibition of cPLA2 increased osteoclastogenesis and decreased apoptosis but decreased the capacity of osteoclasts to generate actin rings and to resorb bone. DISCUSSION AND CONCLUSIONS These results suggest that cPLA2 modulates osteoclast functions and could be a useful target in bone diseases with hyperactivated osteoclasts.
Collapse
Affiliation(s)
- Hugues Allard-Chamard
- Division of Rheumatology, Faculté de médecine et des sciences de la santé de l' Université de Sherbrooke et Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Québec, Canada.
| | - Philippe Dufort
- Division of Rheumatology, Faculté de médecine et des sciences de la santé de l' Université de Sherbrooke et Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Québec, Canada.
| | - Sonia Haroun
- Division of Rheumatology, Faculté de médecine et des sciences de la santé de l' Université de Sherbrooke et Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Québec, Canada.
| | - Artur J de Brum-Fernandes
- Division of Rheumatology, Faculté de médecine et des sciences de la santé de l' Université de Sherbrooke et Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Québec, Canada.
| |
Collapse
|
12
|
Hix LM, Karavitis J, Khan MW, Shi YH, Khazaie K, Zhang M. Tumor STAT1 transcription factor activity enhances breast tumor growth and immune suppression mediated by myeloid-derived suppressor cells. J Biol Chem 2013; 288:11676-88. [PMID: 23486482 DOI: 10.1074/jbc.m112.441402] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Previous studies had implicated the IFN-γ transcription factor signal transducer and activator of transcription 1 (STAT1) as a tumor suppressor. However, accumulating evidence has correlated increased STAT1 activation with increased tumor progression in multiple types of cancer, including breast cancer. Indeed, we present evidence that tumor up-regulation of STAT1 activity in human and mouse mammary tumors correlates with increasing disease progression to invasive carcinoma. A microarray analysis comparing low aggressive TM40D and highly aggressive TM40D-MB mouse mammary carcinoma cells revealed significantly higher STAT1 activity in the TM40D-MB cells. Ectopic overexpression of constitutively active STAT1 in TM40D cells promoted mobilization of myeloid-derived suppressor cells (MDSCs) and inhibition of antitumor T cells, resulting in aggressive tumor growth in tumor-transplanted, immunocompetent mice. Conversely, gene knockdown of STAT1 in the metastatic TM40D-MB cells reversed these events and attenuated tumor progression. Importantly, we demonstrate that in human breast cancer, the presence of tumor STAT1 activity and tumor-recruited CD33(+) myeloid cells correlates with increasing disease progression from ductal carcinoma in situ to invasive carcinoma. We conclude that STAT1 activity in breast cancer cells is responsible for shaping an immunosuppressive tumor microenvironment, and inhibiting STAT1 activity is a promising immune therapeutic approach.
Collapse
Affiliation(s)
- Laura M Hix
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
13
|
Soloviev M, Esteves MP, Amiri F, Crompton MR, Rider CC. Elevated transcription of the gene QSOX1 encoding quiescin Q6 sulfhydryl oxidase 1 in breast cancer. PLoS One 2013; 8:e57327. [PMID: 23460839 PMCID: PMC3583868 DOI: 10.1371/journal.pone.0057327] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 01/21/2013] [Indexed: 11/18/2022] Open
Abstract
The q arm of chromosome 1 is frequently amplified at the gene level in breast cancer. Since the significance of this is unclear we investigated whether 1q genes are overexpressed in this disease. The cDNA levels of 1q-located genes were analysed in a search for overexpressed genes. 26 genes mapping to the 1q arm show highly significant (P≤0.01) overexpression of transcripts in breast cancer compared to normal breast tissue. Amongst those showing the highest levels of overexpression in both expressed sequence tag (EST) and serial analysis of gene expression (SAGE) databases was enzyme quiescin Q6 sulfhydryl oxidase 1 (QSOX1). We investigated QSOX1 cDNA derived from T47D breast carcinoma cells by RT-PCR and 3′-RACE PCR and identified a novel extended form of QSOX1 transcript, containing a long 3′UTR, nearly double the size of the previously reported QSOX1 cDNA, and confirmed its 3′ end nucleotide sequence using RACE-PCR. We also used quantitative real-time PCR to analyse a panel of cDNAs derived from 50 clinically-graded normal and malignant breast tissue samples for the expression of QSOX1 mRNAs. QSOX1 transcription was elevated in an increasing proportion in the grade 2 and grade 3 tumours (graded according to the Nottingham prognostic index), with 10 of the 15 grade 3 tumours (67%) examined exceeding the normal range. There was a significant correlation between relative transcript level and clinical grade (P≤0.01) for all qPCR primer sets tested. QSOX1 mRNA levels, based on SAGE expression data, did not correlate with either Estrogen Receptor (ER) or Epidermal Growth Factor Receptor 2 (ErbB-2 or HER2/neu) expression. Our data indicate that QSOX1 is a potential new prognostic marker which may prove of use in the staging of breast tumours and the stratification of breast cancer patients.
Collapse
MESH Headings
- Alternative Splicing/genetics
- Base Sequence
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Carcinoma, Ductal, Breast/enzymology
- Carcinoma, Ductal, Breast/genetics
- Cell Line, Tumor
- DNA, Complementary/genetics
- Expressed Sequence Tags
- Female
- Gene Expression Regulation, Neoplastic
- Genes, Neoplasm/genetics
- Humans
- Molecular Sequence Data
- Open Reading Frames/genetics
- Oxidoreductases Acting on Sulfur Group Donors/genetics
- Oxidoreductases Acting on Sulfur Group Donors/metabolism
- Protein Biosynthesis/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Real-Time Polymerase Chain Reaction
- Transcription, Genetic
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Mikhail Soloviev
- School of Biological Sciences, Centre for Biomedical Sciences, Royal Holloway University of London, London, United Kingdom.
| | | | | | | | | |
Collapse
|
14
|
Vázquez-Cedeira M, Lazo PA. Human VRK2 (vaccinia-related kinase 2) modulates tumor cell invasion by hyperactivation of NFAT1 and expression of cyclooxygenase-2. J Biol Chem 2012; 287:42739-50. [PMID: 23105117 DOI: 10.1074/jbc.m112.404285] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human VRK2 (vaccinia-related kinase 2), a kinase that emerged late in evolution, affects different signaling pathways, and some carcinomas express high levels of VRK2. Invasion by cancer cells has been associated with NFAT1 (nuclear factor of activated T cells) activation and expression of the COX-2 (cyclooxygenase 2) gene. We hypothesized that VRK proteins might play a regulatory role in NFAT1 activation in tumor cells. We demonstrate that VRK2 directly interacts and phosphorylates NFAT1 in Ser-32 within its N-terminal transactivation domain. VRK2 increases NFAT1-dependent transcription by phosphorylation, and this effect is only detected following cell phorbol 12-myristate 13-acetate and ionomycin stimulation and calcineurin activation. This NFAT1 hyperactivation by VRK2 increases COX-2 gene expression through the proximal NFAT1 binding site in the COX-2 gene promoter. Furthermore, VRK2A down-regulation by RNA interference reduces COX-2 expression at transcriptional and protein levels. Therefore, VRK2 down-regulation reduces cell invasion by tumor cells, such as MDA-MB-231 and MDA-MB-435, upon stimulation with phorbol 12-myristate 13-acetate plus ionomycin. These findings identify the first reported target and function of human VRK2 as an active kinase playing a role in regulation of cancer cell invasion through the NFAT pathway and COX-2 expression.
Collapse
Affiliation(s)
- Marta Vázquez-Cedeira
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | | |
Collapse
|
15
|
Karavitis J, Hix LM, Shi YH, Schultz RF, Khazaie K, Zhang M. Regulation of COX2 expression in mouse mammary tumor cells controls bone metastasis and PGE2-induction of regulatory T cell migration. PLoS One 2012; 7:e46342. [PMID: 23029485 PMCID: PMC3460819 DOI: 10.1371/journal.pone.0046342] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/30/2012] [Indexed: 12/02/2022] Open
Abstract
Background The targeting of the immune system through immunotherapies to prevent tumor tolerance and immune suppression are at the front lines of breast cancer treatment and research. Human and laboratory studies have attributed breast cancer progression and metastasis to secondary organs such as the bone, to a number of factors, including elevated levels of prostaglandin E2 (PGE2) and the enzyme responsible for its production, cyclooxygenase 2 (COX2). Due to the strong connection of COX2 with immune function, we focused on understanding how variance in COX2 expression manipulates the immune profile in a syngeneic, and immune-competent, mouse model of breast cancer. Though there have been correlative findings linking elevated levels of COX2 and Tregs in other cancer models, we sought to elucidate the mechanisms by which these immuno-suppressive cells are recruited to breast tumor and the means by which they promote tumor tolerance. Methodology/Principal Findings To elucidate the mechanisms by which exacerbated COX2 expression potentiates metastasis we genetically manipulated non-metastatic mammary tumor cells (TM40D) to over-express COX2 (TM40D-COX2). Over-expression of COX2 in this mouse breast cancer model resulted in an increase in bone metastasis (an observation that was ablated following suppression of COX2 expression) in addition to an exacerbated Treg recruitment in the primary tumor. Interestingly, other immune-suppressive leukocytes, such as myeloid derived suppressor cells, were not altered in the primary tumor or the circulation. Elevated levels of PGE2 by tumor cells can directly recruit CD4+CD25+ cells through interactions with their EP2 and/or EP4 receptors, an effect that was blocked using anti-PGE2 antibody. Furthermore, increased Treg recruitment to the primary tumor contributed to the greater levels of apoptotic CD8+ T cells in the TM40D-COX2 tumors. Conclusion/Significance Due to the systemic effects of COX2 inhibitors, we propose targeting specific EP receptors as therapeutic interventions to breast cancer progression.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Apoptosis
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Bone Neoplasms/secondary
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Cyclooxygenase 2 Inhibitors/pharmacology
- Dinoprostone/antagonists & inhibitors
- Dinoprostone/biosynthesis
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- John Karavitis
- Departments of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Laura M. Hix
- Departments of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Yihui H. Shi
- Departments of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Rachael F. Schultz
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Khashayarsha Khazaie
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Ming Zhang
- Departments of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
16
|
Nola S, Sin S, Bonin F, Lidereau R, Driouch K. A methodological approach to unravel organ-specific breast cancer metastasis. J Mammary Gland Biol Neoplasia 2012; 17:135-45. [PMID: 22628182 DOI: 10.1007/s10911-012-9256-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/08/2012] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is the most commonly diagnosed and the second highest cause of cancer-related mortality. Although major breakthroughs have emerged during the past decades concerning the characterization of major malignant tumors hallmarks, little is known about the molecular process that sustains the most deadly feature of cancer: metastasis to distant organs. In fact, this colonization of tumor cells to secondary sites is not random but rather orientated, and depends on several signalling events that are not fully elucidated yet. Understanding the precise molecular and cellular mechanisms accountable for the specific invasion of tissues by breast cancer cells is likely to be important for developing new therapeutic strategies to effectively prevent metastasis in patients diagnosed with early cancer lesions. Here, we briefly describe a multidisciplinary approach based on the molecular profiling of breast cancer metastases, the elaboration of prognostic gene signatures, the clinical validation and the experimental confirmation using cell and animal models to better address breast cancer metastasis. This methodology can be considered as a useful workflow to identify and validate the genes that trigger and support organ tropism of breast cancer cells during metastasis.
Collapse
Affiliation(s)
- Sébastien Nola
- Institut Curie, Hôpital René Huguenin, Laboratoire d'oncogénétique, 35 rue Dailly, Saint-Cloud, France
| | | | | | | | | |
Collapse
|
17
|
Tiwari S, Schem C, Lorenzen AC, Kayser O, Wiese C, Graeff C, Peña J, Marshall RP, Heller M, Kalthoff H, Jonat W, Glüer CC. Application of ex vivo micro-computed tomography for assessment of in vivo fluorescence and plain radiographic imaging for monitoring bone metastases and osteolytic lesions. J Bone Miner Metab 2012; 30:373-80. [PMID: 22130787 DOI: 10.1007/s00774-011-0335-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 10/27/2011] [Indexed: 12/11/2022]
Abstract
The intracardiac injection model is a commonly used in vivo model to test therapeutic response in bone metastases. However, few studies have critically compared the performance of different imaging methods in terms of sensitivity and quantitative assessment of osteolytic lesions. We performed in vivo optical and plain radiographic imaging of bone metastases followed by high-sensitivity ex vivo micro-computed tomography (micro-CT) imaging. This approach allowed for quantitative assessment of in vivo imaging techniques using fluorescence and plain radiography. Comparison of lesions detected in vivo by fluorescent optical imaging with ex vivo micro-CT revealed that the limited spatial resolution of fluorescent optical imaging may underestimate the number of bone metastases. Radiography was compared with micro-CT for the detection of osteolytic lesions. When using dichotomous yes/no grading, there was a 64% agreement in detection of osteolytic lesions. When subjective semiquantitative grading methods were used to assess the extent of osteolytic lesions, a positive association between the micro-CT grades and the square root of the radiography-based grades was observed (p < 0.05). Micro-CT also showed a significant association with fluorescent optical values; however, no such association was observed between lesion scores based on radiographs and those based on fluorescent imaging. The findings reveal an approximate two-fold sensitivity for micro-CT compared to plain radiography in the detection of osteolytic lesions. Significant associations between micro-CT-based osteolytic lesion grade and tumor growth characterized by increased fluorescent area document the value of these two techniques for the assessment of osteolytic bone metastases.
Collapse
Affiliation(s)
- Sanjay Tiwari
- Division of Medical Physics, Department of Diagnostic Radiology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sun DZ, Jiao JP, Ju DW, Ye M, Zhang X, Xu JY, Lu Y, He J, Wei PK, Yang MH. Tumor interstitial fluid and gastric cancer metastasis: an experimental study to verify the hypothesis of "tumor-phlegm microenvironment". Chin J Integr Med 2012; 18:350-358. [PMID: 22549391 DOI: 10.1007/s11655-012-1085-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To extract tumor interstitial fluid (TIF) from MKN-45 gastric cancer which is similar to "muddy phlegm" in Chinese medicine and observe influences of MKN-45 tumor interstitial fluid (MKN-45 TIF) intervention on metastasis of gastric cancer and on the expressions of vascular endothelial growth factor (VEGF), kinase insert domain containing receptor (KDR), epithelial-cadherin (E-cad), cyclooxygenase-2 (COX-2), intercellular adhesion molecule-1 (ICAM-1) and telomerase genes and proteins in primary tumor tissue. METHODS An MKN-45 tumor-bearing model was established in 50 nude mice. The modeled animals were equally randomized to 5 groups: the simple tumor-bearing group (model group), the normal saline (NS) via tail vein injection (i.v.) group (NS i.v. group), MKN-45 TIF i.v. group (TIF i.v. group), NS intraperitoneal injection (i.p.) group (NS i.p. group), and MKN-45 TIF i.p. group (TIF i.p. group). The TIF and NS intervention groups received injection (i.p. or i.v.) of MKN-45 TIF or NS twice a week, 0.2 mL at a time. After 8 weeks, the primary tumors were removed, weighed and HE stained to observe tumor metastasis. The primary tumor tissues were analyzed by immunohistochemistry and real-time quantitative PCR to detect expressions of VEGF, KDR, E-cad, COX-2, ICAM-1, and telomerase genes and proteins in different groups. RESULTS There were significant differences in tumor weight between TIF intervention groups and the model and NS intervention groups. Tumor metastasis was observed in all 5 groups, but the tumor metastasis rate in TIF intervention groups was significantly higher than those in the model and NS intervention groups. The gene and protein expressions of gastric cancer-related factors VEGF, KDR, COX-2, ICAM-1 and telomerase were unregulated while the gene and protein expressions of E-cad were downregulated in TIF intervention groups. CONCLUSIONS TIF promotes tumor growth, invasion and metastasis of gastric cancer. These findings provide preliminary experimental clues for verifying the hypothesis of "tumor-phlegm microenvironment".
Collapse
Affiliation(s)
- Da-zhi Sun
- Institute of Traditional Chinese Medicine Research, Chinese People's Liberation Army General Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lu X, Mu E, Wei Y, Riethdorf S, Yang Q, Yuan M, Yan J, Hua Y, Tiede BJ, Lu X, Haffty BG, Pantel K, Massagué J, Kang Y. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors. Cancer Cell 2011; 20:701-14. [PMID: 22137794 PMCID: PMC3241854 DOI: 10.1016/j.ccr.2011.11.002] [Citation(s) in RCA: 400] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/14/2011] [Accepted: 11/02/2011] [Indexed: 12/22/2022]
Abstract
Breast cancer patients often develop locoregional or distant recurrence years after mastectomy. Understanding the mechanism of metastatic recurrence after dormancy is crucial for improving the cure rate for breast cancer. Here, we characterize a bone metastasis dormancy model to show that aberrant expression of vascular cell adhesion molecule 1 (VCAM-1), in part dependent on the activity of the NF-κB pathway, promotes the transition from indolent micrometastasis to overt metastasis. By interacting with the cognate receptor integrin α4β1, VCAM-1 recruits monocytic osteoclast progenitors and elevates local osteoclast activity. Antibodies against VCAM-1 and integrin α4 effectively inhibit bone metastasis progression and preserve bone structure. These findings establish VCAM-1 as a promising target for the prevention and inhibition of metastatic recurrence in bone.
Collapse
Affiliation(s)
- Xin Lu
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Euphemia Mu
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sabine Riethdorf
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Qifeng Yang
- Department of Radiation Oncology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ 08901, USA
| | - Min Yuan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jun Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yuling Hua
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Benjamin J. Tiede
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Xuemin Lu
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Bruce G. Haffty
- Department of Radiation Oncology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ 08901, USA
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
20
|
Lu X, Mu E, Wei Y, Riethdorf S, Yang Q, Yuan M, Yan J, Hua Y, Tiede BJ, Lu X, Haffty BG, Pantel K, Massagué J, Kang Y. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors. Cancer Cell 2011. [PMID: 22137794 DOI: 10.1016/j.ccr.2011.11.002s1535-6108(11)00408-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Breast cancer patients often develop locoregional or distant recurrence years after mastectomy. Understanding the mechanism of metastatic recurrence after dormancy is crucial for improving the cure rate for breast cancer. Here, we characterize a bone metastasis dormancy model to show that aberrant expression of vascular cell adhesion molecule 1 (VCAM-1), in part dependent on the activity of the NF-κB pathway, promotes the transition from indolent micrometastasis to overt metastasis. By interacting with the cognate receptor integrin α4β1, VCAM-1 recruits monocytic osteoclast progenitors and elevates local osteoclast activity. Antibodies against VCAM-1 and integrin α4 effectively inhibit bone metastasis progression and preserve bone structure. These findings establish VCAM-1 as a promising target for the prevention and inhibition of metastatic recurrence in bone.
Collapse
Affiliation(s)
- Xin Lu
- Department of Molecular Biology, Princeton University, NJ 08544, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chen Y, Shi HY, Stock SR, Stern PH, Zhang M. Regulation of breast cancer-induced bone lesions by β-catenin protein signaling. J Biol Chem 2011; 286:42575-42584. [PMID: 22009747 DOI: 10.1074/jbc.m111.294595] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Breast cancer patients have an extremely high rate of bone metastases. Morphological analyses of the bones in most of the patients have revealed the mixed bone lesions, comprising both osteolytic and osteoblastic elements. β-Catenin plays a key role in both embryonic skeletogenesis and postnatal bone regeneration. Although this pathway is also involved in many bone malignancy, such as osteosarcoma and prostate cancer-induced bone metastases, its regulation of breast cancer bone metastases remains unknown. Here, we provide evidence that the β-catenin signaling pathway has a significant impact on the bone lesion phenotype. In this study, we established a novel mouse model of mixed bone lesions using intratibial injection of TM40D-MB cells, a breast cancer cell line that is highly metastatic to bone. We found that both upstream and downstream molecules of the β-catenin pathway are up-regulated in TM40D-MB cells compared with non-bone metastatic TM40D cells. TM40D-MB cells also have a higher T cell factor (TCF) reporter activity than TM40D cells. Inactivation of β-catenin in TM40D-MB cells through expression of a dominant negative TCF4 not only increases osteoclast differentiation in a tumor-bone co-culture system and enhances osteolytic bone destruction in mice, but also inhibits osteoblast differentiation. Surprisingly, although tumor cells overexpressing β-catenin did induce a slight increase of osteoblast differentiation in vitro, these cells display a minimal effect on osteoblastic bone formation in mice. These data collectively demonstrate that β-catenin acts as an important determinant in mixed bone lesions, especially in controlling osteoblastic effect within tumor-harboring bone environment.
Collapse
Affiliation(s)
- Yan Chen
- Department of Molecular Pharmacology and Biological Chemistry, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Heidi Y Shi
- Department of Molecular Pharmacology and Biological Chemistry, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Stuart R Stock
- Department of Molecular Pharmacology and Biological Chemistry, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Paula H Stern
- Department of Molecular Pharmacology and Biological Chemistry, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Ming Zhang
- Department of Molecular Pharmacology and Biological Chemistry, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611.
| |
Collapse
|
22
|
Safina A, Sotomayor P, Limoge M, Morrison C, Bakin AV. TAK1-TAB2 signaling contributes to bone destruction by breast carcinoma cells. Mol Cancer Res 2011; 9:1042-53. [PMID: 21700681 PMCID: PMC3157546 DOI: 10.1158/1541-7786.mcr-10-0196] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Advanced-stage breast cancers frequently metastasize to the bones and cause bone destruction, but the underlying mechanism is not fully understood. This study presents evidence that TGF-β-activated protein kinase 1 (TAK1) signaling in tumor cells promotes bone destruction by metastatic breast carcinoma cells, controlling expression of prometastatic factors including matrix metalloproteinase (MMP) 9 and COX2. Suppression of TAK1 signaling by dominant-negative TAK1 (dn-TAK1) in breast carcinoma MDA-MB-231 cells impairs bone colonization by carcinoma cells and bone osteolysis in the intracardiac injection model. Mechanistic studies showed that inhibition of TAK1 by dn-TAK1 or siRNA blocked expression of factors implicated in bone metastasis, such as MMP-9, COX2/PTGS2, parathyroid hormone-related protein (PTHrP) and interleukin 8 (IL-8), but did not affect activation of p38MAPK by TGF-β. TAK1 signaling is mediated by TAK1-binding partners TAB1, TAB2, and TAB3. Carcinoma cells express elevated mRNA levels of TAB2 and TAB3, whereas the TAB1 expression is noticeably low. Accordingly, depletion of TAB2 by siRNA reduced expression of MMP-9 and COX2. Together, these studies show that the TAK1-TAB2-TAB3 signaling axis is critical for carcinoma-induced bone lesions, mediating expression of proinvasive and osteolytic factors. These findings identify the TAK1-TAB2 axis as a potential therapeutic target in bone metastasis.
Collapse
Affiliation(s)
- Alfiya Safina
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Paula Sotomayor
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Michelle Limoge
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Carl Morrison
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Andrei V. Bakin
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263
| |
Collapse
|
23
|
Hix LM, Shi YH, Brutkiewicz RR, Stein PL, Wang CR, Zhang M. CD1d-expressing breast cancer cells modulate NKT cell-mediated antitumor immunity in a murine model of breast cancer metastasis. PLoS One 2011; 6:e20702. [PMID: 21695190 PMCID: PMC3113806 DOI: 10.1371/journal.pone.0020702] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/07/2011] [Indexed: 12/31/2022] Open
Abstract
Background Tumor tolerance and immune suppression remain formidable obstacles to the efficacy of immunotherapies that harness the immune system to eradicate breast cancer. A novel syngeneic mouse model of breast cancer metastasis was developed in our lab to investigate mechanisms of immune regulation of breast cancer. Comparative analysis of low-metastatic vs. highly metastatic tumor cells isolated from these mice revealed several important genetic alterations related to immune control of cancer, including a significant downregulation of cd1d1 in the highly metastatic tumor cells. The cd1d1 gene in mice encodes the MHC class I-like molecule CD1d, which presents glycolipid antigens to a specialized subset of T cells known as natural killer T (NKT) cells. We hypothesize that breast cancer cells, through downregulation of CD1d and subsequent evasion of NKT-mediated antitumor immunity, gain increased potential for metastatic tumor progression. Methodology/Principal Findings In this study, we demonstrate in a mouse model of breast cancer metastasis that tumor downregulation of CD1d inhibits iNKT-mediated antitumor immunity and promotes metastatic breast cancer progression in a CD1d-dependent manner in vitro and in vivo. Using NKT-deficient transgenic mouse models, we demonstrate important differences between type I and type II NKT cells in their ability to regulate antitumor immunity of CD1d-expressing breast tumors. Conclusions/Significance The results of this study emphasize the importance of determining the CD1d expression status of the tumor when tailoring NKT-based immunotherapies for the prevention and treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Laura M. Hix
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Yihui H. Shi
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Randy R. Brutkiewicz
- Department of Microbiology and Immunology, The Walther Oncology Center and Cancer Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Paul L. Stein
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Ming Zhang
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
24
|
Sethi N, Dai X, Winter CG, Kang Y. Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 2011; 19:192-205. [PMID: 21295524 PMCID: PMC3040415 DOI: 10.1016/j.ccr.2010.12.022] [Citation(s) in RCA: 456] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 08/17/2010] [Accepted: 11/10/2010] [Indexed: 02/06/2023]
Abstract
Despite evidence supporting an oncogenic role in breast cancer, the Notch pathway's contribution to metastasis remains unknown. Here, we report that the Notch ligand Jagged1 is a clinically and functionally important mediator of bone metastasis by activating the Notch pathway in bone cells. Jagged1 promotes tumor growth by stimulating IL-6 release from osteoblasts and directly activates osteoclast differentiation. Furthermore, Jagged1 is a potent downstream mediator of the bone metastasis cytokine TGFβ that is released during bone destruction. Importantly, γ-secretase inhibitor treatment reduces Jagged1-mediated bone metastasis by disrupting the Notch pathway in stromal bone cells. These findings elucidate a stroma-dependent mechanism for Notch signaling in breast cancer and provide rationale for using γ-secretase inhibitors for the treatment of bone metastasis.
Collapse
Affiliation(s)
- Nilay Sethi
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Xudong Dai
- Merck Research Laboratories, Boston, MA 02115, USA
| | | | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Breast Cancer Program, Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
25
|
Hussein O, Komarova SV. Breast cancer at bone metastatic sites: recent discoveries and treatment targets. J Cell Commun Signal 2011; 5:85-99. [PMID: 21484191 DOI: 10.1007/s12079-011-0117-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 01/05/2011] [Indexed: 10/25/2022] Open
Abstract
Breast carcinoma is the most common cancer of women. Bones are often involved with breast carcinoma metastases with the resulting morbidity and reduced quality of life. Breast cancer cells arriving at bone tissues mount supportive microenvironment by recruiting and modulating the activity of several host tissue cell types including the specialized bone cells osteoblasts and osteoclasts. Pathologically activated osteoclasts produce osteolytic lesions associated with bone pain, pathological fractures, cord compression and other complications of metastatic breast carcinoma at bone. Over the last decade there has been enormous growth of knowledge in the field of osteoclasts biology both in the physiological state and in the tumor microenvironment. This knowledge allowed the development and implementation of several targeted therapeutics that expanded the armamentarium of the oncologists dealing with the metastases-associated osteolytic disease. While the interactions of cancer cells with resident bone cells at the established metastatic gross lesions are well-studied, the preclinical events that underlie the progression of disseminated tumor cells into micrometastases and then into clinically-overt macrometastases are just starting to be uncovered. In this review, we discuss the established information and the most recent discoveries in the pathogenesis of osteolytic metastases of breast cancer, as well as the corresponding investigational drugs that have been introduced into clinical development.
Collapse
Affiliation(s)
- Osama Hussein
- Faculty of Dentistry, McGill University, Montreal, Quebec, H3A 1A4, Canada
| | | |
Collapse
|
26
|
Foley J, Nickerson N, Nam S, Allen KT, Gilmore JL, Nephew KP, Riese DJ. EGFR signaling in breast cancer: bad to the bone. Semin Cell Dev Biol 2010; 21:951-60. [PMID: 20813200 PMCID: PMC2991402 DOI: 10.1016/j.semcdb.2010.08.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 08/23/2010] [Indexed: 01/16/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a member of the ErbB family of receptor tyrosine kinases. This family includes EGFR/ErbB1/HER1, ErbB2/HER2/Neu ErbB3/HER3, and ErbB4/HER4. For many years it was believed that EGFR plays a minor role in the development and progression of breast malignancies. However, recent findings have led investigators to revisit these beliefs. Here we will review these findings and propose roles that EGFR may play in breast malignancies. In particular, we will discuss the potential roles that EGFR may play in triple-negative tumors, resistance to endocrine therapies, maintenance of stem-like tumor cells, and bone metastasis. Thus, we will propose the contexts in which EGFR may be a therapeutic target.
Collapse
Affiliation(s)
- John Foley
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202
- Indiana University Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Nicole Nickerson
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405
| | - Seugyoon Nam
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405
| | - Kah Tan Allen
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405
| | - Jennifer L. Gilmore
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, IN 47907
- Indiana University Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907
| | - Kenneth P. Nephew
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405
- Indiana University Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202
| | - David J. Riese
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, IN 47907
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
27
|
Nuclear co-localization and functional interaction of COX-2 and HIF-1α characterize bone metastasis of human breast carcinoma. Breast Cancer Res Treat 2010; 129:433-50. [PMID: 21069452 DOI: 10.1007/s10549-010-1240-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 10/21/2010] [Indexed: 12/31/2022]
Abstract
The aim of this article is to identify nuclear co-localization of COX-2 and HIF-1α in human-bone metastasis of breast cancer, index of transcriptionally activated cells and functional for gene expression. In particular, we verified whether hypoxia exerted a direct role on metastasis-gene expression or through COX-2 signaling, due to the relevance for clinical implications to individuate molecular targets for diagnosis and therapy. The experiments were performed in vitro with two metastatic clones, 1833 and MDA-231BO, and the parental MDA-MB231 cells, in vivo (1833-xenograft model), and in human-bone metastasis specimens. In 1833 cells in vitro, COX-2 signaling pathway was critical for nuclear HIF-1α-protein expression/translocation, mechanisms determining HIF-1 activity and gene expression. The data were corroborated by immunohistochemistry in human-bone metastasis specimens. COX-2 and HIF-1α showed wide co-localization in the nucleus, indicative of COX-2-nuclear import in transcriptionally activated metastatic cells and consistent with COX-2-HIF-1α functional interaction. A network of microenvironmental signals controlled COX-2 induction and HIF-1 activation downstream. In fact, hypoxia through HGF and TGF-β1 autoregulatory loops triggered a specific array of transcription factors responsible for COX-2 transactivation. The novelty was that HGF and TGF-β1 biological signals were produced by hypoxic metastatic cells and, therefore, the microenvironment seemed to be modified by metastatic-cell engraftment in the bone. In agreement, HIF-1α expression in bone marrow supportive cells occurred in metastasis-bearing animals. Altogether, the data supported the pre-metastatic-niche theory. Our observations might be useful to design therapies against bone metastasis, by affecting the phenotype changes of metastatic cells occurring at the secondary growth site through COX-2-HIF-1 interaction.
Collapse
|
28
|
Foley J, Nickerson NK, Nam S, Allen KT, Gilmore JL, Nephew KP, Riese DJ. EGFR signaling in breast cancer: bad to the bone. Semin Cell Dev Biol 2010. [PMID: 20813200 DOI: 10.1016/j.semcdb.2010.08.009s1084-9521(10)00146-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a member of the ErbB family of receptor tyrosine kinases. This family includes EGFR/ErbB1/HER1, ErbB2/HER2/Neu ErbB3/HER3, and ErbB4/HER4. For many years it was believed that EGFR plays a minor role in the development and progression of breast malignancies. However, recent findings have led investigators to revisit these beliefs. Here we will review these findings and propose roles that EGFR may play in breast malignancies. In particular, we will discuss the potential roles that EGFR may play in triple-negative tumors, resistance to endocrine therapies, maintenance of stem-like tumor cells, and bone metastasis. Thus, we will propose the contexts in which EGFR may be a therapeutic target.
Collapse
Affiliation(s)
- John Foley
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Xu XH, Dong SS, Guo Y, Yang TL, Lei SF, Papasian CJ, Zhao M, Deng HW. Molecular genetic studies of gene identification for osteoporosis: the 2009 update. Endocr Rev 2010; 31:447-505. [PMID: 20357209 PMCID: PMC3365849 DOI: 10.1210/er.2009-0032] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 02/02/2010] [Indexed: 12/12/2022]
Abstract
Osteoporosis is a complex human disease that results in increased susceptibility to fragility fractures. It can be phenotypically characterized using several traits, including bone mineral density, bone size, bone strength, and bone turnover markers. The identification of gene variants that contribute to osteoporosis phenotypes, or responses to therapy, can eventually help individualize the prognosis, treatment, and prevention of fractures and their adverse outcomes. Our previously published reviews have comprehensively summarized the progress of molecular genetic studies of gene identification for osteoporosis and have covered the data available to the end of September 2007. This review represents our continuing efforts to summarize the important and representative findings published between October 2007 and November 2009. The topics covered include genetic association and linkage studies in humans, transgenic and knockout mouse models, as well as gene-expression microarray and proteomics studies. Major results are tabulated for comparison and ease of reference. Comments are made on the notable findings and representative studies for their potential influence and implications on our present understanding of the genetics of osteoporosis.
Collapse
Affiliation(s)
- Xiang-Hong Xu
- Institute of Molecular Genetics, Xi'an Jiaotong University, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Blackwell KA, Raisz LG, Pilbeam CC. Prostaglandins in bone: bad cop, good cop? Trends Endocrinol Metab 2010; 21:294-301. [PMID: 20079660 PMCID: PMC2862787 DOI: 10.1016/j.tem.2009.12.004] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 12/10/2009] [Accepted: 12/11/2009] [Indexed: 02/01/2023]
Abstract
Prostaglandins (PGs) are multifunctional regulators of bone metabolism that stimulate both bone resorption and formation. PGs have been implicated in bone resorption associated with inflammation and metastatic bone disease, and also in bone formation associated with fracture healing and heterotopic ossification. Recent studies have identified roles for inducible cyclooxygenase (COX)-2 and PGE(2) receptors in these processes. Although the effects of PGs have been most often associated with cAMP production and protein kinase A activation, PGs can engage an extensive G-protein signaling network. Further analysis of COX-2 and PG receptors and their downstream G-protein signaling in bone could provide important clues to the regulation of skeletal cell growth in both health and disease.
Collapse
Affiliation(s)
- Katherine A Blackwell
- New England Musculoskeletal Institute, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, USA
| | | | | |
Collapse
|
31
|
Fordyce C, Fessenden T, Pickering C, Jung J, Singla V, Berman H, Tlsty T. DNA damage drives an activin a-dependent induction of cyclooxygenase-2 in premalignant cells and lesions. Cancer Prev Res (Phila) 2009; 3:190-201. [PMID: 20028875 DOI: 10.1158/1940-6207.capr-09-0229] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cyclooxygenase-2 (COX-2) catalyzes the rate-limiting step in the synthesis of prostaglandins. Its overexpression induces numerous tumor-promoting phenotypes and is associated with cancer metastasis and poor clinical outcome. Although COX-2 inhibitors are promising chemotherapeutic and chemopreventative agents for cancer, the risk of significant cardiovascular and gastrointestinal complications currently outweighs their potential benefits. Systemic complications of COX-2 inhibition could be avoided by specifically decreasing COX-2 expression in epithelial cells. To that end, we have investigated the signal transduction pathway regulating the COX-2 expression in response to DNA damage in breast epithelial cells. In variant human mammary epithelial cells that have silenced p16 (vHMEC), double-strand DNA damage or telomere malfunction results in a p53- and activin A-dependent induction of COX-2 and continued proliferation. In contrast, telomere malfunction in HMEC with an intact p16/Rb pathway induces cell cycle arrest. Importantly, in ductal carcinoma in situ lesions, high COX-2 expression is associated with high gammaH2AX, TRF2, activin A, and telomere malfunction. These data show that DNA damage and telomere malfunction can have both cell-autonomous and cell-nonautonomous consequences and can provide a novel mechanism for the propagation of tumorigenesis.
Collapse
Affiliation(s)
- Colleen Fordyce
- Department of Pathology, University of California, San Francisco, 94143, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Medina D. Premalignant and malignant mammary lesions induced by MMTV and chemical carcinogens. J Mammary Gland Biol Neoplasia 2008; 13:271-7. [PMID: 18663563 DOI: 10.1007/s10911-008-9086-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 07/04/2008] [Indexed: 11/26/2022] Open
Abstract
This article reviews the types of mammary premalignant and malignant lesions induced in the mouse mammary gland after exposure to MMTV and chemical carcinogens. There are different morphological types of hyperplastic lesions in the mouse mammary gland. These lesions are designated as alveolar hyperplasia (HAN), ductal hyperplasia (DH), and cystic lesions; both non-keratinized and keratinized. The HAN and DH have been demonstrated to be precursors to invasive lesions. The HAN as a group tend to be ovarian-hormone independent for growth and transformation, mammary fat pad site-dependent for growth, possess unlimited replication potential (i.e., immortal), are at increased risk for progression to cancer, and are genetically stable. Serial transplantation demonstrates that any given stage of hyperplasia can progress to the next stage, sometimes rapidly and sometimes slowly. Multiple growth factor pathways are deregulated early in the development of HAN depending on etiology of the HAN. One general conclusion that emerges from such studies of HAN induced by different etiologies is that the early stages of premalignancy are a result of defects in cell cycle regulation with subsequent alterations playing a role in the acquisition of invasive phenotype. The predominant lesion induced by chemical carcinogens is the ductal hyperplasia (DH). Although DH show many of the essential biological alterations seen in HAN, they also exhibit a higher frequency of hormone-dependence and genetic instability, thus the DH appearing in chemical carcinogen treated mice and in transgenic mice mimic the histological, biological and genetic properties seen in human premalignant lesions more faithfully than do the HAN. The mammary tumors that arise from both general classes of premalignant lesions are very heterogeneous and exhibit different potentials for metastasis. The cell and molecular biology of metastasis represents an understudied area, in part because of the absence of suitable models to study the metastatic process. Newer transgenic mouse models provide a renewed opportunity to engage in the study of the mechanisms and processes underlying mammary metastasis.
Collapse
Affiliation(s)
- Daniel Medina
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
33
|
Allred DC, Medina D. The relevance of mouse models to understanding the development and progression of human breast cancer. J Mammary Gland Biol Neoplasia 2008; 13:279-88. [PMID: 18704660 DOI: 10.1007/s10911-008-9093-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 07/04/2008] [Indexed: 12/21/2022] Open
Abstract
Mouse modeling of human breast cancer has developed tremendously over the past ten years. Human breast cancer is characterized by enormous biological diversity and, collectively, the new models have come much closer to encompassing this diversity. They have provided a deeper understanding of the fundamental events that mediate the initiation, development, and progression of breast cancer, and they offer new opportunities to develop and test strategies to treat and, perhaps, even prevent the disease. This chapter reviews the historical development of mouse models of breast cancer and highlights some of their major strengths, weaknesses, and contributions.
Collapse
Affiliation(s)
- D Craig Allred
- Department of Pathology and Immunology, Washington University School of Medicine, Campus Box 8118, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | |
Collapse
|