1
|
Wang Z, Cheng S, Wei J, Hu J, Li F, Yang W. Evolving role of deubiquitinating enzymes in oral cancer (Review). Oncol Lett 2025; 30:354. [PMID: 40438866 PMCID: PMC12117358 DOI: 10.3892/ol.2025.15100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/25/2025] [Indexed: 06/01/2025] Open
Abstract
Oral cancer affects the mucosal epithelium located within the oral cavity. The prevalence of oral cancer is projected to increase by ~40% by 2040, leading to a subsequent rise in mortality rates. Oral carcinogenesis is complex and multifactorial and numerous signaling pathways are involved in disease development. Deubiquitination is commonly involved in the post-translational process of proteins, and serves a key role in tumorigenesis and cancer development. The present review aims to discuss the function of deubiquitinating enzymes (DUBs) in oral cancer, with a particular focus on oral squamous cell carcinoma (OSCC). The present review also aims to investigate the functional mechanisms, tumorigenic regulation and therapeutic targets of DUBs in OSCC, which may potentially provide a novel theoretical basis for the utilization of DUBs as molecular targets in the treatment of OSCC in the future.
Collapse
Affiliation(s)
- Zidi Wang
- Department of Dentistry, Tianjin Beichen Hospital, Tianjin 300400, P.R. China
| | - Siyuan Cheng
- Department of Dentistry, Tianjin Beichen Hospital, Tianjin 300400, P.R. China
| | - Jianhui Wei
- Department of Oncology, Tianjin Beichen Hospital, Tianjin 300400, P.R. China
| | - Jiandong Hu
- Core Laboratory, Tianjin Beichen Hospital, Tianjin 300400, P.R. China
| | - Fenge Li
- Department of Oncology, Tianjin Beichen Hospital, Tianjin 300400, P.R. China
- Core Laboratory, Tianjin Beichen Hospital, Tianjin 300400, P.R. China
- Cancer Diagnosis and Treatment Center, Tianjin Union Medical Cancer (The First Affiliated Hospital of Nankai University), Tianjin 300121, China
| | - Wenhua Yang
- Department of Dentistry, Tianjin Beichen Hospital, Tianjin 300400, P.R. China
| |
Collapse
|
2
|
Wang J, Wu L, Tian Z, Chen J. Effect of deubiquitinases in head and neck squamous cell carcinoma (Review). Oncol Lett 2025; 29:307. [PMID: 40337608 PMCID: PMC12056481 DOI: 10.3892/ol.2025.15053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/04/2025] [Indexed: 05/09/2025] Open
Abstract
HNSCC includes nasopharyngeal, laryngeal and oral cancers, and its pathogenesis is influenced by various factors. As an essential part of the ubiquitin (Ub)-proteasome system (UPS), deubiquitinating enzymes (DUBs) maintain the homeostasis of Ub molecules and influence the physiological functions of cells and disease processes by removing ubiquitinated proteins. Accumulating evidence has confirmed that the aberrant expression of DUBs is involved in cell proliferation, metastasis, and apoptosis during the development of HNSCC, with some acting as oncogenes and others as tumor-suppressor genes. In this review, the DUBs implicated in HNSCC were summarized and the mechanisms underlying abnormal DUBs expression in signaling pathways were discussed. In addition, given the important role of DUBs in tumorigenesis, recent studies were reviewed and agonists and inhibitors of DUBs were summarized to identify more effective therapeutic strategies.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Liangpei Wu
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Zhifeng Tian
- Cancer Center, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
3
|
Li Y, Liu F, Cai Q, Deng L, Ouyang Q, Zhang XHF, Zheng J. Invasion and metastasis in cancer: molecular insights and therapeutic targets. Signal Transduct Target Ther 2025; 10:57. [PMID: 39979279 PMCID: PMC11842613 DOI: 10.1038/s41392-025-02148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
The progression of malignant tumors leads to the development of secondary tumors in various organs, including bones, the brain, liver, and lungs. This metastatic process severely impacts the prognosis of patients, significantly affecting their quality of life and survival rates. Research efforts have consistently focused on the intricate mechanisms underlying this process and the corresponding clinical management strategies. Consequently, a comprehensive understanding of the biological foundations of tumor metastasis, identification of pivotal signaling pathways, and systematic evaluation of existing and emerging therapeutic strategies are paramount to enhancing the overall diagnostic and treatment capabilities for metastatic tumors. However, current research is primarily focused on metastasis within specific cancer types, leaving significant gaps in our understanding of the complex metastatic cascade, organ-specific tropism mechanisms, and the development of targeted treatments. In this study, we examine the sequential processes of tumor metastasis, elucidate the underlying mechanisms driving organ-tropic metastasis, and systematically analyze therapeutic strategies for metastatic tumors, including those tailored to specific organ involvement. Subsequently, we synthesize the most recent advances in emerging therapeutic technologies for tumor metastasis and analyze the challenges and opportunities encountered in clinical research pertaining to bone metastasis. Our objective is to offer insights that can inform future research and clinical practice in this crucial field.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fengshuo Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Graduate School of Biomedical Science, Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX, USA
| | - Qingjin Cai
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lijun Deng
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
4
|
Masciale V, Banchelli F, Grisendi G, Samarelli AV, Raineri G, Rossi T, Zanoni M, Cortesi M, Bandini S, Ulivi P, Martinelli G, Stella F, Dominici M, Aramini B. The molecular features of lung cancer stem cells in dedifferentiation process-driven epigenetic alterations. J Biol Chem 2024; 300:107994. [PMID: 39547513 PMCID: PMC11714729 DOI: 10.1016/j.jbc.2024.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Cancer stem cells (CSCs) may be dedifferentiated somatic cells following oncogenic processes, representing a subpopulation of cells able to promote tumor growth with their capacities for proliferation and self-renewal, inducing lineage heterogeneity, which may be a main cause of resistance to therapies. It has been shown that the "less differentiated process" may have an impact on tumor plasticity, particularly when non-CSCs may dedifferentiate and become CSC-like. Bidirectional interconversion between CSCs and non-CSCs has been reported in other solid tumors, where the inflammatory stroma promotes cell reprogramming by enhancing Wnt signaling through nuclear factor kappa B activation in association with intracellular signaling, which may induce cells' pluripotency, the oncogenic transformation can be considered another important aspect in the acquisition of "new" development programs with oncogenic features. During cell reprogramming, mutations represent an initial step toward dedifferentiation, in which tumor cells switch from a partially or terminally differentiated stage to a less differentiated stage that is mainly manifested by re-entry into the cell cycle, acquisition of a stem cell-like phenotype, and expression of stem cell markers. This phenomenon typically shows up as a change in the form, function, and pattern of gene and protein expression, and more specifically, in CSCs. This review would highlight the main epigenetic alterations, major signaling pathways and driver mutations in which CSCs, in tumors and specifically, in lung cancer, could be involved, acting as key elements in the differentiation/dedifferentiation process. This would highlight the main molecular mechanisms which need to be considered for more tailored therapies.
Collapse
Affiliation(s)
- Valentina Masciale
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Federico Banchelli
- Department of Statistical Sciences "Paolo Fortunati", Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Giulia Raineri
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sara Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Franco Stella
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy; Division of Oncology, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy.
| |
Collapse
|
5
|
Nagata H, Funaki S, Kimura K, Fukui E, Kimura T, Kanou T, Ose N, Morii E, Shintani Y. ACTN4 is associated with the malignant potential of thymic epithelial tumors through the β-catenin/Slug pathway. Cancer Sci 2024; 115:3636-3647. [PMID: 39166351 PMCID: PMC11531964 DOI: 10.1111/cas.16313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024] Open
Abstract
Thymic epithelial tumors (TETs) are rare tumors arising from the mediastinum. Among TETs, thymoma type B2, B3 and thymic carcinoma are highly malignant and often present invasion and dissemination. However, the biological characteristics of TETs have not been thoroughly studied, and their mechanisms of invasion and dissemination are largely unknown. α-Actinin 4 (ACTN4) is a member of actin-binding proteins and reportedly plays important roles in the progression of several cancers. In this study, we investigated the relationship between ACTN4 and characteristics of the malignant potential of TETs, such as invasion and dissemination. In vitro experiments using Ty-82 thymic carcinoma cells revealed that overexpression of ACTN4 enhanced the proliferative and invasive ability of Ty-82 cells; conversely, knockdown of ACTN4 attenuated the proliferative and invasive potential of Ty-82 cells. In western blotting (WB) experiments, ACTN4 induced the phosphorylation of extracellular signal-regulated kinase and glycogen synthase kinase 3β to regulate the β-catenin/Slug pathway. Furthermore, WB analysis of cancer tissue-origin spheroids from patients with TETs showed results similar to those for Ty-82 cells. In vivo experiments showed that the knockdown of ACTN4 significantly suppressed the dissemination of Ty-82 cells. A WB and immunohistochemistry staining comparison of primary and disseminated lesions of TETs using surgical specimens showed upregulated expression of ACTN4, β-catenin, and Slug proteins in disseminated lesions. In summary, our study suggests ACTN4 is associated with malignant potential characteristics such as invasion and dissemination in TETs via the β-catenin/Slug pathway.
Collapse
Affiliation(s)
- Hideki Nagata
- Department of General Thoracic Surgery, Graduate School of MedicineOsaka UniversitySuitaJapan
| | - Soichiro Funaki
- Department of General Thoracic Surgery, Graduate School of MedicineOsaka UniversitySuitaJapan
| | - Kenji Kimura
- Department of General Thoracic Surgery, Graduate School of MedicineOsaka UniversitySuitaJapan
| | - Eriko Fukui
- Department of General Thoracic Surgery, Graduate School of MedicineOsaka UniversitySuitaJapan
| | - Toru Kimura
- Department of General Thoracic Surgery, Graduate School of MedicineOsaka UniversitySuitaJapan
| | - Takashi Kanou
- Department of General Thoracic Surgery, Graduate School of MedicineOsaka UniversitySuitaJapan
| | - Naoko Ose
- Department of General Thoracic Surgery, Graduate School of MedicineOsaka UniversitySuitaJapan
| | - Eiichi Morii
- Department of Pathology, Graduate School of MedicineOsaka UniversitySuitaJapan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Graduate School of MedicineOsaka UniversitySuitaJapan
| |
Collapse
|
6
|
Rabino A, Awadia S, Ali N, Edson A, Garcia-Mata R. The Scribble-SGEF-Dlg1 complex regulates E-cadherin and ZO-1 stability, turnover and transcription in epithelial cells. J Cell Sci 2024; 137:jcs262181. [PMID: 39350674 PMCID: PMC11529605 DOI: 10.1242/jcs.262181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
SGEF (also known as ARHGEF26), a RhoG specific GEF, can form a ternary complex with the Scribble polarity complex proteins Scribble and Dlg1, which regulates the formation and maintenance of adherens junctions and barrier function of epithelial cells. Notably, silencing SGEF results in a dramatic downregulation of both E-cadherin and ZO-1 (also known as TJP1) protein levels. However, the molecular mechanisms involved in the regulation of this pathway are not known. Here, we describe a novel signaling pathway governed by the Scribble-SGEF-Dlg1 complex. Our results show that the three members of the ternary complex are required to maintain the stability of the apical junctions, ZO-1 protein levels and tight junction (TJ) permeability. In contrast, only SGEF is necessary to regulate E-cadherin levels. The absence of SGEF destabilizes the E-cadherin-catenin complex at the membrane, triggering a positive feedback loop that exacerbates the phenotype through the repression of E-cadherin transcription in a process that involves the internalization of E-cadherin by endocytosis, β-catenin signaling and the transcriptional repressor Slug (also known as SNAI2).
Collapse
Affiliation(s)
- Agustin Rabino
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Sahezeel Awadia
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Nabaa Ali
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Amber Edson
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Rafael Garcia-Mata
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
7
|
Singh D, Qiu Z, Jonathan SM, Fa P, Thomas H, Prasad CB, Cai S, Wang JJ, Yan C, Zhang X, Venere M, Li Z, Sizemore ST, Wang QE, Zhang J. PP2A B55α inhibits epithelial-mesenchymal transition via regulation of Slug expression in non-small cell lung cancer. Cancer Lett 2024; 598:217110. [PMID: 38986733 PMCID: PMC11670312 DOI: 10.1016/j.canlet.2024.217110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
PP2A B55α, encoded by PPP2R2A, acts as a regulatory subunit of the serine/threonine phosphatase PP2A. Despite a frequent loss of heterozygosity of PPP2R2A in cases of non-small cell lung cancer (NSCLC), research on PP2A B55α's functions remains limited and controversial. To investigate the biological roles of PP2A B55α, we conducted bulk RNA-sequencing to assess the impact of PPP2R2A knockdown using two shRNAs in a NSCLC cell line. Gene set enrichment analysis (GSEA) of the RNA-sequencing data revealed significant enrichment of the epithelial-mesenchymal transition (EMT) pathway, with SNAI2 (the gene encoding Slug) emerging as one of the top candidates. Our findings demonstrate that PP2A B55α suppresses EMT, as PPP2R2A deficiency through knockdown or homozygous or hemizygous depletion promotes EMT and metastatic behavior in NSCLC cells, as evidenced by changes in EMT biomarkers, invasion and migration abilities, as well as metastasis in a tail vein assay. Mechanistically, PP2A B55α inhibits EMT by downregulating SNAI2 expression via the GSK3β-β-catenin pathway. Importantly, PPP2R2A deficiency also slows cell proliferation by disrupting DNA replication, particularly in PPP2R2A-/- cells. Furthermore, PPP2R2A deficiency, especially PPP2R2A-/- cells, leads to an increase in the cancer stem cell population, which correlates with enhanced resistance to chemotherapy. Overall, the decrease in PP2A B55α levels due to hemizygous/homozygous depletion heightens EMT and the metastatic or stemness/drug resistance potential of NSCLC cells despite their proliferation disadvantage. Our study highlights the significance of PP2A B55α in EMT and metastasis and suggests that targeting EMT/stemness could be a potential therapeutic strategy for treating PPP2R2A-deficient NSCLC.
Collapse
Affiliation(s)
- Deepika Singh
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States
| | - Zhaojun Qiu
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States
| | - Spehar M Jonathan
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States
| | - Pengyan Fa
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States
| | - Hannah Thomas
- The Ohio State University, Columbus, OH, United States
| | - Chandra Bhushan Prasad
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States
| | - Shurui Cai
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States
| | - Jing J Wang
- The Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
| | - Xiaoli Zhang
- Center for Biostatistics, The Ohio State University, United States; Department of Biomedical Informatics, College of Medicine, The Ohio State University, United States
| | - Monica Venere
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States; The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| | - Zaibo Li
- Department of Pathology, The Ohio State University Wexner Medical Center, College of Medicine, Columbus, OH, 43210, United States
| | - Steven T Sizemore
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States
| | - Qi-En Wang
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States
| | - Junran Zhang
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States; The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States; The James Comprehensive Cancer Center, Center for Metabolism, United States.
| |
Collapse
|
8
|
Tran S, Sipila P, Thakur S, Zhang C, Narendran A. Identification and In Vivo Validation of Unique Anti-Oncogenic Mechanisms Involving Protein Kinase Signaling and Autophagy Mediated by the Investigational Agent PV-10. Cancers (Basel) 2024; 16:1520. [PMID: 38672602 PMCID: PMC11048188 DOI: 10.3390/cancers16081520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
PV-10 is a 10% formulation of rose bengal sodium that has potent immunotherapeutic and anti-cancer activity against various tumors, including metastatic melanoma and refractory neuroblastoma. Currently, PV-10 is undergoing clinical testing for refractory metastatic neuroendocrine cancer and melanomas. However, preclinical investigation of PV-10 activity and its mechanisms against phenotypically and molecularly diverse adult solid tumors had not been conducted. In a panel of human cell lines derived from breast, colorectal, head and neck, and testicular cancers, we demonstrated that PV-10 induces cytotoxicity by apoptotic and autophagic pathways involving caspase-mediated PARP cleavage, downregulation of SQSTM1/p62, and upregulation of beclin-1. Treatment with PV-10 also consistently reduced phosphorylation of WNK1, which has been implicated in cancer cell migration and autophagy inhibition. By wound healing assay, PV-10 treatment inhibited the migration of cancer cells. Finally, significant inhibition of tumor growth was also noted in tumor-bearing mice treated with PV-10 by intralesional or systemic administration. In addition to known PV-10-mediated tumor-specific cytotoxic effects, we identified the mechanisms of PV-10 and provide new insights into its effect on autophagy and metastasis. Our data provide essential mechanism-based evidence and biomarkers of activity to formulate clinical studies of PV-10 in the future.
Collapse
Affiliation(s)
| | | | | | | | - Aru Narendran
- Department of Oncology, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
9
|
Pawlicka M, Gumbarewicz E, Błaszczak E, Stepulak A. Transcription Factors and Markers Related to Epithelial-Mesenchymal Transition and Their Role in Resistance to Therapies in Head and Neck Cancers. Cancers (Basel) 2024; 16:1354. [PMID: 38611032 PMCID: PMC11010970 DOI: 10.3390/cancers16071354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Head and neck cancers (HNCs) are heterogeneous and aggressive tumors of the upper aerodigestive tract. Although various histological types exist, the most common is squamous cell carcinoma (HNSCC). The incidence of HNSCC is increasing, making it an important public health concern. Tumor resistance to contemporary treatments, namely, chemo- and radiotherapy, and the recurrence of the primary tumor after its surgical removal cause huge problems for patients. Despite recent improvements in these treatments, the 5-year survival rate is still relatively low. HNSCCs may develop local lymph node metastases and, in the most advanced cases, also distant metastases. A key process associated with tumor progression and metastasis is epithelial-mesenchymal transition (EMT), when poorly motile epithelial tumor cells acquire motile mesenchymal characteristics. These transition cells can invade different adjacent tissues and finally form metastases. EMT is governed by various transcription factors, including the best-characterized TWIST1 and TWIST2, SNAIL, SLUG, ZEB1, and ZEB2. Here, we highlight the current knowledge of the process of EMT in HNSCC and present the main protein markers associated with it. This review focuses on the transcription factors related to EMT and emphasizes their role in the resistance of HNSCC to current chemo- and radiotherapies. Understanding the role of EMT and the precise molecular mechanisms involved in this process may help with the development of novel anti-cancer therapies for this type of tumor.
Collapse
Affiliation(s)
| | | | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.P.); (E.G.); (E.B.)
| |
Collapse
|
10
|
Rabino A, Awadia S, Ali N, Edson A, Garcia-Mata R. The Scribble/SGEF/Dlg1 complex regulates the stability of apical junctions in epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586884. [PMID: 38585765 PMCID: PMC10996629 DOI: 10.1101/2024.03.26.586884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
SGEF, a RhoG specific GEF, can form a ternary complex with the Scribble polarity complex proteins Scribble and Dlg1, which regulates the formation and maintenance of adherens junctions and barrier function of epithelial cells. Notably, silencing SGEF results in a dramatic downregulation of the expression of both E-cadherin and ZO-1. However, the molecular mechanisms involved in the regulation of this pathway are not known. Here, we describe a novel signaling pathway governed by the Scribble/SGEF/Dlg1 complex. Our results show that an intact ternary complex is required to maintain the stability of the apical junctions, the expression of ZO-1, and TJ permeability. In contrast, only SGEF is necessary to regulate E-cadherin expression. The absence of SGEF destabilizes the E-cadherin/catenin complex at the membrane, triggering a positive feedback loop that exacerbates the phenotype through the repression of E-cadherin transcription in a process that involves the internalization of E-cadherin by endocytosis, β-catenin signaling and the transcriptional repressor Slug.
Collapse
Affiliation(s)
- Agustin Rabino
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Sahezeel Awadia
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Nabaa Ali
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Amber Edson
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Rafael Garcia-Mata
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
11
|
Czowski BJ, White KA. Intracellular pH regulates β-catenin with low pHi increasing adhesion and signaling functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586349. [PMID: 38585883 PMCID: PMC10996556 DOI: 10.1101/2024.03.22.586349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Intracellular pH (pHi) dynamics are linked to cell processes including proliferation, migration, and differentiation. The adherens junction (AJ) and signaling protein β-catenin has decreased abundance at high pHi due to increased proteasomal-mediated degradation. However, the effects of low pHi on β-catenin abundance and functions have not been characterized. Here, we show that low pHi stabilizes β-catenin in epithelial cells using population-level and single-cell assays. β-catenin abundance is increased at low pHi and decreased at high pHi. We also assay single-cell protein degradation rates to show that β-catenin half-life is longer at low compared to high pHi. Importantly, we show that AJs are not disrupted by β-catenin loss at high pHi due to rescue by plakoglobin. Finally, we show that low pHi increases β-catenin transcriptional activity in single cells and is indistinguishable from a Wnt-on state. This work characterizes pHi as a rheostat regulating β-catenin abundance, stability, and function and implicates β-catenin as a molecular mediator of pHi-dependent cell processes.
Collapse
Affiliation(s)
- Brandon J Czowski
- Department of Chemistry and Biochemistry, University of Notre Dame
- Harper Cancer Research Institute, University of Notre Dame
| | - Katharine A White
- Department of Chemistry and Biochemistry, University of Notre Dame
- Harper Cancer Research Institute, University of Notre Dame
| |
Collapse
|
12
|
Ma P, Yu H, Zhu M, Liu L, Cheng L, Han Z, Jin W. NCAPD2 promotes the malignant progression of oral squamous cell carcinoma via the Wnt/β-catenin pathway. Cell Cycle 2024; 23:588-601. [PMID: 38743408 PMCID: PMC11135826 DOI: 10.1080/15384101.2024.2348918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, with a poor prognosis, yet the underlying mechanism needs further exploration. Non-SMC condensin I complex subunit D2 (NCAPD2) is a widely expressed protein in OSCC, but its role in tumor development is unclear. This study aimed to explore NCAPD2 expression and its biological function in OSCC. NCAPD2 expression in OSCC cell lines and tissue specimens was analyzed using quantitative polymerase chain reaction, western blotting, and immunohistochemistry. Cancer cell growth was evaluated using cell proliferation, 5-Ethynyl-2'-deoxyuridine (EdU) staining, and colony formation assays. Cell migration was evaluated using wound healing and Transwell assays. Apoptosis was detected using flow cytometry. The influence of NCAPD2 on tumor growth in vivo was evaluated in a mouse xenograft model. NCAPD2 expression was significantly higher in OSCC than that in normal oral tissue. In vitro, the knockdown of NCAPD2 inhibited OSCC cell proliferation and promoted apoptosis. NCAPD2 depletion also significantly inhibited the migration of OSCC cells. Moreover, NCAPD2 overexpression induced inverse effects on OSCC cell phenotypes. In vivo, we demonstrated that downregulating NCAPD2 could inhibit the tumorigenicity of OSCC cells. Mechanically, OSCC regulation by NCAPD2 involved the Wnt/β-catenin signaling pathway. These results suggest NCAPD2 as a novel oncogene with an important role in OSCC development and a candidate therapeutic target for OSCC.
Collapse
Affiliation(s)
- Ping Ma
- Department of Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- Department of Stomatology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Huajiao Yu
- Department of Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- Department of Stomatology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Mingda Zhu
- Department of Breast Disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Liu
- Department of Stomatology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Luyao Cheng
- Department of Stomatology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Zhengxue Han
- Department of Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Wulong Jin
- Department of Stomatology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| |
Collapse
|
13
|
Elkady N, Aldesoky AI, Allam DM. Can β-catenin, Tenascin and Fascin be potential biomarkers for personalized therapy in Gastric carcinoma? J Immunoassay Immunochem 2023; 44:396-417. [PMID: 37694977 DOI: 10.1080/15321819.2023.2251564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Gastric carcinoma (GC) is one of the most prevalent cancers worldwide and the fourth leading cause of cancer-related death. Studying the molecular profile of GC is essential for developing targeted therapies. β-catenin, Tenascin, and Fascin expression are among the molecular abnormalities that are claimed to cause GC progression and chemoresistance. Therefore, they could be used as potential therapeutic targets. This study aimed to evaluate β-catenin, Tenascin, and Fascin expression and their possible roles as prognostic and predictive biomarkers in GC using immunohistochemistry. This retrospective study included 84 GC cases. Tissue microarrays were constructed, followed by β-catenin, Tenascin, and Fascin immunostaining. Their expression was assessed and compared with clinicopathological parameters and survival data. The study results revealed that β-catenin nucleocytoplasmic expression, positive Tenascin, and Fascin expressions were detected in 86.9%, 70%, and 59.5% of cases, respectively. Their expression was significantly associated with poor prognostic parameters, such as deeper tumor invasion, lymph node metastasis, advanced pathological stage, vascular invasion, positive omental nodules, poor response to chemotherapy, and short overall survival. Hence, nucleocytoplasmic β-catenin expression together with Tenascin and Fascin positivity can be potential prognostic and predictive markers, and they can be used as therapeutic targets for GC.
Collapse
Affiliation(s)
- Noha Elkady
- Pathology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Amira I Aldesoky
- Clinical oncology and nuclear medicine department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Dina Mohamed Allam
- Pathology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| |
Collapse
|
14
|
Sajeev A, BharathwajChetty B, Vishwa R, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Crosstalk between Non-Coding RNAs and Wnt/β-Catenin Signaling in Head and Neck Cancer: Identification of Novel Biomarkers and Therapeutic Agents. Noncoding RNA 2023; 9:63. [PMID: 37888209 PMCID: PMC10610319 DOI: 10.3390/ncrna9050063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Head and neck cancers (HNC) encompass a broad spectrum of neoplastic disorders characterized by significant morbidity and mortality. While contemporary therapeutic interventions offer promise, challenges persist due to tumor recurrence and metastasis. Central to HNC pathogenesis is the aberration in numerous signaling cascades. Prominently, the Wnt signaling pathway has been critically implicated in the etiology of HNC, as supported by a plethora of research. Equally important, variations in the expression of non-coding RNAs (ncRNAs) have been identified to modulate key cancer phenotypes such as cellular proliferation, epithelial-mesenchymal transition, metastatic potential, recurrence, and treatment resistance. This review aims to provide an exhaustive insight into the multifaceted influence of ncRNAs on HNC, with specific emphasis on their interactions with the Wnt/β-catenin (WBC) signaling axis. We further delineate the effect of ncRNAs in either exacerbating or attenuating HNC progression via interference with WBC signaling. An overview of the mechanisms underlying the interplay between ncRNAs and WBC signaling is also presented. In addition, we described the potential of various ncRNAs in enhancing the efficacy of chemotherapeutic and radiotherapeutic modalities. In summary, this assessment posits the potential of ncRNAs as therapeutic agents targeting the WBC signaling pathway in HNC management.
Collapse
Affiliation(s)
- Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India; (A.S.); (B.B.); (R.V.)
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India; (A.S.); (B.B.); (R.V.)
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India; (A.S.); (B.B.); (R.V.)
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India; (A.S.); (B.B.); (R.V.)
| |
Collapse
|
15
|
Tan Y, Wang Z, Xu M, Li B, Huang Z, Qin S, Nice EC, Tang J, Huang C. Oral squamous cell carcinomas: state of the field and emerging directions. Int J Oral Sci 2023; 15:44. [PMID: 37736748 PMCID: PMC10517027 DOI: 10.1038/s41368-023-00249-w] [Citation(s) in RCA: 211] [Impact Index Per Article: 105.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) develops on the mucosal epithelium of the oral cavity. It accounts for approximately 90% of oral malignancies and impairs appearance, pronunciation, swallowing, and flavor perception. In 2020, 377,713 OSCC cases were reported globally. According to the Global Cancer Observatory (GCO), the incidence of OSCC will rise by approximately 40% by 2040, accompanied by a growth in mortality. Persistent exposure to various risk factors, including tobacco, alcohol, betel quid (BQ), and human papillomavirus (HPV), will lead to the development of oral potentially malignant disorders (OPMDs), which are oral mucosal lesions with an increased risk of developing into OSCC. Complex and multifactorial, the oncogenesis process involves genetic alteration, epigenetic modification, and a dysregulated tumor microenvironment. Although various therapeutic interventions, such as chemotherapy, radiation, immunotherapy, and nanomedicine, have been proposed to prevent or treat OSCC and OPMDs, understanding the mechanism of malignancies will facilitate the identification of therapeutic and prognostic factors, thereby improving the efficacy of treatment for OSCC patients. This review summarizes the mechanisms involved in OSCC. Moreover, the current therapeutic interventions and prognostic methods for OSCC and OPMDs are discussed to facilitate comprehension and provide several prospective outlooks for the fields.
Collapse
Affiliation(s)
- Yunhan Tan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Mengtong Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jing Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
16
|
Stoiber S, Brkic FF, Maier T, Schnoell J, Gurnhofer E, Heiduschka G, Kadletz-Wanke L, Kenner L. β-CATENIN is a positive prognostic marker for HPV-positive head and neck squamous cell carcinoma. J Cancer Res Clin Oncol 2023; 149:7743-7750. [PMID: 37010585 PMCID: PMC10374714 DOI: 10.1007/s00432-023-04712-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/18/2023] [Indexed: 04/04/2023]
Abstract
PURPOSE The evolutionary-conserved Wnt/β-CATENIN (WBC) pathway has been implicated in the pathogenesis of different solid malignant tumors. We evaluated the prognostic relevance of β-CATENIN, a pivotal mediator of WBC activation, in patients with human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC). METHODS We analyzed if patients with HPV-positive HNSCC from the "The Cancer Genome Atlas" (TCGA cohort, n = 41) can be stratified based on their CTNNB1 mRNA expression. Moreover, in a tissue microarray (TMA) of primary tumor sections from HPV-positive HNSCC patients treated in a tertiary academic center (in-house cohort, n = 31), we evaluated the prognostic relevance of β-CATENIN expression on protein level. RESULTS In silico mining of CTNNB1 expression in HPV-positive HNSCC revealed that high CTNNB1 expression was linked to better overall survival (OS, p = 0.062). Moreover, high β-CATENIN expression was significantly associated with a better OS in our in-house cohort (p = 0.035). CONCLUSION Based on these findings, we postulate that β-CATENIN expression could serve (potentially in conjunction with other WBC pathway members) as a marker for better survival outcomes in patients with HPV-positive HNSCC. However, it is evident that future studies on bigger cohorts are warranted.
Collapse
Affiliation(s)
- Stefan Stoiber
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics, Vienna, Austria
| | - Faris F. Brkic
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Tobias Maier
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Julia Schnoell
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Gregor Heiduschka
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Lorenz Kadletz-Wanke
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine, Vienna, Austria
- CBmed GmbH—Center for Biomarker Research in Medicine, Graz, Austria
| |
Collapse
|
17
|
Shi ZD, Pang K, Wu ZX, Dong Y, Hao L, Qin JX, Wang W, Chen ZS, Han CH. Tumor cell plasticity in targeted therapy-induced resistance: mechanisms and new strategies. Signal Transduct Target Ther 2023; 8:113. [PMID: 36906600 PMCID: PMC10008648 DOI: 10.1038/s41392-023-01383-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/07/2022] [Accepted: 02/20/2023] [Indexed: 03/13/2023] Open
Abstract
Despite the success of targeted therapies in cancer treatment, therapy-induced resistance remains a major obstacle to a complete cure. Tumor cells evade treatments and relapse via phenotypic switching driven by intrinsic or induced cell plasticity. Several reversible mechanisms have been proposed to circumvent tumor cell plasticity, including epigenetic modifications, regulation of transcription factors, activation or suppression of key signaling pathways, as well as modification of the tumor environment. Epithelial-to-mesenchymal transition, tumor cell and cancer stem cell formation also serve as roads towards tumor cell plasticity. Corresponding treatment strategies have recently been developed that either target plasticity-related mechanisms or employ combination treatments. In this review, we delineate the formation of tumor cell plasticity and its manipulation of tumor evasion from targeted therapy. We discuss the non-genetic mechanisms of targeted drug-induced tumor cell plasticity in various types of tumors and provide insights into the contribution of tumor cell plasticity to acquired drug resistance. New therapeutic strategies such as inhibition or reversal of tumor cell plasticity are also presented. We also discuss the multitude of clinical trials that are ongoing worldwide with the intention of improving clinical outcomes. These advances provide a direction for developing novel therapeutic strategies and combination therapy regimens that target tumor cell plasticity.
Collapse
Affiliation(s)
- Zhen-Duo Shi
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China.,School of Life Sciences, Jiangsu Normal University, Jiangsu, China.,Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China
| | - Kun Pang
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yang Dong
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Lin Hao
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Jia-Xin Qin
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Wei Wang
- Department of Medical College, Southeast University, Nanjing, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Cong-Hui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China. .,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China. .,School of Life Sciences, Jiangsu Normal University, Jiangsu, China. .,Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China.
| |
Collapse
|
18
|
Yu BY, Shi LG, Jiang C, Wang GK, Liu J, Wu TY. Kinesin family member C 1 overexpression exerts tumor-promoting properties in head and neck squamous cell carcinoma via the Rac1/Wnt/β-catenin pathway. J Transl Med 2023; 103:100134. [PMID: 36990154 DOI: 10.1016/j.labinv.2023.100134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Kinesin family member C 1 (KIFC1) is a kinesin-14 motor protein, and its abnormal upregulation promotes the malignant behavior of cancer cells. N6-methyladenosine (m6A) RNA methylation is a common modification of eukaryotic mRNA and affects RNA expression. Herein, we explored how KIFC1 regulated head and neck squamous cell carcinoma (HNSCC) tumorigenesis and how m6A modification affected KIFC1 expression. Bioinformatics analysis was performed to screen for genes of interest, and in vitro and in vivo studies were carried out to investigate the function and mechanism of KIFC1 in HNSCC. We observed that the expression of KIFC1 in HNSCC tissues was significantly higher than in normal or adjacent normal tissues. Cancer patients with higher KIFC1 expression have lower tumor differentiation status. Demethylase alkB homolog 5 (ALKBH5), a cancer-promoting factor in HNSCC, could interact with KIFC1 mRNA and post-transcriptionally activated KIFC1 through m6A modification. KIFC1 downregulation suppressed HNSCC cell growth and metastasis in vivo and in vitro. However, overexpression of KIFC1 promoted these malignant behaviors. We demonstrated that KIFC1 overexpression activated the oncogenic Wnt/β-catenin pathway. KIFC1 interacted with the small GTPase Ras-related C3 botulinum toxin substrate 1 (Rac1) at the protein level and increased activity. The Rho GTPase Rac1 was indicated to be an upstream activator of the Wnt/β-catenin signaling pathway, and its Rac1 inhibitor, NSC-23766, treatment reversed the effects caused by KIFC1 overexpression. Those observations demonstrate that abnormal expression of KIFC1 may be regulated by demethylase ALKBH5 in an m6A-dependent manner and promote HNSCC progression via the Rac1/Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Bo-Yu Yu
- Department of Otolaryngology, Head and Neck Surgery, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Ling-Gai Shi
- Department of Otolaryngology, Head and Neck Surgery, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Chang Jiang
- Department of Otolaryngology, Head and Neck Surgery, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Guang-Ke Wang
- Department of Otolaryngology, Head and Neck Surgery, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, Henan, China.
| | - Jun Liu
- Department of Otolaryngology, Head and Neck Surgery, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, Henan, China.
| | - Tian-Yi Wu
- Department of Otolaryngology, Head and Neck Surgery, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, Henan, China.
| |
Collapse
|
19
|
Stoletov K, Sanchez S, Gorroño I, Rabano M, Vivanco MDM, Kypta R, Lewis JD. Intravital imaging of Wnt/β-catenin and ATF2-dependent signalling pathways during tumour cell invasion and metastasis. J Cell Sci 2023; 136:286293. [PMID: 36621522 PMCID: PMC10022745 DOI: 10.1242/jcs.260285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023] Open
Abstract
Wnt signalling has been implicated as a driver of tumour cell metastasis, but less is known about which branches of Wnt signalling are involved and when they act in the metastatic cascade. Here, using a unique intravital imaging platform and fluorescent reporters, we visualised β-catenin/TCF-dependent and ATF2-dependent signalling activities during human cancer cell invasion, intravasation and metastatic lesion formation in the chick embryo host. We found that cancer cells readily shifted between states of low and high canonical Wnt activity. Cancer cells that displayed low Wnt canonical activity showed higher invasion and intravasation potential in primary tumours and in metastatic lesions. In contrast, cancer cells showing low ATF2-dependent activity were significantly less invasive both at the front of primary tumours and in metastatic lesions. Simultaneous visualisation of both these reporters using a double-reporter cell line confirmed their complementary activities in primary tumours and metastatic lesions. These findings might inform the development of therapies that target different branches of Wnt signalling at specific stages of metastasis.
Collapse
Affiliation(s)
- Konstantin Stoletov
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Saray Sanchez
- Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Irantzu Gorroño
- Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Miriam Rabano
- Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Maria D M Vivanco
- Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Robert Kypta
- Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain.,Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - John D Lewis
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
20
|
Targeting Wnt/Beta-Catenin Signaling in HPV-Positive Head and Neck Squamous Cell Carcinoma. Pharmaceuticals (Basel) 2022; 15:ph15030378. [PMID: 35337176 PMCID: PMC8955953 DOI: 10.3390/ph15030378] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 01/03/2023] Open
Abstract
Wnt/Beta-Catenin signaling is involved in the carcinogenesis of different solid malignant tumors. The interaction of Creb-binding protein (CBP) with Beta-Catenin is a pivotal component of the Wnt/Beta-Catenin signaling pathway. The first aim of this study was to evaluate the association of CBP expression with survival in patients with human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC). Second, the in vitro effects of the inhibition of CBP/Beta-Catenin interaction were analyzed. In particular, the effects of ICG-001, an inhibitor of CBP/Beta-Catenin interaction, on proliferation, cell death, modulation of Wnt/Beta-Catenin target expression, and cell migration were examined in vitro. High CBP expression is significantly associated with better survival on mRNA and protein levels. Furthermore, we observed cytotoxic as well as anti-migratory effects of ICG-001. These effects were particularly more potent in the HPV-positive than in the -negative cell line. Mechanistically, ICG-001 treatment induced apoptosis and led to a downregulation of CBP, c-MYC, and Cyclin D1 in HPV-positive cells, indicating inhibition of Wnt/Beta-Catenin signaling. In conclusion, high CBP expression is observed in HPV-positive HNSCC patients with a good prognosis, and ICG-001 showed a promising antineoplastic potential, particularly in HPV-positive HNSCC cells. Therefore, ICG-001 may potentially become an essential component of treatment de-escalation regimens for HPV-positive HNSCC. Further studies are warranted for additional assessment of the mechanistic background of our in vitro findings.
Collapse
|
21
|
Epithelial-to-Mesenchymal Transition-Derived Heterogeneity in Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:cancers13215355. [PMID: 34771518 PMCID: PMC8582421 DOI: 10.3390/cancers13215355] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Head and neck squamous cell carcinomas (HNSCC) are common malignancies with considerable morbidity and a high death toll worldwide. Resistance towards multi-modal therapy modalities composed of surgery, irradiation, chemo- and immunotherapy represents a major obstacle in the efficient treatment of HNSCC patients. Patients frequently show nodal metastases at the time of diagnosis and endure early relapses, oftentimes in the form of local recurrences. Differentiation programs such as the epithelial-to-mesenchymal transition (EMT) allow individual tumor cells to adopt cellular functions that are central to the development of metastases and treatment resistance. In the present review article, the molecular basis and regulation of EMT and its impact on the progression of HNSCC will be addressed. Abstract Head and neck squamous cell carcinomas (HNSCC) are common tumors with a poor overall prognosis. Poor survival is resulting from limited response to multi-modal therapy, high incidence of metastasis, and local recurrence. Treatment includes surgery, radio(chemo)therapy, and targeted therapy specific for EGFR and immune checkpoint inhibition. The understanding of the molecular basis for the poor outcome of HNSCC was improved using multi-OMICs approaches, which revealed a strong degree of inter- and intratumor heterogeneity (ITH) at the level of DNA mutations, transcriptome, and (phospho)proteome. Single-cell RNA-sequencing (scRNA-seq) identified RNA-expression signatures related to cell cycle, cell stress, hypoxia, epithelial differentiation, and a partial epithelial-to-mesenchymal transition (pEMT). The latter signature was correlated to nodal involvement and adverse clinical features. Mechanistically, shifts towards a mesenchymal phenotype equips tumor cells with migratory and invasive capacities and with an enhanced resistance to standard therapy. Hence, gradual variations of EMT as observed in HNSCC represent a potent driver of tumor progression that could open new paths to improve the stratification of patients and to innovate approaches to break therapy resistance. These aspects of molecular heterogeneity will be discussed in the present review.
Collapse
|
22
|
Roles for growth factors and mutations in metastatic dissemination. Biochem Soc Trans 2021; 49:1409-1423. [PMID: 34100888 PMCID: PMC8286841 DOI: 10.1042/bst20210048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022]
Abstract
Cancer is initiated largely by specific cohorts of genetic aberrations, which are generated by mutagens and often mimic active growth factor receptors, or downstream effectors. Once initiated cells outgrow and attract blood vessels, a multi-step process, called metastasis, disseminates cancer cells primarily through vascular routes. The major steps of the metastatic cascade comprise intravasation into blood vessels, circulation as single or collectives of cells, and eventual colonization of distant organs. Herein, we consider metastasis as a multi-step process that seized principles and molecular players employed by physiological processes, such as tissue regeneration and migration of neural crest progenitors. Our discussion contrasts the irreversible nature of mutagenesis, which establishes primary tumors, and the reversible epigenetic processes (e.g. epithelial-mesenchymal transition) underlying the establishment of micro-metastases and secondary tumors. Interestingly, analyses of sequencing data from untreated metastases inferred depletion of putative driver mutations among metastases, in line with the pivotal role played by growth factors and epigenetic processes in metastasis. Conceivably, driver mutations may not confer the same advantage in the microenvironment of the primary tumor and of the colonization site, hence phenotypic plasticity rather than rigid cellular states hardwired by mutations becomes advantageous during metastasis. We review the latest reported examples of growth factors harnessed by the metastatic cascade, with the goal of identifying opportunities for anti-metastasis interventions. In summary, because the overwhelming majority of cancer-associated deaths are caused by metastatic disease, understanding the complexity of metastasis, especially the roles played by growth factors, is vital for preventing, diagnosing and treating metastasis.
Collapse
|