1
|
Tang W, Rao Y, Pi L, Li J. A review on the role of MiR-193a-5p in oncogenesis and tumor progression. Front Oncol 2025; 15:1543215. [PMID: 40161373 PMCID: PMC11949885 DOI: 10.3389/fonc.2025.1543215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025] Open
Abstract
MicroRNA (miRNA), a class of short non-coding RNA molecules comprising 18-25 nucleotides, are pivotal regulators of gene expression within physiological environments, influencing processes such as cell growth, apoptosis, proliferation, differentiation, migration (including cellular movement), and angiogenesis. They also play a crucial role in disease progression, invasion, and metastasis. Specifically, miR-193a-5p, a member of the miR-193a family, is instrumental in the development of various malignancies, including osteosarcoma, hepatocellular carcinoma, cervical cancer, melanoma, gastrointestinal cancer, lung cancer, prostate cancer, and bladder cancer. Studies have revealed that miR-193a-5p (sequence: UGGGUCUUUGCGGGCGAGAUGA; accession number: MIMAT0004614) is downregulated in numerous cancer cell lines and clinical samples. Furthermore, the tumor-suppressive effects of miR-193a-5p have been corroborated in animal models across different cancer types. These studies suggest that overexpression of this miRNA or modulation of lncRNA expression can inhibit oncogenesis. In this review, we summarize the functions of miR-193a-5p in cancer development.
Collapse
Affiliation(s)
| | | | | | - Jinping Li
- Department of Orthopaedics, Changsha Central Hospital (The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China), Changsha, Hunan, China
| |
Collapse
|
2
|
Zhu C, Zhang L, Ma H, Zhang C, Cheng F, An H, Zhu W. Clinical Diagnostic Value of miR-193a-5p in Neonatal Acute Respiratory Distress Syndrome and Analysis of Its Effect on Human Lung Epithelial Cells. Fetal Pediatr Pathol 2025; 44:85-97. [PMID: 39846137 DOI: 10.1080/15513815.2024.2447579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 11/10/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Aim: To explore the clinical value of miR-193a-5p in neonatal acute respiratory distress syndrome (ARDS) and its role in ARDS cell model in vitro. Methods: RT-qPCR was utilized to detect miR-193a-5p level. Correlation analysis was implemented to assess the correlation between miR-193a-5p and clinical indicators (IL-6, IL-1β, TNF-α, LUS). Human lung epithelial cells induced by LPS were used to construct ARDS cell model. The effects of miR-193a-5p on cell viability, apoptosis and inflammation were evaluated by CCK-8, flow cytometry and ELISA. The target gene of miR-193a-5p was predicted and verified by StarBaseV2.0 and luciferase reporter gene, respectively. Results: MiR-193a-5p level in the ARDS group was down-regulated. MiR-193a-5p levels were negatively correlated with clinical indicators. In vitro studies revealed that up-regulation of miR-193a-5p significantly improved LPS-induced apoptosis, inflammation and viability inhibition. Conclusion: The expression of miR-193a-5p was decreased in neonatal ARDS, it is negatively correlated with the pro-inflammatory factors levels.
Collapse
Affiliation(s)
- Chuanrui Zhu
- NICU(Neonatal Intensive Care Unit), Shenzhen Futian District Maternity & Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Lun Zhang
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Hongfen Ma
- Department of Pediatrics, Xingtai People's Hospital, Xingtai, Hebei, China
| | - Cuicui Zhang
- Department of Pediatrics, Xingtai People's Hospital, Xingtai, Hebei, China
| | - Fang Cheng
- Department of Pediatrics, Xingtai People's Hospital, Xingtai, Hebei, China
| | - Hong An
- Department of Pediatrics, Xingtai People's Hospital, Xingtai, Hebei, China
| | - Wenxiang Zhu
- Department of Respiratory and Critical Care Medicine, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Shi C, Chen L, Huang K, Yang G, Shi T, Li J, Zheng H. m6A methylation regulators and ncRNAs in osteosarcoma: Potential therapeutic strategies. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 194:34-42. [PMID: 39461672 DOI: 10.1016/j.pbiomolbio.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Osteosarcoma (OS) represents the primary form of bone cancer observed in paediatric and adolescent populations. Nearly 10%-15% of patients have metastases at diagnosis, and the 5-year survival rate was less than 20%. Although numerous investigators have offered significant efforts, the survival rates for patients with OS have remained almost unchanged over the past three decades. The most pervasive and abundant modification of internal transcripts in eukaryotic messenger RNAs (mRNAs) is N6-methyladenosine (m6A), and it is regulated by m6A methylation regulators. A number of recent studies have demonstrated that m6A modifications can regulate the biological activities of tumour cells and are intimately linked with cancer development, prognosis, drug resistance, and therapy. N6-methyladenosine modification of Non-coding RNA (ncRNA) has likewise shown a broad potential in gene regulation and tumor biology. Epigenetic changes induced by mRNAs and ncRNAs methylation are important for a better understanding of OS development and targeted drug development. Therefore, this paper summarises the biological functions of m6A-modified regulators in osteosarcoma and the role of mutual regulation between m6A and ncRNAs in osteosarcoma. Furthermore, the potential clinical applications of m6A modifications in OS are presented for consideration. It provides new directions for the future research and clinical treatment strategies of osteosarcoma.
Collapse
Affiliation(s)
- Ce Shi
- Department of Orthopedics, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, 223800, China
| | - Lei Chen
- Department of Oncology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, 223800, China
| | - Kui Huang
- Department of Orthopedics, Feng Xian People's Hospital, Xuzhou, 221700, China
| | - Guanghui Yang
- Department of Orthopedics, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, 223800, China
| | - Tingting Shi
- Department of Orthopedics, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, 223800, China
| | - Jinshuang Li
- Department of Cardiology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, 223800, China.
| | - Hongbing Zheng
- Department of Orthopedics, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, 223800, China.
| |
Collapse
|
4
|
Almatrafi TA, Lakshmaiya N, Almohaimeed HM, Chakravarthi S, Amin AH, Jafer A, Almars AI, Basabrain AA, Alghamdi YS, Saadh MJ, Akhavan-Sigari R. Reducing metastasis ability of gastric cancer cell line by targeting MMP16 using miR-193a-5p and 5-FU. Adv Med Sci 2024; 69:463-473. [PMID: 39341599 DOI: 10.1016/j.advms.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/21/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
PURPOSE Co-administration of microRNAs and chemotherapy drugs effectively treats several cancers. The current study sought to investigate the function of matrix metalloproteinase 16 (MMP16) and miR-193a-5p in the pathogenesis of gastric cancer (GC). MATERIALS/METHODS Sixty-five surgical patients, 15 receiving 5-fluorouracil (5-FU), provided GC and adjacent non-cancerous tissue. Following that, qPCR was used to assess the expression levels of MMP16 and miR-193a-5p in GC cells. The impact of miR-193a-5p and 5-FU administration on MMP16 mRNA expression was evaluated using qRT-PCR and Western blotting. MTT and Scratch tests were also conducted to assess their effects on cell viability and migration. Moreover, a rescue experiment using an MTT assay was performed. Using flow cytometry, the apoptotic rate was calculated. Finally, it was evaluated how MMP16 and miR-193a-5p related to the clinicopathological characteristics of the patients. RESULTS The current study found that while MMP16 expression increased in GC patients (P < 0.0001), miR-193a-5p expression significantly decreased (P < 0.001). MMP16 down-regulation was another effect of miR-193a-5p replacement, particularly when 5-FU was added (P < 0.01). In addition, this study found that miR-193a-5p, by concentrating on MMP16, decreased the migration of GC cells brought on by MMP16. In GC cell lines, miR-193 and 5-FU induce apoptosis, with the 5-FU being more pronounced when combined with mir-193, according to flow cytometry results. A strong correlation was also found between clinicopathological traits associated with MMP16 and miR-193a-5p. CONCLUSIONS These findings suggest that miR-193a-5p, in conjunction with 5-FU, down-regulates MMP16 in GC, where it suppresses tumor growth.
Collapse
Affiliation(s)
| | - Natrayan Lakshmaiya
- Department of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Srikumar Chakravarthi
- SEGi University, No.9, Jalan Teknologi, Taman Sains Selangor, Petaling Jaya, Selangor, Malaysia
| | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ayman Jafer
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amany I Almars
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ammar A Basabrain
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Youssef S Alghamdi
- Department of Biology, Turabah University College, Taif University, Saudi Arabia
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, Jordan; Applied Science Research Center. Applied Science Private University, Amman, Jordan.
| | - Reza Akhavan-Sigari
- Dreifaltigkeits-Hospital Lippstadt, Teaching Hospital of the University of Münster, Münster, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum, Warsaw Management University, Warsaw, Poland
| |
Collapse
|
5
|
Della Bella E, Menzel U, Naros A, Kubosch EJ, Alini M, Stoddart MJ. Identification of circulating miRNAs as fracture-related biomarkers. PLoS One 2024; 19:e0303035. [PMID: 38820355 PMCID: PMC11142570 DOI: 10.1371/journal.pone.0303035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 04/16/2024] [Indexed: 06/02/2024] Open
Abstract
Fracture non-unions affect many patients worldwide, however, known risk factors alone do not predict individual risk. The identification of novel biomarkers is crucial for early diagnosis and timely patient treatment. This study focused on the identification of microRNA (miRNA) related to the process of fracture healing. Serum of fracture patients and healthy volunteers was screened by RNA sequencing to identify differentially expressed miRNA at various times after injury. The results were correlated to miRNA in the conditioned medium of human bone marrow mesenchymal stromal cells (BMSCs) during in vitro osteogenic differentiation. hsa-miR-1246, hsa-miR-335-5p, and miR-193a-5p were identified both in vitro and in fracture patients and their functional role in direct BMSC osteogenic differentiation was assessed. The results showed no influence of the downregulation of the three miRNAs during in vitro osteogenesis. However, miR-1246 may be involved in cell proliferation and recruitment of progenitor cells. Further studies should be performed to assess the role of these miRNA in other processes relevant to fracture healing.
Collapse
Affiliation(s)
| | - Ursula Menzel
- AO Research Institute Davos, Davos Platz, Switzerland
| | - Andreas Naros
- AO Research Institute Davos, Davos Platz, Switzerland
- Department of Oral and Maxillofacial Surgery, Tübingen University Hospital, Tübingen, Germany
| | - Eva Johanna Kubosch
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Mauro Alini
- AO Research Institute Davos, Davos Platz, Switzerland
| | - Martin J. Stoddart
- AO Research Institute Davos, Davos Platz, Switzerland
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Cai P, Fu X, Li X, Zhao W. Upregulation of circ_0076684 in osteosarcoma facilitates malignant processes by mediating miRNAs/CUX1. J Orthop Surg Res 2024; 19:260. [PMID: 38659042 PMCID: PMC11044396 DOI: 10.1186/s13018-024-04742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
Circular RNAs (circRNAs) are a newly appreciated type of endogenous noncoding RNAs that play vital roles in the development of various human cancers, including osteosarcoma (OS). In this study, we investigated three circRNAs (circ_0076684, circ_0003563, circ_0076691) from the RUNX Family Transcription Factor 2 (RUNX2) gene locus in OS. We found that the expression of circ_0076684, circ_0003563, circ_0076691, and RUNX2 mRNA is upregulated in OS, which is a consequence of CBX4-mediated transcriptional activation. Among these three RUNX2-circRNAs, only circ_0076684 is significantly associated with the clinical features and prognosis of OS patients. Functional experiments indicate that circ_0076684 promotes OS progression in vitro and in vivo. Circ_0076684 acts as a sponge for miR-370-3p, miR-140-3p, and miR-193a-5p, raising Cut Like Homeobox 1 (CUX1) expression by sponging these three miRNAs. Furthermore, we presented that circ_0076684 facilitates OS progression via CUX1. In conclusion, this study found that the expression of three circRNAs and RUNX2 mRNA from the RUNX2 gene locus is significantly upregulated in OS, as a result of CBX4-mediated transcriptional activation. Circ_0076684 raises CUX1 expression by sponging miR-370-3p, miR-140-3p, and miR-193a-5p, and facilitates OS progression via CUX1.
Collapse
Affiliation(s)
- Pengfei Cai
- Department of Orthopeadics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No. 365 Renmin East Road, Jinhua City, 321000, Zhejiang Province, China
| | - Xin Fu
- Department of Orthopeadics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No. 365 Renmin East Road, Jinhua City, 321000, Zhejiang Province, China
| | - Xiaofei Li
- Department of Orthopeadics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No. 365 Renmin East Road, Jinhua City, 321000, Zhejiang Province, China.
| | - Wei Zhao
- Department of Orthopeadics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No. 365 Renmin East Road, Jinhua City, 321000, Zhejiang Province, China.
| |
Collapse
|
7
|
Behroozizad N, Mahmoodpoor A, Shadvar K, Ardebil RA, Pahnvar AJ, Sohrabifar N, Kazeminasab S. Evaluation of circulating levels of miR-135a and miR-193 in patients with sepsis. Mol Biol Rep 2024; 51:282. [PMID: 38324210 DOI: 10.1007/s11033-024-09225-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Sepsis is a life-threatening condition where early diagnosis and prognostic awareness provide guidance for selecting the appropriate treatment strategies. A wide variety of biomarker-based studies in clinical medicine provide new insights into personalized medicine for sepsis patients. MiRNAs are endogenous non-coding RNA molecules that have been acting as great potential diagnostic, prognostic and therapeutic biomarkers in various diseases. METHODS AND RESULTS In the present study, the expression levels of two selected miRNAs, including miR-135a and miR-193, were evaluated for their prognostic potential in patients with sepsis. The circulating levels of miRNAs were quantified by quantitative PCR (qPCR) in patients with sepsis (n = 100) and age- and sex-matched healthy controls (n = 100). Statistical findings confirmed the valuable prognostic potential of miR-135a in patients with sepsis, while no significant difference was found between the miR-193 expression level in the patients with sepsis and the controls. CONCLUSIONS Circulating levels of miRNA-135a can serve a the prognostic biomarker for patients with sepsis. These findings highlight the importance of miRNAs as signatures in the personalized managements of sepsis.
Collapse
Affiliation(s)
- Nazila Behroozizad
- Department of Anesthesiology and Intensive care, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Intensive care, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Kamran Shadvar
- Department of Anesthesiology and Intensive care, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Roghayeh Asghari Ardebil
- Department of Anesthesiology and Intensive care, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Aynour Jalali Pahnvar
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab- Rashid, Tabriz, Iran
| | - Nasim Sohrabifar
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Somayeh Kazeminasab
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Sadr Laboratories Group, Medical Genetics Laboratory, Tabriz, Iran.
| |
Collapse
|
8
|
Yalav O, Sonmezler O, Erdogan KE, Rencuzogullari A, Doran F, Bisgin A, Boga I. Pre-operative Neo-adjuvant Chemotherapy Related miRNAs as Key Regulators and Therapeutic Targets in Colorectal Cancer. Curr Aging Sci 2024; 17:49-57. [PMID: 37723961 DOI: 10.2174/1874609816666230816152744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND In colorectal cancer, the investigation of cancer pathogenesis and the determination of the relevant gene and gene pathways is particularly important to provide a basis for treatment-oriented studies. miRNAs which affect gene regulation in the molecular pathogenesis of cancer, have an active role in carcinogenesis. In the literature, miRNA expression levels have been associated with metastasis and prognosis in different cancers. OBJECTIVE In our study, expression profiling of miRNAs involved in oncogenic and apoptotic pathways in patients with locally advanced colorectal cancer receiving neoadjuvant therapy was performed. METHODS miRNAs were isolated from three different FFPE tissue samples taken at different times of the same patient (tumor tissue taken at the time of diagnosis, normal tissue samples, and after neoadjuvant therapy). The expression analysis of 84 miRNAs determined by PCR array (Fluidigm, USA) and mediated meta-analysis was performed comparatively to each study and non-cancerous control group. Evaluations were performed with ΔΔCT calculations. RESULTS As a result of the miRNA PCR array study, in addition to differences were observed in miRNA expression between control and study groups. The potential biomarkers which were hsamiR- 215-5p, hsa-miR-9-59, hsa-miR-193a-5p, hsa-miR-206, hsa-miR-1, hsa-miR-96-5p have been detected for possible treatment resistance, prognosis and predispositions to cancers. CONCLUSION In patients with colorectal cancer, miRNA expression in the tumoral regions before and after neoadjuvant therapy has represented a variable pattern. It has been shown that miRNA studies can be used to predict the clinical course and response to treatment with differences in expression levels. It has been concluded that specific miRNAs may be candidate biomarkers for colorectal cancer..
Collapse
Affiliation(s)
- Orcun Yalav
- Department of General Surgery, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Ozge Sonmezler
- AGENTEM (Adana Genetic Diseases Diagnosis and Treatment Center), Cukurova University, Adana, Turkey
- Biotechnology Department, Cukurova University Institute of Natural and Applied Sciences, Adana, Turkey
| | - Kivilcim Eren Erdogan
- Department of Pathology, Faculty of Medicine, Cukurova University Institute of Natural and Applied Sciences, Adana, Turkey
| | - Ahmet Rencuzogullari
- Department of General Surgery, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Figen Doran
- Department of Pathology, Faculty of Medicine, Cukurova University Institute of Natural and Applied Sciences, Adana, Turkey
| | - Atil Bisgin
- Department of Medical Genetics, Faculty of Medicine, Cukurova University AGENTEM (Adana Genetic Diseases Diagnosis and Treatment Center) & Cukurova University, Adana, Turkey
| | - Ibrahim Boga
- AGENTEM (Adana Genetic Diseases Diagnosis and Treatment Center), Cukurova University, Adana, Turkey
- Department of Medical Genetics, Faculty of Medicine, Cukurova University AGENTEM (Adana Genetic Diseases Diagnosis and Treatment Center) & Cukurova University, Adana, Turkey
| |
Collapse
|
9
|
Yao Y, Shi L, Zhu X. Four differentially expressed exosomal miRNAs as prognostic biomarkers and therapy targets in endometrial cancer: Bioinformatic analysis. Medicine (Baltimore) 2023; 102:e34998. [PMID: 37653757 PMCID: PMC10470766 DOI: 10.1097/md.0000000000034998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023] Open
Abstract
Endometrial cancer (EC) is one of the most common gynecological malignancies worldwide. Accumulated evidence has demonstrated exosomes of cancer cells carry microRNAs (miRNAs) to nonmalignant cells to induce metastasis. Our study aimed to find possible biomarkers of EC. Data for miRNA expression related with exosome from EC patients were downloaded from The Cancer Genome Atlas database, and the miRNA expression profiles associated with exosomes of EC were downloaded from the National Center for Biotechnology Information. We used different algorithms to analyze the differential miRNA expression, infer the relative proportion of immune infiltrating cells, predict chemotherapy sensitivity, and comprehensively score each gene set to evaluate the potential biological function changes of different samples. The gene ontology analysis and Kyoto encyclopedia of genome genomics pathway analysis were performed for specific genes. A total of 13 differential miRNAs were identified, of which 4 were up-regulated. The 4 miRNAs, that is hsa-miR-17-3p, hsa-miR-99b-3p, hsa-miR-193a-5p, and hsa-miR-320d, were the hub exosomal miRNAs that were all closely related to the clinic phenotypes and prognosis of patients. This study preliminarily indicates that the 4 hub exosomal miRNAs (hsa-miR-17-3p, hsa-miR-99b-3p, hsa-miR-193a-5p, and hsa-miR-320d) could be used as prognostic biomarkers or therapy targets in EC. Further studies are required to make sure of their real feasibility and values in the EC clinic and the relative research.
Collapse
Affiliation(s)
- Yingsha Yao
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Liujing Shi
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Xiaoming Zhu
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Women’s Reproductive Health of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
10
|
Sell MC, Ramlogan-Steel CA, Steel JC, Dhungel BP. MicroRNAs in cancer metastasis: biological and therapeutic implications. Expert Rev Mol Med 2023; 25:e14. [PMID: 36927814 PMCID: PMC10407223 DOI: 10.1017/erm.2023.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/02/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Cancer metastasis is the primary cause of cancer-related deaths. The seeding of primary tumours at a secondary site is a highly inefficient process requiring substantial alterations in the genetic architecture of cancer cells. These alterations include significant changes in global gene expression patterns. MicroRNAs are small, non-protein coding RNAs which play a central role in regulating gene expression. Here, we focus on microRNA determinants of cancer metastasis and examine microRNA dysregulation in metastatic cancer cells. We dissect the metastatic process in a step-wise manner and summarise the involvement of microRNAs at each step. We also discuss the advantages and limitations of different microRNA-based strategies that have been used to target metastasis in pre-clinical models. Finally, we highlight current clinical trials that use microRNA-based therapies to target advanced or metastatic tumours.
Collapse
Affiliation(s)
- Marie C. Sell
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Charmaine A. Ramlogan-Steel
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Jason C. Steel
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Bijay P. Dhungel
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
11
|
Breulmann FL, Hatt LP, Schmitz B, Wehrle E, Richards RG, Della Bella E, Stoddart MJ. Prognostic and therapeutic potential of microRNAs for fracture healing processes and non-union fractures: A systematic review. Clin Transl Med 2023; 13:e1161. [PMID: 36629031 PMCID: PMC9832434 DOI: 10.1002/ctm2.1161] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Approximately 10% of all bone fractures result in delayed fracture healing or non-union; thus, the identification of biomarkers and prognostic factors is of great clinical interest. MicroRNAs (miRNAs) are known to be involved in the regulation of the bone healing process and may serve as functional markers for fracture healing. AIMS AND METHODS This systematic review aimed to identify common miRNAs involved in fracture healing or non-union fractures using a qualitative approach. A systematic literature search was performed with the keywords 'miRNA and fracture healing' and 'miRNA and non-union fracture'. Any original article investigating miRNAs in fracture healing or non-union fractures was screened. Eventually, 82 studies were included in the qualitative analysis for 'miRNA and fracture healing', while 19 were selected for the 'miRNA and fracture non-union' category. RESULTS AND CONCLUSIONS Out of 151 miRNAs, miR-21, miR-140 and miR-214 were the most investigated miRNAs in fracture healing in general. miR-31-5p, miR-221 and miR-451-5p were identified to be regulated specifically in non-union fractures. Large heterogeneity was detected between studies investigating the role of miRNAs in fracture healing or non-union in terms of patient population, sample types and models used. Nonetheless, our approach identified some miRNAs with the potential to serve as biomarkers for non-union fractures, including miR-31-5p, miR-221 and miR-451-5p. We provide a discussion of involved pathways and suggest on alignment of future research in the field.
Collapse
Affiliation(s)
- Franziska Lioba Breulmann
- AO Research Institute DavosDavos PlatzSwitzerland
- Department of Orthopedic Sports MedicineKlinikum Rechts der IsarTechnical University of MunichMunichGermany
| | - Luan Phelipe Hatt
- AO Research Institute DavosDavos PlatzSwitzerland
- Institute for BiomechanicsETH ZürichZurichSwitzerland
| | - Boris Schmitz
- Department of Rehabilitation SciencesFaculty of HealthUniversity of Witten/HerdeckeWittenGermany
- DRV Clinic KönigsfeldCenter for Medical RehabilitationEnnepetalGermany
| | - Esther Wehrle
- AO Research Institute DavosDavos PlatzSwitzerland
- Institute for BiomechanicsETH ZürichZurichSwitzerland
| | - Robert Geoff Richards
- AO Research Institute DavosDavos PlatzSwitzerland
- Faculty of MedicineMedical Center‐Albert‐Ludwigs‐University of FreiburgAlbert‐Ludwigs‐University of FreiburgFreiburgGermany
| | | | - Martin James Stoddart
- AO Research Institute DavosDavos PlatzSwitzerland
- Faculty of MedicineMedical Center‐Albert‐Ludwigs‐University of FreiburgAlbert‐Ludwigs‐University of FreiburgFreiburgGermany
| |
Collapse
|
12
|
Ramadan F, Saab R, Hussein N, Clézardin P, Cohen PA, Ghayad SE. Non-coding RNA in rhabdomyosarcoma progression and metastasis. Front Oncol 2022; 12:971174. [PMID: 36033507 PMCID: PMC9403786 DOI: 10.3389/fonc.2022.971174] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a soft tissue sarcoma of skeletal muscle differentiation, with a predominant occurrence in children and adolescents. One of the major challenges facing treatment success is the presence of metastatic disease at the time of diagnosis, commonly associated with the more aggressive fusion-positive subtype. Non-coding RNA (ncRNA) can regulate gene transcription and translation, and their dysregulation has been associated with cancer development and progression. MicroRNA (miRNA) are short non-coding nucleic acid sequences involved in the regulation of gene expression that act by targeting messenger RNA (mRNA), and their aberrant expression has been associated with both RMS initiation and progression. Other ncRNA including long non-coding RNA (lncRNA), circular RNA (circRNA) and ribosomal RNA (rRNA) have also been associated with RMS revealing important mechanistic roles in RMS biology, but these studies are still limited and require further investigation. In this review, we discuss the established roles of ncRNA in RMS differentiation, growth and progression, highlighting their potential use in RMS prognosis, as therapeutic agents or as targets of treatment.
Collapse
Affiliation(s)
- Farah Ramadan
- Department of Biology, Faculty of Science II, Lebanese University, Beirut, Lebanon
- Université Claude Bernard Lyon 1, Lyon, France
- INSERM, Unit 1033, LYOS, Lyon, France
- Department of Chemistry and Biochemistry, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Raya Saab
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nader Hussein
- Department of Chemistry and Biochemistry, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Philippe Clézardin
- Université Claude Bernard Lyon 1, Lyon, France
- INSERM, Unit 1033, LYOS, Lyon, France
| | - Pascale A. Cohen
- Université Claude Bernard Lyon 1, Lyon, France
- INSERM, Unit 1033, LYOS, Lyon, France
| | - Sandra E. Ghayad
- Department of Biology, Faculty of Science II, Lebanese University, Beirut, Lebanon
- Aix-Marseille University, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| |
Collapse
|
13
|
Han Z, Li L, Zhao H, Wang R, Yan F, Tao Z, Fan J, Zheng Y, Zhao F, Huang Y, Tian Y, Li G, Luo Y. MicroRNA-193a-5p Rescues Ischemic Cerebral Injury by Restoring N2-Like Neutrophil Subsets. Transl Stroke Res 2022:10.1007/s12975-022-01071-y. [PMID: 35906328 DOI: 10.1007/s12975-022-01071-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/21/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
Abstract
Circulating neutrophils are activated shortly after stroke and in turn affect the fate of ischemic brain tissue, and microRNAs (miRNA) participate in regulating neuroinflammation. We probed the role of neutrophilic miRNA in ischemic stroke. miR-193a-5p was decreased in circulating neutrophils of acute ischemic stroke (AIS) patients and healthy controls. In another set of AIS patients treated with recombinant tissue plasminogen activator, higher neutrophilic miR-193a-5p levels were associated with favorable outcomes at 3 months and non-symptomatic intracerebral hemorrhage. An experimental stroke model and human neutrophil-like HL-60 cells were further transfected with agomiR-193a-5p/antagomiR-193a-5p or ubiquitin-conjugating enzyme V2 (UBE2V2)-siRNA prior to model induction for in vivo and in vitro studies. Results of 2,3,5-triphenyl tetrazolium chloride staining and neurological function evaluations at post-experimental stroke showed that intravenous agomiR-193a-5p transfusion protected against ischemic cerebral injury in the acute stage and promoted neurological recovery in the subacute stage. This protective role was suggested to correlate with neutrophil N2 transformation based on the N2-like neutrophil proportions in the bone marrow, peripheral blood, and spleen of the experimental stroke model and the measurement of neutrophil phenotype-associated molecule levels. Mechanistically, analyses indicated that UBE2V2 might be a target of miR-193a-5p. Cerebral injury and neuroinflammation aggravated by miR-193a-5p inhibition were reversed by UBE2V2 silencing. In conclusion, miR-193a-5p protects against cerebral ischemic injury by restoring neutrophil N2 phenotype-associated neuroinflammation suppression, likely, in part, via UBE2V2 induction.
Collapse
Affiliation(s)
- Ziping Han
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Lingzhi Li
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Haiping Zhao
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Rongliang Wang
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Feng Yan
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Zhen Tao
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Junfen Fan
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Yangmin Zheng
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Fangfang Zhao
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Yuyou Huang
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Yue Tian
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Guangwen Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, China
| | - Yumin Luo
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China. .,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China. .,Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
14
|
Cui Z, Mo J, Wang L, Wang R, Cheng F, Wang L, Yang X, Wang W. Integrated Bioinformatics Analysis of Serine Racemase as an Independent Prognostic Biomarker in Endometrial Cancer. Front Genet 2022; 13:906291. [PMID: 35923695 PMCID: PMC9340001 DOI: 10.3389/fgene.2022.906291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Endometrial cancer (EC) kills about 76,000 women worldwide, with the highest incidence in industrialized countries. Because of the rise in disease mortality and new diagnoses, EC is now a top priority for women’s health. Serine racemase (SRR) is thought to play a role in the central nervous system, but its role in cancers, particularly in EC, is largely unknown. The current study starts with a pan-cancer examination of SRR’s expression and prognostic value before delving into SRR’s potential cancer-suppressing effect in patients with EC. SRR may affect the endometrial tumor immune microenvironment, according to subsequent immune-related analysis. SRR expression is also linked to several genes involved in specific pathways such as ferroptosis, N6-methyladenosine methylation, and DNA damage repair. Finally, we used the expression, correlation, and survival analyses to investigate the upstream potential regulatory non-coding RNAs of SRR. Overall, our findings highlight the prognostic significance of SRR in patients with EC, and we can formulate a reasonable hypothesis that SRR influences metabolism and obstructs key carcinogenic processes in EC.
Collapse
Affiliation(s)
- Zhiwei Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiantao Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lijun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongli Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Feiyan Cheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lihui Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xinyuan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Xinyuan Yang, ; Wei Wang,
| | - Wei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Xinyuan Yang, ; Wei Wang,
| |
Collapse
|
15
|
MicroRNAs as Potential Biomarkers in the Differential Diagnosis of Lipomatous Tumors and Their Mimics. Int J Mol Sci 2022; 23:ijms23147804. [PMID: 35887151 PMCID: PMC9322088 DOI: 10.3390/ijms23147804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023] Open
Abstract
Adipocytic tumors are the most common subtype of soft tissue tumors. In current clinical practice, distinguishing benign lipomas from well-differentiated liposarcomas (WDLPS), as well as dedifferentiated liposarcomas (DDLPS) from their morphologic mimics, remains a significant diagnostic challenge. This is especially so when examining small biopsy samples and without the aid of additional ancillary tests. Recognizing the important role that microRNAs (miRNAs) play in tumorigenesis and their potential utility in tumor classification, we analyzed routine clinical tissue samples of benign and malignant lipomatous tumors, as well as other sarcoma mimics, to identify distinguishing miRNA-based signatures that can aid in the differential diagnosis of these entities. We discovered a 6-miRNA signature that separated lipomas from WDLPS with high confidence (AUC of 0.963), as well as a separate 6-miRNA signature that distinguished DDLPS from their more aggressive histologic mimics (AUC of 0.740). Functional enrichment analysis unveiled possible mechanistic involvement of these predictive miRNAs in adipocytic cancer-related biological processes and pathways such as PI3K/AKT/mTOR and MAPK signaling, further supporting the relevance of these miRNAs as biomarkers for adipocytic tumors. Our results demonstrate that miRNA expression profiling may potentially be used as an adjunctive tool for the diagnosis of benign and malignant adipocytic tumors. Further validation studies are warranted.
Collapse
|
16
|
Han J, Kong H, Wang X, Zhang XA. Novel insights into the interaction between N6-methyladenosine methylation and noncoding RNAs in musculoskeletal disorders. Cell Prolif 2022; 55:e13294. [PMID: 35735243 PMCID: PMC9528765 DOI: 10.1111/cpr.13294] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Musculoskeletal disorder (MSD) are a class of inflammatory and degener-ative diseases, but the precise molecular mechanisms are still poorly understood. Noncoding RNA (ncRNA) N6-methyladenosine (m6A) modification plays an essential role in the pathophysiological process of MSD. This review summarized the interaction be-tween m6A RNA methylation and ncRNAs in the molecular regulatory mechanism of MSD. It provides a new perspective for the pathophysiological mechanism and ncRNA m6A targeted therapy of MSD. METHODS A comprehensive search of databases was conducted with musculoskeletal disorders, noncoding RNA, N6-methyladenosine, intervertebral disc degeneration, oste-oporosis, osteosarcoma, osteoarthritis, skeletal muscle, bone, and cartilage as the key-words. Then, summarized all the relevant articles. RESULTS Intervertebral disc degeneration (IDD), osteoporosis (OP), osteosarcoma (OS), and osteoarthritis (OA) are common MSDs that affect muscle, bone, cartilage, and joint, leading to limited movement, pain, and disability. However, the precise pathogenesis remains unclear, and no effective treatment and drug is available at present. Numerous studies confirmed that the mutual regulation between m6A and ncRNAs (i.e., microRNAs, long ncRNAs, and circular RNAs) was found in MSD, m6A modification can regulate ncRNAs, and ncRNAs can also target m6A regulators. ncRNA m6A modification plays an essential role in the pathophysiological process of MSDs by regulating the homeostasis of skeletal muscle, bone, and cartilage. CONCLUSION m6A interacts with ncRNAs to regulate multiple biological processes and plays important roles in IDD, OP, OS, and OA. These studies provide new insights into the pathophysiological mechanism of MSD and targeting m6A-modified ncRNAs may be a promising therapy approach.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Kinesiology, Shenyang Sport University, Shenyang, China.,Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Hui Kong
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xueqiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| | - Xin-An Zhang
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| |
Collapse
|
17
|
Functional Screen for microRNAs Suppressing Anchorage-Independent Growth in Human Cervical Cancer Cells. Int J Mol Sci 2022; 23:ijms23094791. [PMID: 35563182 PMCID: PMC9100801 DOI: 10.3390/ijms23094791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
The progression of anchorage-dependent epithelial cells to anchorage-independent growth represents a critical hallmark of malignant transformation. Using an in vitro model of human papillomavirus (HPV)-induced transformation, we previously showed that acquisition of anchorage-independent growth is associated with marked (epi)genetic changes, including altered expression of microRNAs. However, the laborious nature of the conventional growth method in soft agar to measure this phenotype hampers a high-throughput analysis. We developed alternative functional screening methods using 96- and 384-well ultra-low attachment plates to systematically investigate microRNAs regulating anchorage-independent growth. SiHa cervical cancer cells were transfected with a microRNA mimic library (n = 2019) and evaluated for cell viability. We identified 84 microRNAs that consistently suppressed growth in three independent experiments. Further validation in three cell lines and comparison of growth in adherent and ultra-low attachment plates yielded 40 microRNAs that specifically reduced anchorage-independent growth. In conclusion, ultra-low attachment plates are a promising alternative for soft-agar assays to study anchorage-independent growth and are suitable for high-throughput functional screening. Anchorage independence suppressing microRNAs identified through our screen were successfully validated in three cell lines. These microRNAs may provide specific biomarkers for detecting and treating HPV-induced precancerous lesions progressing to invasive cancer, the most critical stage during cervical cancer development.
Collapse
|
18
|
Ren P, Niu X, Zhao R, Liu J, Ren W, Dai H, Chen J, Yan J, Li B, Shao Y, Bai Y, Han P. Long non-coding RNA AGAP2-AS1 promotes cell proliferation and invasion through regulating miR-193a-3p/LOXL4 axis in laryngeal squamous cell carcinoma. Cell Cycle 2022; 21:697-707. [PMID: 35113007 PMCID: PMC8973330 DOI: 10.1080/15384101.2021.2016197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is an aggressive malignancy with highly mortality rate. Long non-coding RNA (lncRNA) AGAP2-AS1 is an identified oncogene in several types of cancers. However, the role of AGAP2-AS1 in LSCC remains unclear. The expression levels of AGAP2-AS1 in LSCC tissues and cell lines were measured using qRT-PCR. AGAP2-AS1 was knocked down in LSCC cells through transfection with siRNA-AGAP2-AS1. Cell proliferation and invasion were detected using MTT and transwell assays. Dual-luciferase reporter gene assay was performed to confirm the interaction with AGAP2-AS1 and downstream genes. Our results showed that AGAP2-AS1 expression was remarkably increased in human LSCC tissues and cell lines. Knockdown of AGAP2-AS1 significantly inhibited the proliferation and invasion of LSCC cells. In addition, AGAP2-AS1 sponged miR-193a-3p and regulated its expression in LSCC cells. Inhibition of miR-193a-3p reversed the effects of AGAP2-AS1 knockdown on LSCC cells. Furthermore, Lysyl oxidase-like 4 (LOXL4) was a target gene of miR-193a-3p and the role of miR-193a-3p was mediated by LOXL4. In conclusion, these findings suggest that knockdown of AGAP2-AS1 inhibited the proliferation and invasion of LSCC cells through regulating the miR-193a-3p/LOXL4 axis.
Collapse
Affiliation(s)
- Pengyu Ren
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi, China,Department of Neurosurgery, Second Affiliated Hospital of Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi, China
| | - Xiaorong Niu
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi, China
| | - Ruimin Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi, China
| | - Junsong Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi, China
| | - Wanli Ren
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi, China
| | - Hao Dai
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi, China
| | - Jiayu Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi, China
| | - Jinfeng Yan
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi, China
| | - Baiya Li
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi, China
| | - Yuan Shao
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi, China
| | - Yanxia Bai
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi, China,CONTACT Yanxia Bai
| | - Peng Han
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi, China,Peng Han Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi710061, China
| |
Collapse
|
19
|
Deng Y, Zhang L, Luo R. LncRNA SNHG11 accelerates the progression of lung adenocarcinoma via activating Notch pathways. Pathol Res Pract 2022; 234:153849. [DOI: 10.1016/j.prp.2022.153849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
|
20
|
Ma T, Li H, Yang W, Liu Q, Yan H. Over-expression of miR-193a-3p regulates the apoptosis of colorectal cancer cells by targeting PAK3. Am J Transl Res 2022; 14:1361-1375. [PMID: 35273739 PMCID: PMC8902527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
Although dysregulated expression of microRNAs (miRNA) has been investigated in colorectal cancer (CRC), MiR-193a-3p, as a tumor inhibitor, is less studied. To investigate the function and mechanism of miR-193a-3p in CRC, the potential function of miR-193a-3p in regulating PAK3 in CRC with a series of experimental assays including western blotting, qRT-PCR, bioinformatics analysis, a luciferase reporter assay, flow cytometry, Transwell assay, CCK8 assay and immunofluorescence were performed in this study. The results showed that miR-193a-3p was down-regulated in CRC tissues and cell lines, which was also correlated with tumor progression. PAK3 was predicted as a target gene of miR-193a-3p in CRC cells by TargetScan database, which was confirmed by luciferase assays. Moreover, overexpression of miR-193a-3p suppressed the viability, cell cycle progression, migration, and invasion, and induced apoptosis of CRC cells in vitro by regulating the PAK3 signaling pathway. Therefore, miR-193a-3p may serve as a tumor suppressor and potential target for CRC treatment.
Collapse
Affiliation(s)
- Tao Ma
- The Second Department of Oncology, Tumor Hospital, General Hospital of Ningxia Medical UniversityYinchuan 750004, Ningxia, People’s Republic of China
| | - Hai Li
- The Colorectal Surgery, General Hospital of Ningxia Medical UniversityYinchuan 750004, Ningxia, People’s Republic of China
| | - Wenjing Yang
- The Second Department of Oncology, Tumor Hospital, General Hospital of Ningxia Medical UniversityYinchuan 750004, Ningxia, People’s Republic of China
| | - Quanxia Liu
- The Second Department of Oncology, Tumor Hospital, General Hospital of Ningxia Medical UniversityYinchuan 750004, Ningxia, People’s Republic of China
| | - Hui Yan
- The Second Department of Oncology, Tumor Hospital, General Hospital of Ningxia Medical UniversityYinchuan 750004, Ningxia, People’s Republic of China
| |
Collapse
|
21
|
Abstract
Osteosarcoma is the most common primary bone malignancy in adolescents. Its high propensity to metastasize is the leading cause for treatment failure and poor prognosis. Although the research of osteosarcoma has greatly expanded in the past decades, the knowledge and new therapy strategies targeting metastatic progression remain sparse. The prognosis of patients with metastasis is still unsatisfactory. There is resonating urgency for a thorough and deeper understanding of molecular mechanisms underlying osteosarcoma to develop innovative therapies targeting metastasis. Toward the goal of elaborating the characteristics and biological behavior of metastatic osteosarcoma, it is essential to combine the diverse investigations that are performed at molecular, cellular, and animal levels from basic research to clinical translation spanning chemical, physical sciences, and biology. This review focuses on the metastatic process, regulatory networks involving key molecules and signaling pathways, the role of microenvironment, osteoclast, angiogenesis, metabolism, immunity, and noncoding RNAs in osteosarcoma metastasis. The aim of this review is to provide an overview of current research advances, with the hope to discovery druggable targets and promising therapy strategies for osteosarcoma metastasis and thus to overcome this clinical impasse.
Collapse
Affiliation(s)
- Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Protective Effect of miR-193a-5p and miR-320-5p on Caerulein-Induced Injury in AR42J Cells. Dig Dis Sci 2021; 66:4333-4343. [PMID: 33405047 DOI: 10.1007/s10620-020-06800-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Acute pancreatitis is a common inflammatory disease. MicroRNAs have been implicated in the pathogenesis of acute pancreatitis. AIMS The purpose of this study was to investigate the precise roles of miR-193a-5p and miR-320-5p in AP. METHODS The levels of miR-193a-5p, miR-320-5p and tumor necrosis factor receptor-associated factor 3 were detected by quantitative real-time polymerase chain reaction. Cell apoptosis was determined using flow cytometry. Enzyme-linked immunosorbent assay was performed to measure TNF-α, IL-6, IL-1β and IL-8 production, amylase activity, and malondialdehyde content. Targeted relationship between miR-193a-5p or miR-320-5p and TRAF3 was confirmed by the dual-luciferase reporter and RNA immunoprecipitation assays. RESULTS Our data showed that miR-193a-5p and miR-320-5p were down-regulated in acute pancreatitis serum and caerulein-treated AR42J cells. The increased expression of miR-193a-5p or miR-320-5p alleviated caerulein-induced cell injury in AR42J cells. Tumor necrosis factor receptor-associated factor 3 was a direct target of miR-193a-5p and miR-320-5p in AR42J cells. Moreover, miR-193a-5p and miR-320-5p regulated caerulein-induced AR42J cells injury through targeting tumor necrosis factor receptor-associated factor 3. CONCLUSION The present findings demonstrated that miR-193a-5p and miR-320-5p protected AR42J cells against caerulein-induced cell injury by targeting tumor necrosis factor receptor-associated factor 3, highlighting their roles as potential therapeutic targets for acute pancreatitis treatment.
Collapse
|
23
|
Jiang P, Yin Y, Wu Y, Sun Z. Silencing of long non-coding RNA SNHG15 suppresses proliferation, migration and invasion of pancreatic cancer cells by regulating the microRNA-345-5p/RAB27B axis. Exp Ther Med 2021; 22:1273. [PMID: 34594410 DOI: 10.3892/etm.2021.10708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer (PC) is the seventh most common cause of cancer-associated mortality worldwide. The current study aimed to investigate the function and molecular mechanism underlying long non-coding (lnc)RNA SNHG15 in PC tissues and cells. Relative expression levels of lncRNA SNHG15, miR-345-5p and RAB27B in PC cells and tissues were examined by performing reverse transcription-quantitative PCR. The association between SNHG15, miR-345-5p and RAB27B was validated using a Dual-luciferase reporter assay. Proliferation, invasion and migration of PC cells were analysed by conducting MTT, wound healing and Transwell assays. Western blotting was performed to detect the relative expression of the RAB27B protein. The relative expression level of lncRNA SNHG15 and RAB27B was elevated, but that of miR-345-5p was decreased in PC. Silencing of SNHG15 suppressed the proliferation, invasion and migration of PC cells in vitro and suppressed tumour growth in xenograft mice in vivo. miR-345-5p was the target gene of SNHG15 and suppressed cell proliferation, migration and invasion in PC. Furthermore, miR-345-5p targeted RAB27B. The use of miR-345-5p inhibitor or overexpression of RAB27B reversed the suppressive effect of the small interfering RNA si-SNHG15-1 exerted on the proliferation, invasion and migration of PC cells. Silencing of SNHG15 inhibited the proliferation, invasion and migration of PC cells by mediating the miR-345-5p/RAB27B axis, thereby implying its potential as a prognostic marker and target for PC therapy.
Collapse
Affiliation(s)
- Pengfei Jiang
- Department of Gastroenterology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Youmin Yin
- Department of Endocrinology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Yan Wu
- Health Management Center, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Zhaoli Sun
- Department of Endocrinology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
24
|
Zhou HZ, Chen B, Li XJ, Du JJ, Zhang N, Shao YX, Zhang K, Tong ZC. MicroRNA-545-5p regulates apoptosis, migration and invasion of osteosarcoma by targeting dimethyladenosine transferase 1. Oncol Lett 2021; 22:763. [PMID: 34539867 PMCID: PMC8436355 DOI: 10.3892/ol.2021.13024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 06/08/2021] [Indexed: 11/25/2022] Open
Abstract
The metastasis of osteosarcoma is a major threat to both adolescents and young adults. Identifying novel targets that may prevent osteosarcoma metastasis is critical in developing advanced clinical therapies for treating this cancer. The present study aimed to explore the mechanism of microRNA (miR)-545-5p in the metastasis of osteosarcoma. The present study identified miR-545-5p as a potential target that was downregulated in both osteosarcoma clinical samples and cell lines, and in the latter, ectopically expressed miR-545-5p caused apoptosis. In addition, miR-545-5p exerted inhibitory effects in osteosarcoma migration and invasion. Overexpression of miR-545-5p induced xenograft growth inhibition in vivo. In addition, miR-545-5p targeted dimethyladenosine transferase 1 (DIMT1), an oncogenic protein that facilitates osteosarcoma proliferation, migration and invasion. Taken together, the results of the present study suggest that miR-545-5p functions as a tumor suppressor in osteosarcoma that promotes apoptosis, while inhibiting migration and invasion by targeting DIMT1. Taken together, the results of the present study suggest two potential novel targets for osteosarcoma treatment and metastasis prevention.
Collapse
Affiliation(s)
- Hai-Zhen Zhou
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Bo Chen
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Xiao-Ju Li
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Juan-Juan Du
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Nan Zhang
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Yu-Xiong Shao
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Kun Zhang
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Zhi-Chao Tong
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
25
|
Chen R, Ning Y, Zeng G, Zhou H, Zhou L, Xiao P, Li Z, Zhou J. The miR-193a-5p/NCX2/AKT axis promotes invasion and metastasis of osteosarcoma. J Cancer 2021; 12:5903-5913. [PMID: 34476004 PMCID: PMC8408106 DOI: 10.7150/jca.60969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/28/2021] [Indexed: 12/16/2022] Open
Abstract
MiR-193a-5p has been observed to have oncogenic or tumor suppressive functions in different kinds of cancers, but its role and molecular mechanism in osteosarcoma are elusive. Na+/Ca2+ exchangers (NCX1, NCX2 and NCX3) normally extrude Ca2+ from the cell, and deregulation of the intracellular Ca2+ homeostasis is related to several kinds of diseases, including cancer. The present study demonstrated that miR-193a-5p was upregulated in osteosarcoma tissues compared with the corresponding adjacent noncancerous tissues, and promoted colony formation, migration, invasion and epithelial-mesenchymal transition (EMT) in osteosarcoma cells (SaOS-2 and U-2OS), as well as metastasis in a murine xenograft model. Tandem mass tag-based quantitative proteomics analysis identified NCX2 as a potential target of miR-193a-5p. Luciferase activity assays and Western blotting further confirmed that miR-193a-5p recognized the 3′-untranslated region of NCX2 mRNA, and negatively regulated NCX2 expression. NCX2 was downregulated in osteosarcoma tissues, and its expression was negatively correlated with miR-193a-5p levels. Ectopic expression of NCX2 in osteosarcoma cells could reverse the oncogenicity of miR-193a-5p, indicating that miR-193a-5p exerted its effects by targeting NCX2. Further study demonstrated that NCX2 suppresses Ca2+-dependent Akt phosphorylation by decreasing intracellular Ca2+ concentration, and then inhibited EMT process. Treatment with the antagomir against miR-193a-5p sensitized osteosarcoma to the Akt inhibitor afuresertib in a murine xenograft model. In conclusion, a miR-193a-5p/NCX2/AKT signaling axis contributes to the progression of osteosarcoma, which may provide a new therapeutic target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Ruiqi Chen
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yichong Ning
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Guirong Zeng
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha 410331, Hunan, China
| | - Hao Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Lin Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Pei Xiao
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jianlin Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| |
Collapse
|
26
|
Huang X, Shi H, Shi X, Jiang X. LncRNA FBXL19-AS1 promotes proliferation and metastasis of cervical cancer through upregulating COL1A1 as a sponge of miR-193a-5p. ACTA ACUST UNITED AC 2021; 28:20. [PMID: 34399848 PMCID: PMC8365943 DOI: 10.1186/s40709-021-00151-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 07/27/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Cervical cancer (CC) is one of the most common and malignant tumors in women. In this study, we aim to explore the role and mechanism of F-box and leucine rich repeat protein 19 antisense RNA 1 (FBXL19-AS1), a novel long-chain non coding RNA (lncRNA) with marked roles in a variety of tumors, in regulating the proliferation and metastasis of CC. METHODS The expression of FBXL19-AS1, miR-193a-5p and COL1A1 were detected by RT-PCR and western blot. Gain- and loss-of functional assays of FBXL19-AS1 and miR-193a-5p were performed in CC cell lines in vitro or in vivo. The proliferation, migration, invasion, apoptosis and epithelial-mesenchymal transition (EMT) of CC cells were determined. RESULTS FBXL19-AS1 and COL1A1 were significantly up-regulated in CC tissues, while miR-193a-5p was significantly down-regulated. Overexpression of FBXL19-AS1 significantly promoted the proliferation, migration, invasion, EMT and growth of CC cells and inhibited apoptosis, while knockdown of FBXL19-AS1 had the opposite effects. On the other hand, miR-193a-5p inhibited the proliferation and metastasis of CC cells. Mechanistically, FBXL19-AS1 functioned as a competitive endogenous RNA (ceRNA) and inhibited the expression of miR-193a-5p, which targeted at the 3'-UTR site of COL1A1 and negatively regulated COL1A1 expression. CONCLUSIONS FBXL19-AS1 promotes the proliferation and metastasis of CC cells by sponging miR-193a-5p and up-regulating COL1A1.
Collapse
Affiliation(s)
- Xiaoyong Huang
- Department of Medical Laboratory, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Haiyan Shi
- Department of Medical Laboratory, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Xinghai Shi
- Department of Laboratory, The First People's Hospital of Urumqi, Ürümqi, 830000, Xinjiang, China
| | - Xuemei Jiang
- Department of Laboratory, Xinjiang Uygur Autonomous Region Maternal and Child Health Hospital, No. 1 Renmin Road, Ürümqi, 830000, Xinjiang, People's Republic of China.
| |
Collapse
|
27
|
The Role of miRNA in the Pathophysiology of Neuroendocrine Tumors. Int J Mol Sci 2021; 22:ijms22168569. [PMID: 34445276 PMCID: PMC8395312 DOI: 10.3390/ijms22168569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
Neuroendocrine tumors (NETs) represent a tumor group that is both rare and heterogeneous. Prognosis is largely determined by the tumor grading and the site of the primary tumor and metastases. Despite intensive research efforts, only modest advances in diagnostic and therapeutic approaches have been achieved in recent years. For patients with non-respectable tumor stages, prognosis is poor. In this context, the development of novel diagnostic tools for early detection of NETs and prediction of tumor response to therapy as well as estimation of the overall prognosis would greatly improve the clinical management of NETs. However, identification of novel diagnostic molecules is hampered by an inadequate understanding of the pathophysiology of neuroendocrine malignancies. It has recently been demonstrated that microRNA (miRNA), a family of small RNA molecules with an established role in the pathophysiology of quite different cancer entities, may also play a role as a biomarker. Here, we summarize the available knowledge on the role of miRNAs in the development of NET and highlight their potential use as serum-based biomarkers in the context of this disease. We discuss important challenges currently preventing their use in clinical routine and give an outlook on future directions of miRNA research in NET.
Collapse
|
28
|
Liu W, Long Q, Zhang L, Zeng D, Hu B, Zhang W, Liu S, Deng S, Chen L. Long non-coding RNA X-inactive specific transcript promotes osteosarcoma metastasis via modulating microRNA-758/Rab16. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:841. [PMID: 34164475 PMCID: PMC8184472 DOI: 10.21037/atm-21-1032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background As a common malignant bone sarcoma, osteosarcoma (OS) affects the health and lives of many people. Here, we probed the effects of long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) and microRNA-758 (miR-758) on OS metastasis, and examined possible downstream effector. Methods Quantitative reverse transcription PCR (qRT-PCR) was performed to detect the expressions of XIST and miR-758 in OS tissues and cells. Cell transfection was carried out to alter the levels of XIST and miR-758 in OS cells, and cell viability, migration, and invasion were assessed. Subsequently, qRT-PCR and a dual-luciferase reporter assay were conducted to analyze the regulatory effects of XIST on miR-758 and miR-758 on Rab16. Finally, we investigated whether Rab16 was the downstream effector of XIST/miR-758 axis. Results XIST was highly expressed in OS tissues and cells, but the opposite was seen for miR-758. In OS cells, migration, invasion, and epithelial-mesenchymal transformation (EMT) was promoted by overexpression of XIST and miR-758 inhibitor, but were inhibited by XIST knockdown and miR-758 mimics. XIST regulated miR-758 expression, and miR-758 regulated Rab16 expression in OS cells. Overexpression of Rab16 reversed the effects of miR-758 mimics on OS cell migration and invasion. Conclusions XIST contributed to OS cell migration, invasion, and EMT via regulation of miR-758/Rab16.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopedics Trauma, Nanhua Hospital Affiliated to Nanhua University, Hengyang, China
| | - Qiuping Long
- Department of Orthopedics Trauma, Nanhua Hospital Affiliated to Nanhua University, Hengyang, China
| | - Li Zhang
- Department of Orthopedics Trauma, Nanhua Hospital Affiliated to Nanhua University, Hengyang, China
| | - Dehui Zeng
- Department of Orthopedics Trauma, Nanhua Hospital Affiliated to Nanhua University, Hengyang, China
| | - Bingbing Hu
- Department of Orthopedics Trauma, Nanhua Hospital Affiliated to Nanhua University, Hengyang, China
| | - Wei Zhang
- Department of Orthopedics Trauma, Nanhua Hospital Affiliated to Nanhua University, Hengyang, China
| | - Shengyao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Songyun Deng
- Department of Orthopedics Trauma, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Chen
- Department of Orthopedics Trauma, Nanhua Hospital Affiliated to Nanhua University, Hengyang, China
| |
Collapse
|
29
|
Qiu Y, Li P, Zhang Z, Wu M. Insights Into Exosomal Non-Coding RNAs Sorting Mechanism and Clinical Application. Front Oncol 2021; 11:664904. [PMID: 33987099 PMCID: PMC8111219 DOI: 10.3389/fonc.2021.664904] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are natural nanoscale bilayer phospholipid vesicles that can be secreted by almost all types of cells and are detected in almost all types of body fluids. Exosomes are effective mediators of cell–cell signaling communication because of their ability to carry and transfer a variety of bioactive molecules, including non-coding RNAs. Non-coding RNAs have also been found to exert strong effects on a variety of biological processes, including tumorigenesis. Many researchers have established that exosomes encapsulate bioactive non-coding RNAs that alter the biological phenotype of specific target cells in an autocrine or a paracrine manner. However, the mechanism by which the producer cells package non-coding RNAs into exosomes is not well understood. This review focuses on the current research on exosomal non-coding RNAs, including the biogenesis of exosomes, the possible mechanism of sorting non-coding RNAs, their biological functions, and their potential for clinical application in the future.
Collapse
Affiliation(s)
- Yi Qiu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Peiyao Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China National Health Commission Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, China
| | - Zuping Zhang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
30
|
Cui Y, Wang Q, Lin J, Zhang L, Zhang C, Chen H, Qian J, Luo C. miRNA-193a-3p Regulates the AKT2 Pathway to Inhibit the Growth and Promote the Apoptosis of Glioma Cells by Targeting ALKBH5. Front Oncol 2021; 11:600451. [PMID: 33968717 PMCID: PMC8103841 DOI: 10.3389/fonc.2021.600451] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
Emerging evidence indicates that microRNA (miR)-193a-3p is involved in the tumor progression of various cancers. However, the biological functions and precise molecular mechanisms of miR-193a-3p in gliomas have not been well documented. Accordingly, this study focused on the tumor suppressor role and molecular mechanisms of miR-193a-3p in glioma cells. miR-193a-3p expression was determined by qRT-PCR in glioma tissues and cell lines. U251 and U87 glioma cells were transfected with a miR-193a-3p mimic. The effects of miR-193a-3p on cell growth and apoptosis were investigated using MTT, colony-forming, and flow cytometry assays. Overexpression of miR-193a-3p in U87 cells also significantly suppressed tumorigenicity and induced apoptosis in the xenograft mouse model. Luciferase assays were conducted to determine if ALKBH5 is a direct target of miR-193a-3p in glioma cells. Immunoprecipitation was used to explore the interaction between ALKBH5 and RAC-serine/threonine-protein kinase 2 (AKT2) in glioma cells. miR-193a-3p was downregulated in glioma tissues and cell lines. miR-193a-3p treatment suppressed proliferation and promoted apoptosis in both U251 and U87 cells. Bioinformatics analysis and luciferase reporter assay identified a novel miR-193a-3p target, ALKBH5. Notably, the antitumor effect of miR-193a-3p transfection in glioma cells may be due to the miR-193a-3p–induced inhibition of AKT2 expression caused by the suppression of ALKBH5 expression. Furthermore, immunoprecipitation indicated that ALKBH5 physically interacted with AKT2 through an RNA-independent mechanism in glioma cells. miR-193a-3p directly targets ALKBH5 to inhibit the growth and promote the apoptosis of glioma cells by suppressing the AKT2 pathway both in vitro and in vivo, and the physical interaction between ALKBH5 and AKT2 is essential for suppressing cell apoptosis by upregulating miR-193a-3p in glioma cells. Our study revealed that the antitumor effects of miR-193a-3p on glioma cells is due to ALKBH5 mediation of the AKT2-induced intrinsic apoptosis signaling pathway.
Collapse
Affiliation(s)
- Yong Cui
- Department of Neurosurgery, Third Affiliated Hospital of Naval Medical University, Shanghai, China.,Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qi Wang
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Lin
- Department of Neurosurgery, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Lei Zhang
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chi Zhang
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huairui Chen
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Qian
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chun Luo
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Enhancement of myogenic differentiation and inhibition of rhabdomyosarcoma progression by miR-28-3p and miR-193a-5p regulated by SNAIL. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:888-904. [PMID: 34094709 PMCID: PMC8141673 DOI: 10.1016/j.omtn.2021.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/13/2021] [Indexed: 12/15/2022]
Abstract
Rhabdomyosarcoma (RMS) is a soft tissue mesenchymal tumor that affects mostly children and adolescents. It originates from the impaired myogenic differentiation of stem cells or early progenitors. SNAIL, a transcription factor that regulates epithelial-to-mesenchymal transition in tumors of epithelial origin, is also a key regulator of RMS growth, progression, and myogenic differentiation. Here, we demonstrate that the SNAIL-dependent microRNAs (miRNAs) miR-28-3p and miR-193a-5p are crucial regulators of RMS growth, differentiation, and progression. miR-28-3p and miR-193a-5p diminished proliferation and arrested RMS cells in G0/G1 phase in vitro. They induced the myogenic differentiation of both RMS cells and human myoblasts by upregulating myogenic factors. Furthermore, miR-28-3p and miR-193a-5p inhibited migration in a scratch assay, adhesion to endothelial cells, chemotaxis, and invasion toward SDF-1 and HGF and regulated angiogenic capabilities of the cells. Overexpression of miR-28-3p and miR-193a-5p induced formation of fibrotic structures and abnormal blood vessels in RMS xenografts in immunodeficient mice in vivo. Simultaneous overexpression of both miRNAs diminished tumor growth after subcutaneous implantation and inhibited the engraftment of RMS cells into bone marrow after intravenous injection in vivo. To conclude, we discovered novel SNAIL-dependent miRNAs that may become new therapeutic targets in RMS in the future.
Collapse
|
32
|
Zheng C, Zhang Y, Zhao Y, Duan Y, Mu Q, Wang X. Circ-OSBPL2 Contributes to Smoke-Related Chronic Obstructive Pulmonary Disease by Targeting miR-193a-5p/BRD4 Axis. Int J Chron Obstruct Pulmon Dis 2021; 16:919-931. [PMID: 33854310 PMCID: PMC8039023 DOI: 10.2147/copd.s298465] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
Background Circular RNAs (circRNAs) have been identified to play roles in the respiratory diseases. Here, this study aimed to elucidate the function of circRNA oxysterol binding protein like 2 (circOSBPL2) in the development of smoke-related chronic obstructive pulmonary diseases (COPD). Methods The expression of circ-OSBPL2, microRNA (miR)-193a-5p, and bromodomain-containing protein 4 (BRD4) was detected using qRT-PCR and Western blot assays. Cigarette smoke extract (CSE)-induced human bronchial epithelial cells (HBECs) was applied to mimic smoke-related COPD in vitro. Flow cytometric analysis of cell apoptosis and ELISA analysis of interleukins (IL)-6, IL-8, tumor necrosis factor-α (TNF-α) levels were performed. The malondialdehyde (MDA) and superoxide dismutase (SOD) production levels were analyzed according to the kit instructions. The binding interaction between miR-193a-5p and circ-OSBPL2 or BRD4 was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation assays. Results Circ-OSBPL2 was highly expressed in lung tissues of smokers without or with COPD, particularly in smokers with COPD. Also, the expression of circ-OSBPL2 was dose and time-dependently elevated in CSE-induced HBECs. Circ-OSBPL2 down-regulation in HBECs attenuated CSE-evoked cell proliferation arrest, and cell apoptosis, inflammation and oxidative stress promotion. Mechanistically, circ-OSBPL2 served as a sponge for miR-193a-5p, and miR-193a-5p inhibition reversed the effects of circ-OSBPL2 knockdown on CSE-mediated HBECs. Besides that, miR-193a-5p directly targeted BRD4, and miR-193a-5p re-expression in HBECs abolished CSE-induced HBEC injury, which was reverted by BRD4 up-regulation. Additionally, we also found circ-OSBPL2 could indirectly regulate BRD4 via miR-193a-5p. Conclusion Circ-OSBPL2 contributed to the apoptosis, inflammation, and oxidative stress of HBECs in smoke-related COPD by miR-193a-5p/BRD4 axis, suggesting a novel insight on the pathogenesis of COPD and a potential therapeutic strategy for future clinic intervention in COPD.
Collapse
Affiliation(s)
- Caifen Zheng
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Yongping Zhang
- Blood Purifying Center, The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Yingchun Zhao
- Department of Cardiovascular Medicine, The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Yuanfang Duan
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Qianghua Mu
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Xinying Wang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| |
Collapse
|
33
|
van den Bosch MT, Yahyanejad S, Alemdehy MF, Telford BJ, de Gunst T, den Boer HC, Vos RM, Stegink M, van Pinxteren LA, Schaapveld RQ, Janicot M. Transcriptome-wide analysis reveals insight into tumor suppressor functions of 1B3, a novel synthetic miR-193a-3p mimic. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:1161-1171. [PMID: 33664995 PMCID: PMC7896128 DOI: 10.1016/j.omtn.2021.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/20/2021] [Indexed: 12/22/2022]
Abstract
Emerging data show that microRNA 193a-3p (miR-193a-3p) has a suppressive role in many cancers and is often downregulated in tumors, as compared to surrounding normal tissues. Therefore, mimics of miR-193a-3p could be used as an attractive therapeutic approach in oncology. To better understand and document the molecular mechanism of action of 1B3, a novel synthetic miRNA-193a-3p mimic, RNA sequencing was performed after transfection of 1B3 in six different human tumor cell lines. Genes differentially expressed (DE) in at least three cell lines were mapped by Ingenuity Pathway Analysis (IPA), and interestingly, these results strongly indicated upregulation of the tumor-suppressive phosphatase and tensin homolog (PTEN) pathway, as well as downregulation of many oncogenic growth factor signaling pathways. Importantly, although unsurprisingly, IPA identified miR-193a-3p as a strong upstream regulator of DE genes in an unbiased manner. Furthermore, biological function analysis pointed to an extensive link of 1B3 with cancer, via expected effects on tumor cell survival, proliferation, migration, and cell death. Our data strongly suggest that miR-193a-3p/1B3 is a potent tumor suppressor agent that targets various key oncogenic pathways across cancer types. Therefore, the introduction of 1B3 into tumor cells may represent a promising strategy for cancer treatment.
Collapse
Affiliation(s)
| | - Sanaz Yahyanejad
- InteRNA Technologies BV, Yalelaan 62, 3584 CM Utrecht, the Netherlands
| | | | - Bryony J. Telford
- InteRNA Technologies BV, Yalelaan 62, 3584 CM Utrecht, the Netherlands
| | - Thijs de Gunst
- InteRNA Technologies BV, Yalelaan 62, 3584 CM Utrecht, the Netherlands
| | - Harm C. den Boer
- InteRNA Technologies BV, Yalelaan 62, 3584 CM Utrecht, the Netherlands
| | - Rogier M. Vos
- InteRNA Technologies BV, Yalelaan 62, 3584 CM Utrecht, the Netherlands
| | - Marieke Stegink
- InteRNA Technologies BV, Yalelaan 62, 3584 CM Utrecht, the Netherlands
| | | | | | - Michel Janicot
- InteRNA Technologies BV, Yalelaan 62, 3584 CM Utrecht, the Netherlands
| |
Collapse
|
34
|
Kong L, Yang W, Chen L, Qian L. The DNA methylation-regulated MCTP1 activates the drug-resistance of esophageal cancer cells. Aging (Albany NY) 2021; 13:3342-3352. [PMID: 33571139 PMCID: PMC7906193 DOI: 10.18632/aging.104173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/14/2020] [Indexed: 11/25/2022]
Abstract
Accumulating studies have demonstrated that drug-resistance remains a great obstacle for the effective treatment of cancers. Esophageal cancer is still one of the most common cancers worldwide, which also suffers from the drug-resistance during clinical treatment. Here we performed drug-resistance profiling assays and identified several drug-resistant and drug-sensitive esophageal cancer cell lines. The following methylation sequencing showed that the MCTP1 gene is hypermethylated in the drug-resistant esophageal cancer cells. As a result, the expression of MCTP1 is down-regulated in the drug-resistant esophageal cancer cells. Down-regulation of MCTP1 also affects the migration and apoptosis of esophageal cancer cells, as revealed by the wound-healing and apoptosis assays. Further investigations proposed two signaling pathways that might involve in the MCTP1-mediated drug-resistance of esophageal cancer cells. All these results suggested that MCTP1 activates the drug-resistance of esophageal cancer cells, which has implications for further design of new biomarker of esophageal cancer treatment.
Collapse
Affiliation(s)
- Lingsuo Kong
- Department of Anesthesiology, West District of The First Affiliated Hospital of USTC, Division of life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, Anhui, P.R. China
| | - Wan Yang
- Department of Anesthesiology, West District of The First Affiliated Hospital of USTC, Division of life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, Anhui, P.R. China
| | - Lanren Chen
- Department of Anesthesiology, West District of The First Affiliated Hospital of USTC, Division of life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, Anhui, P.R. China
| | - Liting Qian
- Department of Radiotherapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 3230031, Anhui, P.R. China
| |
Collapse
|
35
|
Mohr R, Özdirik B, Lambrecht J, Demir M, Eschrich J, Geisler L, Hellberg T, Loosen SH, Luedde T, Tacke F, Hammerich L, Roderburg C. From Liver Cirrhosis to Cancer: The Role of Micro-RNAs in Hepatocarcinogenesis. Int J Mol Sci 2021; 22:1492. [PMID: 33540837 PMCID: PMC7867354 DOI: 10.3390/ijms22031492] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 12/19/2022] Open
Abstract
In almost all cases, hepatocellular carcinoma (HCC) develops as the endpoint of a sequence that starts with chronic liver injury, progresses to liver cirrhosis, and finally, over years and decades, results in liver cancer. Recently, the role of non-coding RNA such as microRNA (miRNA) has been demonstrated in the context of chronic liver diseases and HCC. Moreover, data from a phase II trial suggested a potential role of microRNAs as therapeutics in hepatitis-C-virus infection, representing a significant risk factor for development of liver cirrhosis and HCC. Despite progress in the clinical management of chronic liver diseases, pharmacological treatment options for patients with liver cirrhosis and/or advanced HCC are still limited. With their potential to regulate whole networks of genes, miRNA might be used as novel therapeutics in these patients but could also serve as biomarkers for improved patient stratification. In this review, we discuss available data on the role of miRNA in the transition from liver cirrhosis to HCC. We highlight opportunities for clinical translation and discuss open issues applicable to future developments.
Collapse
Affiliation(s)
- Raphael Mohr
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Burcin Özdirik
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Joeri Lambrecht
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Johannes Eschrich
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Lukas Geisler
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Teresa Hellberg
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Sven H. Loosen
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (S.H.L.); (T.L.)
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (S.H.L.); (T.L.)
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (S.H.L.); (T.L.)
| |
Collapse
|
36
|
Sun H, Yan J, Tian G, Chen X, Song W. LINC01224 accelerates malignant transformation via MiR-193a-5p/CDK8 axis in gastric cancer. Cancer Med 2021; 10:1377-1393. [PMID: 33655711 PMCID: PMC7926023 DOI: 10.1002/cam4.3726] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/19/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a malignant tumor with a significantly high mortality rate, yet, its pathogenesis is not fully understood. Bioinformatics predicted that LINC01224 is highly expressed in stomach adenocarcinoma (STAD), and showed that LINC01224 adsorbed miR-193a-5p to target CDK8. Therefore, this study intended to verify the effect of the LINC01224/miR-193a-5p/CDK8 axis on the biological behavior of gastric cancer. METHODS Expressions of LINC01224, miR-193a-5p, CDK8, apoptosis-, and EMT-related genes were analyzed using the GEPIA website, RT-qPCR, in situ hybridization, and Western blot as needed. Bioinformatics and dual luciferase assay were used to evaluate the relationship between LINC01224, miR-193a-5p, and CDK8. Functional experiments and rescue experiments (MTT assay, flow cytometry, wound healing assay, and Transwell) were conducted to detect the effects of the above genes on the biological characteristics of GC cells. Tumorigenesis assay was used to verify the results of in vitro experiments. RESULTS LINC01224 adsorbed miR-193a-5p to target and upregulate CDK8. The expressions of LINC01224 and CDK8 were increased, while the expression of miR-193a-5p was decreased in GC. Overexpressed LINC01224 promoted cell viability, migration and invasion, accelerated tumor formation, attenuated apoptosis, inhibited the expressions of apoptosis-related proteins, and promoted the expressions of EMT-related proteins, whereas silenced LINC01224 led to the opposite effect. MiR-193a-5p inhibitor partially offset the effect of silenced LINC01224; interestingly, siCDK8 significantly reversed the effect of miR-193a-5p inhibitor on GC cells. CONCLUSION LINC01224 affects the biological behavior of gastric cancer by mediating miR-193a-5p to regulate CDK8.
Collapse
Affiliation(s)
- Hui Sun
- Department of Tumor Surgery, Weifang People's Hospital, Kuiwen District, Weifang, Shandong, China
| | - Jihong Yan
- Department of Neurosurgery, Weifang Yidu Central Hospital, Qingzhou, Shandong, China
| | - Guangyu Tian
- Oncology Department, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaojun Chen
- Oncology Department, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Wenbo Song
- Oncology Department, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
37
|
Xu H, Liu Y, Cheng P, Wang C, Liu Y, Zhou W, Xu Y, Ji G. CircRNA_0000392 promotes colorectal cancer progression through the miR-193a-5p/PIK3R3/AKT axis. J Exp Clin Cancer Res 2020; 39:283. [PMID: 33317596 PMCID: PMC7735421 DOI: 10.1186/s13046-020-01799-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs), important members of the noncoding RNA family, have been recently revealed to play a role in the pathogenic progression of diseases, particularly in the malignant progression of cancer. With the application of high-throughput sequencing technology, a large number of circRNAs have been identified in tumor tissues, and some circRNAs have been demonstrated to act as oncogenes. In this study, we analyzed the circRNA expression profile in colorectal cancer (CRC) tissues and normal adjacent tissues by high-throughput sequencing. We focused on circRNA_0000392, a circRNA with significantly increased expression in CRCtissues, and further investigated its function in the progression of colorectal cancer. METHODS The expression profile of circRNAs in 6 pairs of CRC tissues and normal adjacent tissues was analyzed by RNA sequencing. We verified the identified differentially expressed circRNAs in additional samples by qRT-PCR and selected circRNA_0000392 to evaluate its associations with clinicopathological features. Then, we knocked down circRNA_0000392 in CRC cells and investigated the in vitro and in vivo effects using functional experiments. Dual luciferase and RNA pull-down assays were performed to further explore the downstream potential molecular mechanisms. RESULTS CircRNA_0000392 was significantly upregulated in CRC compared with normal adjacent tissues and cell lines. The expression level of circRNA_0000392 was positively correlated with the malignant progression of CRC. Functional studies revealed that reducing the expression of circRNA_0000392 could inhibit the proliferation and invasion of CRC both in vitro and in vivo. Mechanistically, circRNA_0000392 could act as a sponge of miR-193a-5p and regulate the expression of PIK3R3, affecting the activation of the AKT-mTOR pathway in CRC cells. CONCLUSIONS CircRNA_0000392 functions as an oncogene through the miR-193a-5p/PIK3R3/Akt axis in CRC cells, suggesting that circRNA_0000392 is a potential therapeutic target for the treatment of colorectal cancer and a predictive marker for CRC patients.
Collapse
Affiliation(s)
- Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yujing Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Peiqiu Cheng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Chunyan Wang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yang Liu
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yangxian Xu
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
38
|
Wan S, Ni G, Ding J, Huang Y. Long Noncoding RNA FBXL19-AS1 Expedites Cell Growth, Migration and Invasion in Cervical Cancer by miR-193a-5p/PIN1 Signaling. Cancer Manag Res 2020; 12:9741-9752. [PMID: 33116834 PMCID: PMC7548239 DOI: 10.2147/cmar.s262215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/27/2020] [Indexed: 01/04/2023] Open
Abstract
Background Cervical cancer is one of the most prevalent malignancies in gynecology with increasing incidence in recent years. Long noncoding RNAs (lncRNAs) have been reported to regulate human cancers including cervical cancer. F-box and leucine-rich repeat protein 19 antisense RNA 1 (FBXL19-AS1) have been unmasked to exert carcinogenic functions in several cancers except cervical cancer. Aim Present study hammered at investigating the function and mechanism of FBXL19-AS1 in cervical cancer. Methods RT-qPCR was utilized to test gene expression. EdU staining, colony formation, transwell, flow cytometry and TUNEL assays were applied for measuring the impact of FBXL19-AS1 on cervical cancer cell functions. Moreover, RIP, RNA pull-down and luciferase reporter assays were utilized for detecting the correlations among FBXL19-AS1, miR-193a-5p and PIN1 (peptidylprolyl cis/trans isomerase, NIMA-interacting 1). Results FBXL19-AS1 exhibited elevated expression in cervical cancer tissues and cells. Silencing FBXL19-AS1 repressed cell proliferation through arresting cell cycle and stimulating apoptosis, and losing FBXL19-AS1 also restrained cell migration and invasion. Also, we discovered FBXL19-AS1 as a miR-193a-5p sponge, while miR-193a-5p was a tumor inhibitor in cervical cancer. Further, PIN1 was proved as the miR-193a-5p target, and FBXL19-AS1 augmented PIN1 expression in cervical cancer via sequestering miR-193a-5p. Of note, PIN1 accelerated the progression of cervical cancer, and its upregulation counteracted the impacts of depleted FBXL19-AS1 on cervical cancer cell functions. Conclusion FBXL19-AS1 contributes to malignant phenotypes in cervical cancer by sponging miR-193a-5p and regulating PIN1.
Collapse
Affiliation(s)
- Su Wan
- Department of Obstetrics and Gynecology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, People's Republic of China
| | - Guantai Ni
- Department of Obstetrics and Gynecology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, People's Republic of China
| | - Jin Ding
- Department of Obstetrics and Gynecology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, People's Republic of China
| | - Yuansheng Huang
- Department of Orthopedics, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, People's Republic of China
| |
Collapse
|
39
|
Polini B, Carpi S, Doccini S, Citi V, Martelli A, Feola S, Santorelli FM, Cerullo V, Romanini A, Nieri P. Tumor Suppressor Role of hsa-miR-193a-3p and -5p in Cutaneous Melanoma. Int J Mol Sci 2020; 21:E6183. [PMID: 32867069 PMCID: PMC7503447 DOI: 10.3390/ijms21176183] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Remarkable deregulation of several microRNAs (miRNAs) is demonstrated in cutaneous melanoma. hsa-miR-193a-3p is reported to be under-expressed in tissues and in plasma of melanoma patients, but the role of both miR-193a arms in melanoma is not known yet. METHODS After observing the reduced levels of miR-193a arms in plasma exosomes of melanoma patients, the effects of hsa-miR-193a-3p and -5p transfection in cutaneous melanoma cell lines are investigated. RESULTS In melanoma cell lines A375, 501Mel, and MeWo, the ectopic over-expression of miR-193a arms significantly reduced cell viability as well as the expression of genes involved in proliferation (ERBB2, KRAS, PIK3R3, and MTOR) and apoptosis (MCL1 and NUSAP1). These functional features were accompanied by a significant downregulation of Akt and Erk pathways and a strong increase in the apoptotic process. Since in silico databases revealed TROY, an orphan member of the tumor necrosis receptor family, as a potential direct target of miR-193a-5p, this possibility was investigated using the luciferase assay and excluded by our results. CONCLUSIONS Our results underline a relevant role of miR-193a, both -3p and -5p, as tumor suppressors clarifying the intracellular mechanisms involved and suggesting that their ectopic over-expression could represent a novel treatment for cutaneous melanoma patients.
Collapse
Affiliation(s)
- Beatrice Polini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (V.C.); (A.M.); (P.N.)
| | - Sara Carpi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (V.C.); (A.M.); (P.N.)
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (S.D.); (F.M.S.)
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (V.C.); (A.M.); (P.N.)
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (V.C.); (A.M.); (P.N.)
| | - Sara Feola
- Laboratory of ImmunoViroTherapy (IVTLab), Drug Research Program (DRP), Translation Immunology Program (TRIMM), iCAN Precision Cancer Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.F.); (V.C.)
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (S.D.); (F.M.S.)
| | - Vincenzo Cerullo
- Laboratory of ImmunoViroTherapy (IVTLab), Drug Research Program (DRP), Translation Immunology Program (TRIMM), iCAN Precision Cancer Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.F.); (V.C.)
| | - Antonella Romanini
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy;
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (V.C.); (A.M.); (P.N.)
| |
Collapse
|
40
|
Xun G, Ma M, Li B, Zhao S. miR-138 and miR-193 target long non-coding RNA UCA1 to inhibit cell proliferation, migration, and invasion of lung cancer. Thorac Cancer 2020; 11:2681-2689. [PMID: 32767514 PMCID: PMC7471048 DOI: 10.1111/1759-7714.13605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/18/2020] [Accepted: 07/18/2020] [Indexed: 12/23/2022] Open
Abstract
Background Long non‐coding RNA‐urothelial carcinoma associated 1 (LncRNA‐UCA1) is a crucial oncogene that is deregulated in many types of cancers. However, the mechanism of UCA1 function, especially for its posttranscriptional regulation in lung cancer, remains unclear. Methods miRCode was used to predict potential miRNA candidates that might target UCA1. The targets of miR‐138 and miR‐193 on UCA1 and CDK6 were verified by luciferase reporter analysis. Western blotting was used to detect protein levels. The RNA level was evaluated using quantitative real‐time polymerase chain reaction (PCR). Proliferation, wound healing, and transwell invasion assays were performed to assess cell proliferation and invasion abilities. Correlations between miR‐138 or miR‐193 and UCA1 in lung cancer tissues was assessed using quantitative real‐time PCR. Results miR‐138 and miR‐193 specifically targeted and regulated lncRNA‐UCA1. MiR‐138 and miR‐193 both suppressed cell proliferation and cell cycle progression. Moreover, miR‐138 and miR‐193 inhibited cell migration and invasion. Overexpression of UCA1 reversed the proliferation, migration, and invasion suppression effects of miR‐138 or miR‐193. Furthermore, miR‐138/193 affected the expression of UCA1 downstream genes. UCA1 regulated the expression of CDK6 as a miR‐138 and miR‐193 common target. In human lung cancer tissues, our study showed a significant negative correlation between miR‐138 or miR‐193 and UCA1 in lung cancer tissues. Conclusions Our results demonstrated that miR‐138 and miR‐193 affect cell function by directly targeting and regulating UCA1 in lung cancer.
Collapse
Affiliation(s)
- Guangsu Xun
- Department of Thoracic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ming Ma
- Department of PharmacyThe Second Affiliated Hospital of Henan University of Chinese MedicineZhengzhouChina
| | - Bing Li
- Department of Thoracic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Song Zhao
- Department of Thoracic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
41
|
Involvement of Differentially Expressed microRNAs in the PEGylated Liposome Encapsulated 188Rhenium-Mediated Suppression of Orthotopic Hypopharyngeal Tumor. Molecules 2020; 25:molecules25163609. [PMID: 32784458 PMCID: PMC7463599 DOI: 10.3390/molecules25163609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022] Open
Abstract
Hypopharyngeal cancer (HPC) accounts for the lowest survival rate among all types of head and neck cancers (HNSCC). However, the therapeutic approach for HPC still needs to be investigated. In this study, a theranostic 188Re-liposome was prepared to treat orthotopic HPC tumors and analyze the deregulated microRNA expressive profiles. The therapeutic efficacy of 188Re-liposome on HPC tumors was evaluated using bioluminescent imaging followed by next generation sequencing (NGS) analysis, in order to address the deregulated microRNAs and associated signaling pathways. The differentially expressed microRNAs were also confirmed using clinical HNSCC samples and clinical information from The Cancer Genome Atlas (TCGA) database. Repeated doses of 188Re-liposome were administrated to tumor-bearing mice, and the tumor growth was apparently suppressed after treatment. For NGS analysis, 13 and 9 microRNAs were respectively up-regulated and down-regulated when the cutoffs of fold change were set to 5. Additionally, miR-206-3p and miR-142-5p represented the highest fold of up-regulation and down-regulation by 188Re-liposome, respectively. According to Differentially Expressed MiRNAs in human Cancers (dbDEMC) analysis, most of 188Re-liposome up-regulated microRNAs were categorized as tumor suppressors, while down-regulated microRNAs were oncogenic. The KEGG pathway analysis showed that cancer-related pathways and olfactory and taste transduction accounted for the top pathways affected by 188Re-liposome. 188Re-liposome down-regulated microRNAs, including miR-143, miR-6723, miR-944, and miR-136 were associated with lower survival rates at a high expressive level. 188Re-liposome could suppress the HPC tumors in vivo, and the therapeutic efficacy was associated with the deregulation of microRNAs that could be considered as a prognostic factor.
Collapse
|
42
|
Wang Q, Shi L, Shi K, Yuan B, Cao G, Kong C, Fu J, Man Z, Li X, Zhang X, Feng Y, Jiang X, Zhang X, Yan J, Wu X, Sun Y. CircCSPP1 Functions as a ceRNA to Promote Colorectal Carcinoma Cell EMT and Liver Metastasis by Upregulating COL1A1. Front Oncol 2020; 10:850. [PMID: 32612946 PMCID: PMC7308451 DOI: 10.3389/fonc.2020.00850] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
The aberrant regulation of circular RNAs (circRNAs), ring structures formed by exon or intron backsplicing, has been identified as a novel characteristic of multiple cancers. However, the role of circRNAs in colorectal carcinoma remains to be elucidated. In the present study, we investigated the mRNA level and the promoting effect of circRNA CSPP1 (circCSPP1) in colorectal carcinoma liver metastasis. By bioinformatic analysis of 10 paired samples of colorectal carcinoma and adjacent mucosal tissues, we identified circCSPP1 as a significantly upregulated circRNA in colorectal carcinoma tissues, and its upregulation was correlated with a higher M stage. The gain- and loss-of-function assays revealed that circCSPP1 promotes the migration and invasion of colorectal carcinoma cells in vitro and in vivo. Mechanistically, similar miRNA response elements are shared between circCSPP1 and COL1A1. We demonstrated that circCSPP1 upregulates the mRNA levels of COL1A1, which plays a pivotal role in the process of epithelial–mesenchymal transition (EMT), by competitively binding to miR-193a-5p and preventing miR-193a-5p from decreasing the expression of COL1A1. In conclusion, this finding indicates that circCSPP1 may act as a promising therapeutic target by regulating the EMT process in colorectal carcinoma via activation of the circCSPP1/miR-193a-5p/COL1A1 axis.
Collapse
Affiliation(s)
- Qingyuan Wang
- Center of Hepatobiliary Pancreatic Disease, Xuzhou Central Hospital, Xuzhou, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Linsen Shi
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kui Shi
- Center of Hepatobiliary Pancreatic Disease, Xuzhou Central Hospital, Xuzhou, China
| | - Bo Yuan
- Center of Hepatobiliary Pancreatic Disease, Xuzhou Central Hospital, Xuzhou, China
| | - Gang Cao
- Center of Hepatobiliary Pancreatic Disease, Xuzhou Central Hospital, Xuzhou, China
| | - Chenchen Kong
- Center of Hepatobiliary Pancreatic Disease, Xuzhou Central Hospital, Xuzhou, China
| | - Jun Fu
- Center of Hepatobiliary Pancreatic Disease, Xuzhou Central Hospital, Xuzhou, China
| | - Zhongsong Man
- Center of Hepatobiliary Pancreatic Disease, Xuzhou Central Hospital, Xuzhou, China
| | - Xu Li
- Center of Hepatobiliary Pancreatic Disease, Xuzhou Central Hospital, Xuzhou, China
| | - Xuanfeng Zhang
- Center of Hepatobiliary Pancreatic Disease, Xuzhou Central Hospital, Xuzhou, China
| | - Yifei Feng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinchun Jiang
- Center of Hepatobiliary Pancreatic Disease, Xuzhou Central Hospital, Xuzhou, China
| | - Xinhui Zhang
- Center of Hepatobiliary Pancreatic Disease, Xuzhou Central Hospital, Xuzhou, China
| | - Jun Yan
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Xinyong Wu
- Department of General Surgery, Xuzhou Central Hospital, Xuzhou, China
| | - Yueming Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
43
|
Oncogenic effects of RAB27B through exosome independent function in renal cell carcinoma including sunitinib-resistant. PLoS One 2020; 15:e0232545. [PMID: 32379831 PMCID: PMC7205224 DOI: 10.1371/journal.pone.0232545] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/16/2020] [Indexed: 12/11/2022] Open
Abstract
Exosomes are 40–100 nm nano-sized extracellular vesicles. They are released from many cell types and move into the extracellular space, thereby transferring their components to recipient cells. Exosomes are receiving increasing attention as novel structures participating in intracellular communication. RAB27B is one of the leading proteins involved in exosome secretion, and oncogenic effects have been reported in several cancers. In recent years, molecularly targeted agents typified by sunitinib are widely used for the treatment of metastatic or recurrent renal cell carcinoma (RCC). However, intrinsic or acquired resistance to sunitinib has become a major issue. The present study aimed to elucidate the role of RAB27B in RCC including sunitinib-resistant and its role in exosomes. Bioinformatic analyses revealed that high expression of RAB27B correlates with progression of RCC. The expression of RAB27B protein in RCC cell lines was significantly enhanced compared with that in normal kidney cell lines. Furthermore, RAB27B protein expression was enhanced in all of the tested sunitinib-resistant RCC cell lines compared to parental cells. Although no specific effect of RAB27B on exosomes was identified in RCC cells, loss-of-function studies demonstrated that knockdown of RAB27B suppressed cell proliferation, migration and invasive activities. Moreover, anti-tumor effects of RAB27B downregulation were also observed in sunitinib-resistant RCC cells. RNA sequence and pathway analysis suggested that the oncogenic effects of RAB27B might be associated with MAPK and VEGF signaling pathways. These results showed that RAB27B is a prognostic marker and a novel therapeutic target in sunitinib-sensitive and -resistant RCCs. Further analyses should improve our understanding of sunitinib resistance in RCC.
Collapse
|
44
|
Xiong Y, Cao F, Chen L, Yan C, Zhou W, Chen Y, Endo Y, Leng X, Mi B, Liu G. Identification of key microRNAs and target genes for the diagnosis of bone nonunion. Mol Med Rep 2020; 21:1921-1933. [PMID: 32319614 PMCID: PMC7057810 DOI: 10.3892/mmr.2020.10996] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Abstract
A number of recent studies have highlighted the causes of bone nonunion (BN), however, the rate of BN incidence continues to rise and available therapeutic options to treat this condition remain limited. Thus, to prevent disease progression and improve patient prognosis, it is vital that BN, or the risk thereof, be accurately identified in a timely manner. In the present study, bioinformatics analyses were used to screen for the differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) between patients with BN and those with bone union, using data from the Gene Expression Omnibus database. Furthermore, clinical samples were collected and analyzed by reverse transcription‑quantitative PCR and western blotting. In vitro and in vivo experiments were carried out to confirm the relationship between BN and the DEGs of interest, in addition to being used to explore the underlying molecular mechanism of BN. Functional enrichment analysis of the downregulated DEGs revealed them to be enriched for genes associated with 'ECM‑receptor interactions', 'focal adhesion', 'and the calcium signaling pathway'. When comparing DEM target genes with these DEGs, nine DEGs were identified as putative DEM targets, where hsa‑microRNA (miR)‑1225‑5p‑CCNL2, hsa‑miR‑339‑5p‑PRCP, and hsa‑miR‑193a‑3p‑mitogen‑activated protein kinase 10 (MAPK10) were the only three pairs which were associated with decreased gene expression levels. Furthermore, hsa‑miR‑193a‑3p was demonstrated to induce BN by targeting MAPK10. Collectively, the results of the present study suggest that hsa‑miR‑193a‑3p may be a viable biomarker of BN.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Faqi Cao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Chenchen Yan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wu Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yanyan Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yori Endo
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Xingzhu Leng
- Department of Biomedical Sciences, UMC Utrecht, Utrecht University, Utrecht, 3508 GA, The Netherlands
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
45
|
Li Q, Wang J. LncRNA TUG1 Regulates Cell Viability and Death by Regulating miR-193a-5p/Rab10 Axis in Acute Myeloid Leukemia. Onco Targets Ther 2020; 13:1289-1301. [PMID: 32103996 PMCID: PMC7025684 DOI: 10.2147/ott.s234935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a serious threat to human health. Long non-coding RNA (lncRNA) Taurine-Upregulated Gene1 (TUG1) has been reported to participate in the development and progression of several cancers, including AML. Herein, we aimed to investigate the pathognomonic role of TUG1 in AML cells and its potential mechanistic pathway. Methods Quantitative real-time PCR (qRT-PCR) assay was applied to detect the expression levels of lncRNA TUG1, miR-193a-5p and Rab10 in AML bone marrow and cell lines. The CCK-8 assay was conducted to assess the cell viability of AML HL-60 and NB4 cells and cell apoptotic assay was performed to assess the cell death. Dual-luciferase reporter assay was carried out to clarify the relationships among TUG1, miR-193a-5p and Rab10. Also, the protein level of Rab10 was examined by Western blot assay. Results LncRNA TUG1 was up-regulated in AML bone marrow and cells. Functional analysis showed that the silencing of TUG1 suppressed cell viability, while promoted cell death in AML HL-60 and NB4 cells. TUG1 targeted miR-193a-5p and negatively regulated miR-193a-5p expression. Overexpressed miR-193a-5p resulted in the decrease of cell viability and the increase in the cell death in AML cells. Restoration experiments proved that TUG1 regulated the cell viability and death of AML cells through regulating the miR-193a-5p/Rab10 axis. Rab10 was a direct target of miR-193a-5p and was inversely regulated by miR-193a-5p. TUG1 regulated the cell viability and death of AML cells through upregulating Rab10. Conclusion Silencing of lncRNA TUG1 induces a cytotoxic effect on AML cell lines through sponging miR-193a-5p and the suppression of Rab10.
Collapse
Affiliation(s)
- Qun Li
- Department of PICU, First People's Hospital of Shangqiu City, Shangqiu, Henan Province, People's Republic of China
| | - Jianmin Wang
- Department of PICU, First People's Hospital of Shangqiu City, Shangqiu, Henan Province, People's Republic of China
| |
Collapse
|
46
|
Reid G, Johnson TG, van Zandwijk N. Manipulating microRNAs for the Treatment of Malignant Pleural Mesothelioma: Past, Present and Future. Front Oncol 2020; 10:105. [PMID: 32117755 PMCID: PMC7020748 DOI: 10.3389/fonc.2020.00105] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022] Open
Abstract
microRNAs (miRNAs) are an important class of non-coding RNA that post-transcriptionally regulate the expression of most protein-coding genes. Their aberrant expression in tumors contributes to each of the hallmarks of cancer. In malignant pleural mesothelioma (MPM), in common with other tumor types, changes in miRNA expression are characterized by a global downregulation, although elevated levels of some miRNAs are also found. While an increasing number of miRNAs exhibit altered expression in MPM, relatively few have been functionally characterized. Of a growing number with tumor suppressor activity in vitro, miR-16, miR-193a, and miR-215 were also shown to have tumor suppressor activity in vivo. In the case of miR-16, the significant inhibitory effects on tumor growth following targeted delivery of miR-16-based mimics in a xenograft model was the basis for a successful phase I clinical trial. More recently overexpressed miRNAs with oncogenic activity have been described. Many of these changes in miRNA expression are related to the characteristic loss of tumor suppressor pathways in MPM tumors. In this review we will highlight the studies providing evidence for therapeutic effects of modulating microRNA levels in MPM, and discuss these results in the context of emerging approaches to miRNA-based therapy.
Collapse
Affiliation(s)
- Glen Reid
- Department of Pathology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| | - Thomas G. Johnson
- The Asbestos Diseases Research Institute, Sydney, NSW, Australia
- Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia
- School of Medicine, The University of Sydney, Sydney, NSW, Australia
- Sydney Catalyst Translational Cancer Research Centre, The University of Sydney, Sydney, NSW, Australia
| | - Nico van Zandwijk
- School of Medicine, The University of Sydney, Sydney, NSW, Australia
- Sydney Local Health District, Sydney, NSW, Australia
| |
Collapse
|
47
|
Liu F, Liu X, Yang Y, Sun Z, Deng S, Jiang Z, Li W, Wu F. NEAT1/miR-193a-3p/SOX5 axis regulates cartilage matrix degradation in human osteoarthritis. Cell Biol Int 2020; 44:947-957. [PMID: 31868949 DOI: 10.1002/cbin.11291] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 12/21/2019] [Indexed: 12/17/2022]
Abstract
Long non-coding RNAs (lncRNAs) were reported to be involved in the progression of osteoarthritis (OA). The aim of this work was to explore the functional role of lncRNA nuclear-enriched abundant transcript 1 (NEAT1) in OA. Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) was employed to analyze the expression of microRNA (miR-193a)-3p, NEAT1, and sex-determining region Y-box protein 5 (SOX5), as well as the levels of pro-inflammatory cytokines interleukin-6 (IL-6), IL-1β, tumor necrosis factor-α (TNF-α), and IL-8 in OA cartilage tissue and chondrocytes. In addition, flow cytometry was used to measure the apoptosis of chondrocytes. The protein levels of extracellular matrix ACAN, collagen type II α1 chain (Col2a1), matrix metalloproteinase-3 (MMP-3), MMP-13, a disintegrin, and metalloproteinase with thrombospondin motifs (ADAMTS)-5 and SOX5 were determined using western blot analysis. Dual-luciferase reporter assay was performed to determine the target relationship among NEAT1, miR-193a-3p, and SOX5. We found that miR-193a-3p expression was downregulated, while NEAT1 and SOX5 were upregulated in OA cartilage tissue and chondrocytes. Both upregulation of miR-193a-3p and knockdown of NEAT1 suppressed inflammation, apoptosis, and reduced the protein levels of MMP-3, MMP-13, and ADAMTS-5, while elevating ACAN and Col2a1 expression in chondrocytes. NEAT1 targeted miR-193a-3p, and SOX5 was targeted by miR-193a-3p. Silencing of miR-193a-3p reversed the NEAT1 knockdown-mediated effect on the inflammation, apoptosis, and production of the extracellular matrix. The introduction of SOX5 abolished the impact of the upregulation of miR-193a-3p on inflammation, apoptosis, and production of extracellular matrix in chondrocytes. In conclusion, NEAT1/miR-193a-3p/SOX5 axis regulates cartilage matrix degradation in human OA.
Collapse
Affiliation(s)
- Feng Liu
- Department of Orthopedics, The Renmin Hospital of Wuhan University, No. 238 Jiefang Road, and No. 99 Zhangzhidong Road, Wuchang District, 430061, Wuhan, Hubei, China
| | - Xiangyang Liu
- Department of Orthopedics, The Renmin Hospital of Wuhan University, No. 238 Jiefang Road, and No. 99 Zhangzhidong Road, Wuchang District, 430061, Wuhan, Hubei, China
| | - Yue Yang
- Department of Orthopedics, The Renmin Hospital of Wuhan University, No. 238 Jiefang Road, and No. 99 Zhangzhidong Road, Wuchang District, 430061, Wuhan, Hubei, China
| | - Zhibo Sun
- Department of Orthopedics, The Renmin Hospital of Wuhan University, No. 238 Jiefang Road, and No. 99 Zhangzhidong Road, Wuchang District, 430061, Wuhan, Hubei, China
| | - Shuang Deng
- Department of Orthopedics, The Renmin Hospital of Wuhan University, No. 238 Jiefang Road, and No. 99 Zhangzhidong Road, Wuchang District, 430061, Wuhan, Hubei, China
| | - Zhongping Jiang
- Department of Emergency, The Renmin Hospital of Wuhan University, No. 238 Jiefang Road, and No. 99 Zhangzhidong Road, Wuchang District, 430061, Wuhan, Hubei, China
| | - Wen Li
- Department of Emergency, The Renmin Hospital of Wuhan University, No. 238 Jiefang Road, and No. 99 Zhangzhidong Road, Wuchang District, 430061, Wuhan, Hubei, China
| | - Fei Wu
- Department of Orthopedics, The Renmin Hospital of Wuhan University, No. 238 Jiefang Road, and No. 99 Zhangzhidong Road, Wuchang District, 430061, Wuhan, Hubei, China
| |
Collapse
|
48
|
Li M, Wu P, Yang Z, Deng S, Ni L, Zhang Y, Jin L, Pan Y. miR-193a-5p promotes pancreatic cancer cell metastasis through SRSF6-mediated alternative splicing of OGDHL and ECM1. Am J Cancer Res 2020; 10:38-59. [PMID: 32064152 PMCID: PMC7017744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023] Open
Abstract
MicroRNAs (miRNAs) are short and non-coding RNAs binding to 3'UTR of target mRNAs to downregulate their expression. Recent studies have shown that miRNAs indirectly regulated alternative splicing (AS) by targeting splicing factors and caused shifts in splicing patterns of target genes. However, the roles of miRNA-regulating splicing factors in pancreatic cancer progression remain unknown. Herein, we reported that miR-193a-5p was markedly upregulated in pancreatic cancer tissues and cells and correlated with clinical outcomes of pancreatic cancer patients. Overexpression of miR-193a-5p contributed to the metastasis of pancreatic cancer cells both in vitro and in vivo. The mechanistic investigation suggested that miR-193a-5p modulated oxoglutarate dehydrogenase-like (OGDHL) and extracellular matrix protein 1 (ECM1) AS by targeting serine/arginine-rich splicing factor 6 (SRSF6), leading to the activation of the epithelial-to-mesenchymal transition (EMT) process. Together, our findings highlighted the role of miR-193a-5p-targeting SRSF6 in pancreatic cancer metastasis, which may serve as a novel target for pancreatic cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Manman Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University24 Tongjiaxiang Avenue, Nanjing, Jiangsu, PR China
| | - Pandi Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University24 Tongjiaxiang Avenue, Nanjing, Jiangsu, PR China
| | - Zhaocong Yang
- Department of Cardiothoracic Surgery, Children’s Hospital of Nanjing Medical UniversityNanjing 21008, PR China
| | - Siwei Deng
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University24 Tongjiaxiang Avenue, Nanjing, Jiangsu, PR China
| | - Lingyu Ni
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University24 Tongjiaxiang Avenue, Nanjing, Jiangsu, PR China
| | - Yanfeng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University24 Tongjiaxiang Avenue, Nanjing, Jiangsu, PR China
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University24 Tongjiaxiang Avenue, Nanjing, Jiangsu, PR China
| | - Yi Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University24 Tongjiaxiang Avenue, Nanjing, Jiangsu, PR China
| |
Collapse
|
49
|
Yu T, Chen D, Zhang L, Wan D. microRNA-26a-5p Promotes Proliferation and Migration of Osteosarcoma Cells by Targeting HOXA5 in vitro and in vivo. Onco Targets Ther 2019; 12:11555-11565. [PMID: 32021239 PMCID: PMC6941950 DOI: 10.2147/ott.s232100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/05/2019] [Indexed: 12/25/2022] Open
Abstract
Background Osteosarcoma is the most common primary malignant tumor of bone. However, the underlying pathogenic mechanisms are still unclear. miR-26a was an endogenous non-coding small RNAs that have been showed to play a critical role in regulating varieties of biological and pathological processes. In this study, we will investigate the function of miR-26a-5p in osteosarcoma cells. Methods In this study, we explored the role of miR-26a-5p in osteosarcoma cell lines using qPCR, detected the proliferation, cell cycle and cell migration by CCK-8, PI and transwell. Results We found that compared with noncancerous cells, miR-26a-5p was highly expressed in osteosarcoma cell lines, especially in U2OS cells. Overexpression of miR-26a-5p promotes cell proliferation, cell cycle, and cell migration, but inhibits cell apoptosis. But down-regulation of miR-26a-5p in U2OS cells exhibits opposite effects. We also confirmed that miR-26a-5p directly targets HOXA5 in U2OS cells. Overexpression of HOXA5 reversed the effect of miR-26a-5p on cell proliferation, migration, and apoptosis. Besides, we showed in that knock-down of miR-26a-5p or overexpression of HOXA5 increased cell sensitivity to chemotherapeutic drug paclitaxel. Conclusion These findings indicate that highly expressed miR-26a-5p in osteosarcoma cells, and promotes proliferation and migration, but inhibits apoptosis of osteosarcoma cells by targeting HOXA5 which suggest that miR-26a-5p could serve as a novel therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Tianhua Yu
- Department of Orthopedics, Orthopedic Institute of Harbin, The Fifth Hospital in Harbin, Harbin, People's Republic of China
| | - Dexin Chen
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, People's Republic of China
| | - Lei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Shandong First Medical University, Shandong, People's Republic of China
| | - Daqian Wan
- Department of Orthopedics, Orthopedic Institute of Harbin, The Fifth Hospital in Harbin, Harbin, People's Republic of China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education of the People's Republic of China, Shanghai, People's Republic of China.,Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
50
|
Viera GM, Salomao KB, de Sousa GR, Baroni M, Delsin LEA, Pezuk JA, Brassesco MS. miRNA signatures in childhood sarcomas and their clinical implications. Clin Transl Oncol 2019; 21:1583-1623. [PMID: 30949930 DOI: 10.1007/s12094-019-02104-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Progresses in multimodal treatments have significantly improved the outcomes for childhood cancer. Nonetheless, for about one-third of patients with Ewing sarcoma, rhabdomyosarcoma, or osteosarcoma steady remission has remained intangible. Thus, new biomarkers to improve early diagnosis and the development of precision-targeted medicine remain imperative. Over the last decade, remarkable progress has been made in the basic understanding of miRNAs function and in interpreting the contribution of their dysregulation to cancer development and progression. On this basis, this review focuses on what has been learned about the pivotal roles of miRNAs in the regulation of key genes implicated in childhood sarcomas.
Collapse
Affiliation(s)
- G M Viera
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - K B Salomao
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - G R de Sousa
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - M Baroni
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - L E A Delsin
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - J A Pezuk
- Anhanguera University of Sao Paulo, UNIAN/SP, Sao Paulo, Brasil
| | - M S Brassesco
- Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brasil.
- Departamento de Biologia, FFCLRP-USP, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirao Preto, SP, CEP 14040-901, Brazil.
| |
Collapse
|