1
|
Farooq F, Amin A, Wani UM, Lone A, Qadri RA. Shielding and nurturing: Fibronectin as a modulator of cancer drug resistance. J Cell Physiol 2023; 238:1651-1669. [PMID: 37269547 DOI: 10.1002/jcp.31048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 06/05/2023]
Abstract
Resistance to chemotherapy and targeted therapies constitute a common hallmark of most cancers and represent a dominant factor fostering tumor relapse and metastasis. Fibronectin, an abundant extracellular matrix glycoprotein, has long been proposed to play an important role in the pathobiology of cancer. Recent research has unraveled the role of Fibronectin in the onset of chemoresistance against a variety of antineoplastic drugs including DNA-damaging agents, hormone receptor antagonists, tyrosine kinase inhibitors, microtubule destabilizing agents, etc. The current review summarizes the role played by Fibronectin in mediating drug resistance against diverse anticancer drugs. We have also discussed how the aberrant expression of Fibronectin drives the oncogenic signaling pathways ultimately leading to drug resistance through the inhibition of apoptosis, promotion of cancer cell growth and proliferation.
Collapse
Affiliation(s)
- Faizah Farooq
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Asif Amin
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Umer Majeed Wani
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Asif Lone
- Department of Biochemistry, Deshbandu College, University of Delhi, Delhi, India
| | - Raies A Qadri
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
2
|
Ye F, Liang Y, Cheng Z, Liu Y, Hu J, Li W, Chen X, Gao J, Jiang H. Immunological Characteristics of Alternative Splicing Profiles Related to Prognosis in Bladder Cancer. Front Immunol 2022; 13:911902. [PMID: 35769470 PMCID: PMC9234272 DOI: 10.3389/fimmu.2022.911902] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/20/2022] [Indexed: 11/20/2022] Open
Abstract
Several studies have found that pathological imbalance of alterative splicing (AS) events is associated with cancer susceptibility. carcinogenicity. Nevertheless, the relationship between heritable variation in AS events and carcinogenicity has not been extensively explored. Here, we downloaded AS event signatures, transcriptome profiles, and matched clinical information from The Cancer Genome Atlas (TCGA) database, identified the prognostic AS-related events via conducting the univariate Cox regression algorism. Subsequently, the prognostic AS-related events were further reduced by the least absolute shrinkage and selection operator (LASSO) logistic regression model, and employed for constructing the risk model. Single-sample (ssGSEA), ESTIMATE, and the CIBERSORT algorithms were conducted to evaluate tumor microenvironment status. CCK8, cell culture scratch, transwell invasion assays and flow cytometry were conducted to confirm the reliability of the model. We found 2751 prognostic-related AS events, and constructed a risk model with seven prognostic-related AS events. Compared with high-risk score patients, the overall survival rate of the patients with low-risk score was remarkably longer. Besides, we further found that risk score was also closely related to alterations in immune cell infiltration and immunotherapeutic molecules, indicating its potential as an observation of immune infiltration and clinical response to immunotherapy. In addition, the downstream target gene (DYM) could be a promising prognostic factor for bladder cancer. Our investigation provided an indispensable reference for ulteriorly exploring the role of AS events in the tumor microenvironment and immunotherapy efficiency, and rendered personalized prognosis monitoring for bladder cancer.
Collapse
Affiliation(s)
- Fangdie Ye
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingchun Liang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhang Cheng
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yufei Liu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jimeng Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weijian Li
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiahao Gao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Haowen Jiang,
| |
Collapse
|
3
|
Spada S, Tocci A, Di Modugno F, Nisticò P. Fibronectin as a multiregulatory molecule crucial in tumor matrisome: from structural and functional features to clinical practice in oncology. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:102. [PMID: 33731188 PMCID: PMC7972229 DOI: 10.1186/s13046-021-01908-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022]
Abstract
Deciphering extracellular matrix (ECM) composition and architecture may represent a novel approach to identify diagnostic and therapeutic targets in cancer. Among the ECM components, fibronectin and its fibrillary assembly represent the scaffold to build up the entire ECM structure, deeply affecting its features. Herein we focus on this extraordinary protein starting from its complex structure and defining its role in cancer as prognostic and theranostic marker.
Collapse
Affiliation(s)
- Sheila Spada
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Annalisa Tocci
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Di Modugno
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| | - Paola Nisticò
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
4
|
Di Maida F, Scalici Gesolfo C, Tellini R, Mari A, Sanfilippo C, Lambertini L, Grosso AA, Carini M, Minervini A, Serretta V. Fibronectin urothelial gene expression as a new reliable biomarker for early detection of local toxicity secondary to adjuvant intravesical therapy for non-muscle invasive bladder cancer. Ther Adv Urol 2021; 13:1756287221995683. [PMID: 33717214 PMCID: PMC7923969 DOI: 10.1177/1756287221995683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/16/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND A marker of urothelial damage could be helpful for early detection and monitoring of local toxicity due to intravesical therapy for non-muscle invasive bladder cancer (NMIBC). The aim of the study was to investigate the correlation between fibronectin (FN) gene expression in bladder washings and local toxicity secondary to adjuvant intravesical therapy. MATERIALS AND METHODS Patients undergoing adjuvant intravesical therapy for NMIBC and age-matched healthy patients were enrolled. Real time polymerase chain reaction was performed to analyze FN expression in bladder washings. Local toxicity was classified as: 0-1 mild (no medical therapy), 2 moderate (medical therapy and/or instillation postponed), 3 severe (discontinuation of therapy). RESULTS Seventy-two patients and 21 controls entered the study. A useful pellet was obtained in 58 patients and 18 controls. Intravesical Bacillus Calmette-Guerin (BCG), Epirubicin and Mitomycin C was offered to 69%, 13.8% and 17.2% of patients respectively. Compared with healthy controls (FN = 1.0 fold), overall median FN expression before adjuvant intravesical therapy was 1.73 fold [interquartile range (IQR) 0.8-2.3], while during therapy median FN expression increased to 3.41 (IQR: 1.6-6.1) fold. Considering 40 intermediate and high-risk patients undergoing intravesical BCG, median FN expression before adjuvant treatment was 1.92 [(IQR: 1.0-2.7) fold, increasing up to 4.1 (IQR: 1.9-6.6) during therapy. In more detail, FN increased during BCG therapy, showing a median expression of 4.22 (IQR: 2.2-5.5) and 6.16 (IQR: 2.6-8.7) fold in presence of grade 2 and 3 toxicity respectively, while remaining more or less stable in asymptomatic patients. After receiver operating characteristic curve analysis, FN value of 3.6 fold resulted, corresponding to 75% sensitivity and 69% specificity to predict grade 2-3 toxicity events (area under the curve 0.74, 95% confidence interval 0.63-0.85, p = 0.001). CONCLUSION Our study validated the correlation between FN expression and urothelial damage. BCG seems to induce a urothelial activation with FN overexpression during adjuvant intravesical therapy. Grade of toxicity was related to FN expression.
Collapse
Affiliation(s)
- Fabrizio Di Maida
- Department of Experimental and Clinical Medicine, University of Florence – Unit of Oncologic Minimally-Invasive Urology and Andrology, Careggi Hospital, Largo Brambilla 3, San Luca Nuovo, Firenze 50134, Italy
| | - Cristina Scalici Gesolfo
- Department of Surgical, Oncological and Oral Sciences, Section of Urology, University of Palermo, Palermo, Sicilia, Italy
| | - Riccardo Tellini
- Department of Experimental and Clinical Medicine, University of Florence – Unit of Oncologic Minimally-Invasive Urology and Andrology, Careggi Hospital, Florence, Italy
| | - Andrea Mari
- Department of Experimental and Clinical Medicine, University of Florence – Unit of Oncologic Minimally-Invasive Urology and Andrology, Careggi Hospital, Florence, Italy
| | - Chiara Sanfilippo
- Department of Statistics, University of Palermo, Palermo, Italy
- GSTU Foundation, Palermo, Italy
| | - Luca Lambertini
- Department of Experimental and Clinical Medicine, University of Florence – Unit of Oncologic Minimally-Invasive Urology and Andrology, Careggi Hospital, Florence, Italy
| | - Antonio Andrea Grosso
- Department of Experimental and Clinical Medicine, University of Florence – Unit of Oncologic Minimally-Invasive Urology and Andrology, Careggi Hospital, Florence, Italy
| | - Marco Carini
- Department of Experimental and Clinical Medicine, University of Florence – Unit of Oncologic Minimally-Invasive Urology and Andrology, Careggi Hospital, Florence, Italy
| | - Andrea Minervini
- Department of Experimental and Clinical Medicine, University of Florence – Unit of Oncologic Minimally-Invasive Urology and Andrology, Careggi Hospital, Florence, Italy
| | - Vincenzo Serretta
- Department of Surgical, Oncological and Oral Sciences, Section of Urology, University of Palermo, Palermo, Sicilia, Italy
| |
Collapse
|
5
|
Qiao P, Ayat NR, Vaidya A, Gao S, Sun W, Chou S, Han Z, Gilmore H, Winter JM, Lu ZR. Magnetic Resonance Molecular Imaging of Extradomain B Fibronectin Improves Imaging of Pancreatic Cancer Tumor Xenografts. Front Oncol 2020; 10:586727. [PMID: 33194740 PMCID: PMC7661967 DOI: 10.3389/fonc.2020.586727] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
The survival of pancreatic cancer patients can be greatly improved if their disease is detected at an early, potentially curable stage. Magnetic resonance molecular imaging (MRMI) of oncoproteins is a promising strategy for accurate, early detection of the disease. Here, we test the hypothesis that MRMI of extradomain-B fibronectin (EDB-FN), an abundant oncoprotein in the tumor extracellular matrix, can overcome the stromal barriers of pancreatic cancer to facilitate effective molecular imaging and detection of small tumors. Specimens of normal, premalignant, and malignant human pancreatic tissues were stained with a peptide-fluorophore conjugate (ZD2-Cy5.5) to assess EDB-FN binding and expression. MRMI with ZD2-N3-Gd(HP-DO3A) (MT218) specific to EDB-FN and MRI with Gd(HP-DO3A) were performed in three murine models bearing human pancreatic cancer xenografts, including a Capan-1 flank model, a BxPC3-GFP-Luc and a PANC-1-GFP-Luc intrapancreatic xenograft model. Tumor enhancement of the contrast agents was analyzed and compared. Staining of human tissue samples with ZD2-Cy5.5 revealed high EDB-FN expression in pancreatic tumors, moderate expression in premalignant tissue, and little expression in normal tissue. MRMI with MT218 generated robust intratumoral contrast, clearly detected and delineated small tumors (smallest average size: 6.1 mm2), and out-performed conventional contrast enhanced MRI with Gd(HP-DO3A). Quantitative analysis of signal enhancement revealed that MT218 produced 2.7, 2.1, and 1.6 times greater contrast-to-noise ratio (CNR) than the clinical agent in the Capan-1 flank, BxPC3-GFP-Luc and PANC-1-GFP-Luc intrapancreatic models, respectively (p < 0.05). MRMI of the ECM oncoprotein EDB-FN with MT218 is able to generate superior contrast enhancement in small pancreatic tumors and provide accurate tumor delineation in animal models. Early, accurate detection and delineation of pancreatic cancer with high-resolution MRMI has the potential to guide timely treatment and significantly improve the long-term survival of pancreatic cancer patients.
Collapse
Affiliation(s)
- Peter Qiao
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Nadia R Ayat
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Amita Vaidya
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Songqi Gao
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Wenyu Sun
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Samuel Chou
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Zheng Han
- Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Hannah Gilmore
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Case Western Reserve School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Jordan M Winter
- Case Comprehensive Cancer Center, Case Western Reserve School of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Case Western Reserve School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
6
|
Wang J, Li R, Li M, Wang C. Fibronectin and colorectal cancer: signaling pathways and clinical implications. J Recept Signal Transduct Res 2020; 41:313-320. [PMID: 32900261 DOI: 10.1080/10799893.2020.1817074] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Colorectal cancer (CRC) is the fourth leading cause of cancer deaths worldwide, with poor prognosis mainly related to metastasis. Fibronectin (FN), a vital component of the extracellular matrix (ECM), has been found involved in tumorigenesis and malignant progression in different types of malignancy. Numerous studies have indicated the distinct expression of FN in various cancers and demonstrated the different functions of FN in the proliferation, migration, and invasion of cancers. Meanwhile, FN isoforms have been extensively used for targeted drug delivery and imaging for tumors. Although a growing number of studies on FN in CRC have been reported, integrated reviews on the relationship between FN and CRC are rare. In this review, we will summarize the association between FN and CRC, including the signaling pathways and molecules involved in, as well as potential diagnostic and therapeutic values of FN for patients with CRC.
Collapse
Affiliation(s)
- Jianan Wang
- Department of Laboratory Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing, P. R. China
| | - Ruibing Li
- Department of Laboratory Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing, P. R. China
| | - Mianyang Li
- Department of Laboratory Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing, P. R. China
| | - Chengbin Wang
- Department of Laboratory Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing, P. R. China
| |
Collapse
|
7
|
Vaidya A, Ayat N, Buford M, Wang H, Shankardass A, Zhao Y, Gilmore H, Wang Z, Lu ZR. Noninvasive assessment and therapeutic monitoring of drug-resistant colorectal cancer by MR molecular imaging of extradomain-B fibronectin. Theranostics 2020; 10:11127-11143. [PMID: 33042274 PMCID: PMC7532678 DOI: 10.7150/thno.47448] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022] Open
Abstract
Antineoplastic resistance represents a multifaceted challenge for cancer therapy and diagnostics. Extensive molecular heterogeneity, even within neoplasms of the same type, can elicit distinct outcomes of administering therapeutic pressures, frequently leading to the development of drug-resistant populations. Improved success of oncotherapies merits the exploration of precise molecular imaging technologies that can detect not only anatomical but also molecular changes in tumors and their microenvironment, early on in the treatment regimen. To this end, we developed magnetic resonance molecular imaging (MRMI) strategies to target the extracellular matrix oncoprotein, extradomain-B fibronectin (EDB-FN), for non-invasive assessment and therapeutic monitoring of drug-resistant colorectal cancer (CRC). Methods: Two drug-resistant CRC lines generated from parent DLD-1 and RKO cells by long-term treatment with 5'-FU and 5'-FU plus CB-839 respectively, were characterized for functional and gene expression changes using 3D culture, transwell invasion, qRT-PCR, and western blot assays. Contrast-enhanced MRMI of EDB-FN was performed in athymic nu/nu mice bearing subcutaneous tumor xenografts with 40 µmol/kg dose of macrocyclic ZD2-targeted contrast agent MT218 [ZD2-N3-Gd (HP-DO3A)] on a 3T MRS 3000 scanner. Immunohistochemistry was conducted on patient specimens and xenografts using anti-EDB-FN antibody G4. Results: Analyses of TCGA and GTEx databases revealed poor prognosis of colon cancer patients with higher levels of EDB-FN. Similarly, immunohistochemical staining of patient specimens showed increased EDB-FN expression in primary colon adenocarcinoma and hepatic metastases, but none in normal adjacent tissues. Drug-resistant DLD1-DR and RKO-DR cells were also found to demonstrate enhanced invasive potential and significantly elevated EDB-FN expression over their parent counterparts. MRMI of EDB-FN with 40 µmol/kg dose of MT218 (60% lower than the clinical dose) resulted in robust signal enhancement in the drug-resistant CRC xenografts with 84-120% increase in their contrast-to-noise ratios (CNRs) over the non-resistant counterparts. The feasibility of non-invasive therapeutic monitoring using MRMI of EDB-FN was also evaluated in drug-resistant DLD1-DR tumors treated with a pan-AKT inhibitor MK2206-HCl. The treated drug-resistant tumors failed to respond to therapy, which was accurately detected by MRMI with MT218, demonstrating higher signal enhancement and increased CNRs in the 4-week follow-up scans over the pre-treatment scans. Conclusions: EDB-FN is a promising molecular marker for assessing drug resistance. MRMI of EDB-FN with MT218 at a significantly reduced dose can facilitate effective non-invasive assessment and treatment response monitoring of drug-resistant CRC, highlighting its translational potential for active surveillance and management of CRC and other malignancies.
Collapse
Affiliation(s)
- Amita Vaidya
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nadia Ayat
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Megan Buford
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Helen Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Aman Shankardass
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yiqing Zhao
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hannah Gilmore
- Department of Pathology, University Hospitals of Cleveland, Cleveland, OH 44106, USA
| | - Zhenghe Wang
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
8
|
Vaidya A, Wang H, Qian V, Gilmore H, Lu ZR. Overexpression of Extradomain-B Fibronectin is Associated with Invasion of Breast Cancer Cells. Cells 2020; 9:cells9081826. [PMID: 32756405 PMCID: PMC7463489 DOI: 10.3390/cells9081826] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
Breast tumor heterogeneity is a major impediment to oncotherapy. Cancer cells undergo rapid clonal evolution, thereby acquiring significant growth and invasive advantages. The absence of specific markers of these high-risk populations precludes efficient therapeutic and diagnostic management of the disease. Given the critical function of tumor microenvironment in the oncogenic circuitry, we sought to determine the expression profile of the extracellular matrix oncoprotein, extradomain-B fibronectin (EDB-FN) in invasive breast cancer. Analyses of TCGA/GTEx databases and immunostaining of clinical samples found a significant overexpression of EDB-FN in breast tumors, which correlated with poor overall survival. Significant upregulation of EDB-FN was observed in invasive cell populations generated from relatively less invasive MCF7 and MDA-MB-468 cells by long-term TGF-β treatment and acquired chemoresistance. Treatment of the invasive cell populations with an AKT inhibitor (MK2206-HCl) reduced their invasive potential, with a concomitant decrease in their EDB-FN expression, partly through the phosphoAKT-SRp55 pathway. EDB-FN downregulation, with direct RNAi of EDB-FN or indirectly through RNAi of SRp55, also resulted in reduced motility of the invasive cell populations, validating the correlation between EDB-FN expression and invasion of breast cancer cells. These data establish EDB-FN as a promising molecular marker for non-invasive therapeutic surveillance of aggressive breast cancer.
Collapse
Affiliation(s)
- Amita Vaidya
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (A.V.); (H.W.); (V.Q.)
| | - Helen Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (A.V.); (H.W.); (V.Q.)
| | - Victoria Qian
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (A.V.); (H.W.); (V.Q.)
| | - Hannah Gilmore
- Department of Pathology, University Hospitals of Cleveland, Cleveland, OH 44106, USA;
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (A.V.); (H.W.); (V.Q.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence: ; Tel.: +1-216-368-0187
| |
Collapse
|
9
|
Lieverse RIY, Marcus D, van der Wiel AMA, Van Limbergen EJ, Theys J, Yaromina A, Lambin P, Dubois LJ. Human fibronectin extra domain B as a biomarker for targeted therapy in cancer. Mol Oncol 2020; 14:1555-1568. [PMID: 32386436 PMCID: PMC7332215 DOI: 10.1002/1878-0261.12705] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/15/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix protein fibronectin contains a domain that is rarely found in healthy adults and is almost exclusively expressed by newly formed blood vessels in tumours, particularly in solid tumours, different types of lymphoma and some leukaemias. This domain, called the extra domain B (ED‐B), thus has broad therapeutic potential. The antibody L19 has been developed to specifically target ED‐B and has shown therapeutic potential when combined with cytokines, such as IL‐2. In this review article, we discuss the preclinical research and clinical trials that highlight the potential of ED‐B targeting for the imaging and treatment of various types of cancer. ED‐B‐centred studies also highlight how proper patient stratification is of utmost importance for the successful implementation of novel antibody‐based targeted therapies.
Collapse
Affiliation(s)
- Relinde I Y Lieverse
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands
| | - Damiënne Marcus
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands
| | - Alexander M A van der Wiel
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands
| | - Evert J Van Limbergen
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| | - Jan Theys
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, The Netherlands
| |
Collapse
|
10
|
Azizi M, Dianat-Moghadam H, Salehi R, Farshbaf M, Iyengar D, Sau S, Iyer AK, Valizadeh H, Mehrmohammadi M, Hamblin MR. Interactions Between Tumor Biology and Targeted Nanoplatforms for Imaging Applications. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910402. [PMID: 34093104 PMCID: PMC8174103 DOI: 10.1002/adfm.201910402] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Indexed: 05/04/2023]
Abstract
Although considerable efforts have been conducted to diagnose, improve, and treat cancer in the past few decades, existing therapeutic options are insufficient, as mortality and morbidity rates remain high. Perhaps the best hope for substantial improvement lies in early detection. Recent advances in nanotechnology are expected to increase the current understanding of tumor biology, and will allow nanomaterials to be used for targeting and imaging both in vitro and in vivo experimental models. Owing to their intrinsic physicochemical characteristics, nanostructures (NSs) are valuable tools that have received much attention in nanoimaging. Consequently, rationally designed NSs have been successfully employed in cancer imaging for targeting cancer-specific or cancer-associated molecules and pathways. This review categorizes imaging and targeting approaches according to cancer type, and also highlights some new safe approaches involving membrane-coated nanoparticles, tumor cell-derived extracellular vesicles, circulating tumor cells, cell-free DNAs, and cancer stem cells in the hope of developing more precise targeting and multifunctional nanotechnology-based imaging probes in the future.
Collapse
Affiliation(s)
- Mehdi Azizi
- Proteomics Research Centre, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Hassan Dianat-Moghadam
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5165665621, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz 516615731, Iran
| | - Masoud Farshbaf
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 6581151656, Iran
| | - Disha Iyengar
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Samaresh Sau
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Arun K Iyer
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Hadi Valizadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz 516615731, Iran
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
11
|
Reynaldo GMR. The Final Origin of Cancer: Molecular Phylogeny. Cell 2020. [DOI: 10.4236/cellbio.2020.92005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Saw PE, Song EW. Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell 2019; 10:787-807. [PMID: 31140150 PMCID: PMC6834755 DOI: 10.1007/s13238-019-0639-7] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/21/2019] [Indexed: 12/14/2022] Open
Abstract
Recently, phage display technology has been announced as the recipient of Nobel Prize in Chemistry 2018. Phage display technique allows high affinity target-binding peptides to be selected from a complex mixture pool of billions of displayed peptides on phage in a combinatorial library and could be further enriched through the biopanning process; proving to be a powerful technique in the screening of peptide with high affinity and selectivity. In this review, we will first discuss the modifications in phage display techniques used to isolate various cancer-specific ligands by in situ, in vitro, in vivo, and ex vivo screening methods. We will then discuss prominent examples of solid tumor targeting-peptides; namely peptide targeting tumor vasculature, tumor microenvironment (TME) and over-expressed receptors on cancer cells identified through phage display screening. We will also discuss the current challenges and future outlook for targeting peptide-based therapeutics in the clinics.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Er-Wei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
13
|
Huet E, Jaroz C, Nguyen HQ, Belkacemi Y, de la Taille A, Stavrinides V, Whitaker H. Stroma in normal and cancer wound healing. FEBS J 2019; 286:2909-2920. [PMID: 30958920 DOI: 10.1111/febs.14842] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/18/2019] [Accepted: 04/05/2019] [Indexed: 12/28/2022]
Abstract
It is currently believed that stroma, the connective framework of biological tissues, plays a central role in normal wound healing and in cancer. In both these contexts, stromal cellular components such as activated fibroblasts interact with complex protein networks that include growth factors, structural protein or proteinases in order to initiate and sustain an extensive remodelling process. However, although this process is usually spatially and temporally self-limited, it is unregulated in the case of cancer and leads to uncontrolled cell proliferation and invasion within tissues, metastasis and therapeutic resistance. In this review, we outline the role of stroma in normal healing, cancer and post radiotherapy, with a particular focus on the crosstalk between normal or cancer cells and fibroblasts. Understanding these mechanisms is particularly important as several stromal components have been proposed as potential therapeutic targets.
Collapse
Affiliation(s)
- Eric Huet
- Université Paris-Est, UPEC, Créteil, France.,INSERM, U955, Equipe 7, Créteil, France.,Molecular Diagnostics and Therapeutics Group, Charles Bell House, Division of Surgery and Interventional Science, University College London, UK
| | | | | | - Yazid Belkacemi
- INSERM, U955, Equipe 7, Créteil, France.,AP-HP, Hôpitaux Universitaires Henri Mondor, Service d'oncologie-radiothérapie et Centre Sein Henri Mondor Créteil, France
| | - Alexandre de la Taille
- INSERM, U955, Equipe 7, Créteil, France.,AP-HP, Hôpitaux Universitaires Henri Mondor, Service d'urologie, Créteil, France
| | - Vasilis Stavrinides
- Molecular Diagnostics and Therapeutics Group, Charles Bell House, Division of Surgery and Interventional Science, University College London, UK
| | - Hayley Whitaker
- Molecular Diagnostics and Therapeutics Group, Charles Bell House, Division of Surgery and Interventional Science, University College London, UK
| |
Collapse
|
14
|
Foster DS, Jones RE, Ransom RC, Longaker MT, Norton JA. The evolving relationship of wound healing and tumor stroma. JCI Insight 2018; 3:99911. [PMID: 30232274 DOI: 10.1172/jci.insight.99911] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The stroma in solid tumors contains a variety of cellular phenotypes and signaling pathways associated with wound healing, leading to the concept that a tumor behaves as a wound that does not heal. Similarities between tumors and healing wounds include fibroblast recruitment and activation, extracellular matrix (ECM) component deposition, infiltration of immune cells, neovascularization, and cellular lineage plasticity. However, unlike a wound that heals, the edges of a tumor are constantly expanding. Cell migration occurs both inward and outward as the tumor proliferates and invades adjacent tissues, often disregarding organ boundaries. The focus of our review is cancer associated fibroblast (CAF) cellular heterogeneity and plasticity and the acellular matrix components that accompany these cells. We explore how similarities and differences between healing wounds and tumor stroma continue to evolve as research progresses, shedding light on possible therapeutic targets that can result in innovative stromal-based treatments for cancer.
Collapse
Affiliation(s)
- Deshka S Foster
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, and.,Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - R Ellen Jones
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, and
| | - Ryan C Ransom
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, and
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, and.,Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jeffrey A Norton
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, and.,Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
15
|
Szarvas T, Nyirády P, Ogawa O, Furuya H, Rosser CJ, Kobayashi T. Urinary Protein Markers for the Detection and Prognostication of Urothelial Carcinoma. Methods Mol Biol 2018; 1655:251-273. [PMID: 28889391 DOI: 10.1007/978-1-4939-7234-0_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bladder cancer diagnosis and surveillance is mainly based on cystoscopy and urine cytology. However, both methods have significant limitations; urine cytology has a low sensitivity for low-grade tumors, while cystoscopy is uncomfortable for the patients. Therefore, in the last decade urine analysis was the subject of intensive research resulting in the identification of many potential biomarkers for the detection, surveillance, or prognostic stratification of bladder cancer. Current trends move toward the development of multiparametric models to improve the diagnostic accuracy compared with single molecular markers. Recent technical advances for high-throughput and more sensitive measurements have led to the development of multiplex assays showing potential for more efficient tools toward future clinical application. In this review, we focus on the findings of urinary protein research in the context of detection and prognostication of bladder cancer. Furthermore, we provide an up-to-date overview on the recommendations for the quality evaluation of published studies as well as for the conduction of future urinary biomarker studies.
Collapse
Affiliation(s)
- Tibor Szarvas
- Department of Urology, Semmelweis University, Üllői út 78/b 1082, Budapest, Hungary.
| | - Péter Nyirády
- Department of Urology, Semmelweis University, Üllői út 78/b 1082, Budapest, Hungary
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideki Furuya
- Clinical and Translational Research Program, University of Hawaii Cancer Center, 701 Ilalo St, Rm 327, Honolulu, HI, 96813, USA
| | - Charles J Rosser
- Clinical and Translational Research Program, University of Hawaii Cancer Center, 701 Ilalo St, Rm 327, Honolulu, HI, 96813, USA
| | - Takashi Kobayashi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
16
|
Gao F, Xu T, Wang X, Zhong S, Chen S, Zhang M, Zhang X, Shen Y, Wang X, Xu C, Shen Z. CIP2A mediates fibronectin-induced bladder cancer cell proliferation by stabilizing β-catenin. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:70. [PMID: 28521777 PMCID: PMC5437599 DOI: 10.1186/s13046-017-0539-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022]
Abstract
Background Fibronectin (FN) is associated with tumorigenesis and progression in bladder cancer, however, the underlying mechanisms causing this remain largely unknown. Furthermore, cancerous inhibitor of protein phosphatase 2A (CIP2A) has been shown to play important regulatory roles in cancer proliferation. Here, we investigated whether FN regulates CIP2A expression to promote bladder cancer cell proliferation. Methods The correlations of stromal FN with CIP2A and proliferating cell nuclear antigen (PCNA) expression were analyzed in a cohort bladder cancer patients. The roles of FN and CIP2A in regulating bladder cancer cell proliferation were evaluated in cell and animal models. Cycloheximide treatment was used to determine the effects of CIP2A on β-catenin stabilization. The CIP2A-β-catenin interaction was confirmed by immunofluorescence staining and co-immunoprcipitation. Results In this study, we found that stromal FN expression correlated positively with the levels of CIP2A and PCNA in bladder cancer tissues. Meanwhile, in human bladder cancer cell lines (T24 and J82), exogenous FN significantly promoted cell proliferation, however, CIP2A depletion inhibited this process. Furthermore, the interaction between CIP2A and β-catenin enhanced the stabilization of β-catenin, which was involved in FN-induced cell proliferation. In vivo, CIP2A depletion repressed FN-accelerated subcutaneous xenograft growth rates. Conclusions These data reveal that CIP2A is a crucial mediator of FN-induced bladder cancer cell proliferation via enhancing the stabilization of β-catenin. Promisingly, FN and CIP2A could serve as potential therapeutic targets for bladder cancer treatment. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0539-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fengbin Gao
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, No.197 Ruijin 2nd Road, 200025, Shanghai, China
| | - Tianyuan Xu
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, No.197 Ruijin 2nd Road, 200025, Shanghai, China
| | - Xianjin Wang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, No.197 Ruijin 2nd Road, 200025, Shanghai, China
| | - Shan Zhong
- Department of Urology, Huashan Hospital, Fudan University, No.12 Middle Urumqi Road, 200040, Shanghai, China
| | - Shanwen Chen
- Department of Urology, Huashan Hospital, Fudan University, No.12 Middle Urumqi Road, 200040, Shanghai, China
| | - Minguang Zhang
- Department of Urology, Huashan Hospital, Fudan University, No.12 Middle Urumqi Road, 200040, Shanghai, China
| | - Xiaohua Zhang
- Department of Urology, Huashan Hospital, Fudan University, No.12 Middle Urumqi Road, 200040, Shanghai, China
| | - Yifan Shen
- Department of Urology, Huashan Hospital, Fudan University, No.12 Middle Urumqi Road, 200040, Shanghai, China
| | - Xiaojing Wang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, No.197 Ruijin 2nd Road, 200025, Shanghai, China
| | - Chen Xu
- Shanghai Key Laboratory of Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, No.227 South Chongqing Road, 200025, Shanghai, China
| | - Zhoujun Shen
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, No.197 Ruijin 2nd Road, 200025, Shanghai, China.
| |
Collapse
|
17
|
Abstract
During cancer progression, the extracellular matrix (ECM) undergoes dramatic changes, which promote cancer cell migration and invasion. In the remodeled tumor ECM, fibronectin (FN) level is upregulated to assist tumor growth, progression, and invasion. FN serves as a central organizer of ECM molecules and mediates the crosstalk between the tumor microenvironment and cancer cells. Its upregulation is correlated with angiogenesis, cancer progression, metastasis, and drug resistance. A number of FN-targeting ligands have been developed for cancer imaging and therapy. Thus far, FN-targeting imaging agents have been tested for nuclear imaging, MRI, and fluorescence imaging, for tumor detection and localization. FN-targeting therapeutics, including nuclear medicine, chemotherapy drugs, cytokines, and photothermal moieties, were also developed in cancer therapy. Because of the prevalence of FN overexpression in cancer, FN targeting imaging agents and therapeutics have the promise of broad applications in the diagnosis, treatment, and image-guided interventions of many types of cancers. This review will summarize current understanding on the role of FN in cancer, discuss the design and development of FN-targeting agents, and highlight the applications of these FN-targeting agents in cancer imaging and therapy.
Collapse
Affiliation(s)
- Zheng Han
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|