1
|
Garaud L, Nusbaumer D, Marques da Cunha L, de Guttry C, Ançay L, Atherton A, Lasne E, Wedekind C. Parental kinship coefficient but not paternal coloration predicts early offspring growth in lake char. Heredity (Edinb) 2024; 132:247-256. [PMID: 38480957 PMCID: PMC11074127 DOI: 10.1038/s41437-024-00678-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 05/08/2024] Open
Abstract
The 'good genes' hypotheses of sexual selection predict that females prefer males with strong ornaments because they are in good health and vigor and can afford the costs of the ornaments. A key assumption of this concept is that male health and vigor are useful predictors of genetic quality and hence offspring performance. We tested this prediction in wild-caught lake char (Salvelinus umbla) whose breeding coloration is known to reveal aspects of male health. We first reanalyzed results from sperm competition trials in which embryos of known parenthood had been raised singly in either a stress- or non-stress environment. Paternal coloration did not correlate with any measures of offspring performance. However, offspring growth was reduced with higher kinship coefficients between the parents. To test the robustness of these first observations, we collected a new sample of wild males and females, used their gametes in a full-factorial in vitro breeding experiment, and singly raised about 3000 embryos in either a stress- or non-stress environment (stress induced by microbes). Again, paternal coloration did not predict offspring performance, while offspring growth was reduced with higher kinship between the parents. We conclude that, in lake char, the genetic benefits of mate choice would be strongest if females could recognize and avoid genetically related males, while male breeding colors may be more relevant in intra-sexual selection.
Collapse
Affiliation(s)
- Laura Garaud
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - David Nusbaumer
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | | | - Christian de Guttry
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Environmental Bioinformatic Group, Lausanne, Switzerland
| | - Laurie Ançay
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Audrey Atherton
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Emilien Lasne
- Université Savoie Mont Blanc, INRAE, UMR CARRTEL, Station d'Hydrobiologie Lacustre, Thonon Cedex, France
- UMR DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
| | - Claus Wedekind
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Gurguis CI, Duckworth RA. Dynamic changes in begging signal short-term information on hunger and need. Am Nat 2022; 199:705-718. [DOI: 10.1086/719030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Byrne PG, Keogh JS, O'Brien DM, Gaitan-Espitia JD, Silla AJ. Evidence that genetic compatibility underpins female mate choice in a monandrous amphibian. Evolution 2021; 75:529-541. [PMID: 33389749 DOI: 10.1111/evo.14160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/03/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022]
Abstract
Mate choice for genetic benefits remains controversial, largely because few studies have estimated the relative contributions of additive and non-additive sources of genetic variation to offspring fitness. Moreover, there remains a deficit of these estimates for species where female-mate preferences have been quantified in the wild, especially species characterized by monandry or monogamy. Here, we use artificial fertilization techniques combined with a cross-classified breeding design to simultaneously test for "good genes" and "compatible genes" benefits of mate choice in the monandrous red backed toadlet (Pseudophryne coriacea). In addition, we used a genomic approach to estimate effects of parental-genetic relatedness (assessed using 27, 768 single nucleotide polymorphisms) on offspring fitness. Our results revealed no significant additive genetic effects (sire effects), but highly significant non-additive genetic effects (sire × dam interaction effects), on fertilization success, survival during embryonic development, and hatching success. We also found significant associations between parental genetic similarity and offspring survival (whereby survival was higher when parents were more related), and significant positive relationships between fertilization success and embryo survival through to hatching. These results indicate that offspring viability is significantly influenced by the genetic compatibility of parental genotypes, that more related parents are more genetically compatible, and that gametes with greater compatibility at fertilization produce more viable offspring. More broadly, our findings provide new quantitative genetic evidence that genetic incompatibility underpins female mate preferences. Continued quantitative genetic assessment of the relative importance of good genes versus compatible genes is needed to ascertain the general importance of genetic benefits as a driver of female mate choice.
Collapse
Affiliation(s)
- Phillip G Byrne
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - J Scott Keogh
- Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel M O'Brien
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Juan Diego Gaitan-Espitia
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Aimee J Silla
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
4
|
Lim DD, Milligan CL, Morbey YE. Elevated incubation temperature improves later-life swimming endurance in juvenile Chinook salmon, Oncorhynchus tshawytscha. JOURNAL OF FISH BIOLOGY 2020; 97:1428-1439. [PMID: 32856296 DOI: 10.1111/jfb.14509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/21/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
The effect of incubation and rearing temperature on muscle development and swimming endurance under a high-intensity swimming test was investigated in juvenile Chinook salmon (Oncorhynchus tshawytscha) in a hatchery experiment. After controlling for the effects of fork length (LF ) and parental identity, times to fatigue of fish were higher when fish were incubated or reared at warmer temperatures. Significant differences among combinations of pre- and post-emergence temperatures conformed to 15-15°C > 15-9°C > 9-9°C > 7-9°C > 7-7°C in 2011 when swimming tests were conducted at 300 accumulated temperature units post-emergence and 15-9°C > (7-9°C = 7-7°C) in 2012 when swimming tests were conducted at an LF of c. 40 mm. The combination of pre- and post-emergence temperatures also affected the number and size of muscle fibres, with differences among temperature treatments in mean fibre cross-sectional area persisting after controlling for LF and parental effects. Nonetheless, neither fibre number nor fibre size accounted for significant variation in swimming endurance. Thus, thermal carryover effects on swimming endurance were not mediated by thermal imprinting of muscle structure. This is the first study to test how temperature, body size and muscle structure interact to affect swimming endurance during early development in salmon.
Collapse
Affiliation(s)
- Dan Dohyung Lim
- Department of Biology, Western University, London, Ontario, Canada
| | | | - Yolanda E Morbey
- Department of Biology, Western University, London, Ontario, Canada
| |
Collapse
|
5
|
Rahman MM, Biswas R, Gazi L, Arafat ST, Rahman MM, Asaduzzaman M, Rahman SM, Ahsan MN. Annually twice induced spawnings provide multiple benefits: Experimental evidence from an Indian major carp (
Catla catla
, Hamilton 1822). AQUACULTURE RESEARCH 2020; 51:2275-2290. [DOI: 10.1111/are.14572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/07/2020] [Indexed: 09/27/2023]
Affiliation(s)
- Md. Moshiur Rahman
- Tokyo University of Marine Science and Technology Tokyo Japan
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
| | - Ripon Biswas
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
| | - Litan Gazi
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
| | - Shaikh Tareq Arafat
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
| | - Md. Mostafizur Rahman
- Department of Disaster and Human Security Management Bangladesh University of Professionals Dhaka Bangladesh
| | - Md. Asaduzzaman
- Department of Marine Bioresource Science Chattogram Veterinary and Animal Sciences University Chittagong Bangladesh
| | - Sheikh Mustafizur Rahman
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
- Fish Resources Research Center King Faisal University Hofuf Saudi Arabia
| | - Md. Nazmul Ahsan
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
| |
Collapse
|
6
|
Byrne PG, Gaitan‐Espitia JD, Silla AJ. Genetic benefits of extreme sequential polyandry in a terrestrial‐breeding frog. Evolution 2019; 73:1972-1985. [DOI: 10.1111/evo.13823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/03/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Phillip G. Byrne
- School of Earth, Atmospheric and Life SciencesUniversity of Wollongong Wollongong New South Wales Australia 2522
| | - Juan Diego Gaitan‐Espitia
- The Swire Institute of Marine Science, School of Biological SciencesThe University of Hong Kong Pokfulam Rd Hong Kong SAR China
| | - Aimee J. Silla
- School of Earth, Atmospheric and Life SciencesUniversity of Wollongong Wollongong New South Wales Australia 2522
| |
Collapse
|
7
|
Marques da Cunha L, Uppal A, Seddon E, Nusbaumer D, Vermeirssen EL, Wedekind C. No additive genetic variance for tolerance to ethynylestradiol exposure in natural populations of brown trout ( Salmo trutta). Evol Appl 2019; 12:940-950. [PMID: 31080506 PMCID: PMC6503824 DOI: 10.1111/eva.12767] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
One of the most common and potent pollutants of freshwater habitats is 17-alpha-ethynylestradiol (EE2), a synthetic component of oral contraceptives that is not completely eliminated during sewage treatment and that threatens natural populations of fish. Previous studies found additive genetic variance for the tolerance against EE2 in different salmonid fishes and concluded that rapid evolution to this type of pollution seems possible. However, these previous studies were done with fishes that are lake-dwelling and hence typically less exposed to EE2 than river-dwelling species. Here, we test whether there is additive genetic variance for the tolerance against EE2 also in river-dwelling salmonid populations that have been exposed to various concentrations of EE2 over the last decades. We sampled 287 adult brown trout (Salmo trutta) from seven populations that show much genetic diversity within populations, are genetically differentiated, and that vary in their exposure to sewage-treated effluent. In order to estimate their potential to evolve tolerance to EE2, we collected their gametes to produce 730 experimental families in blockwise full-factorial in vitro fertilizations. We then raised 7,302 embryos singly in 2-ml containers each and either exposed them to 1 ng/L EE2 (an ecologically relevant concentration, i.e., 2 pg per embryo added in a single spike to the water) or sham-treated them. Exposure to EE2 increased embryo mortality, delayed hatching time, and decreased hatchling length. We found no population differences and no additive genetic variance for tolerance to EE2. We conclude that EE2 has detrimental effects that may adversely affect population even at a very low concentration, but that our study populations lack the potential for rapid genetic adaptation to this type of pollution. One possible explanation for the latter is that continuous selection over the last decades has depleted genetic variance for tolerance to this synthetic stressor.
Collapse
Affiliation(s)
| | - Anshu Uppal
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | - Emily Seddon
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | - David Nusbaumer
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | | | - Claus Wedekind
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
8
|
Vanessa Huml J, Taylor MI, Edwin Harris W, Sen R, Ellis JS. Neutral variation does not predict immunogenetic variation in the European grayling (Thymallus thymallus)-implications for management. Mol Ecol 2018; 27:4157-4173. [PMID: 30194888 DOI: 10.1111/mec.14864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/21/2018] [Accepted: 08/29/2018] [Indexed: 11/28/2022]
Abstract
Preservation of genetic diversity is critical to successful conservation, and there is increasing demand for the inclusion of ecologically meaningful genetic information in management decisions. Supportive breeding programmes are increasingly implemented to combat declines in many species, yet their effect on adaptive genetic variation is understudied. This is despite the fact that supportive breeding may interfere with natural evolutionary processes. Here, we assessed the performance of neutral and adaptive markers (major histocompatibility complex; MHC) to inform management of European grayling (Thymallus thymallus), which routinely involves supplementation of natural populations with hatchery-reared fish (stocking). This study is the first to characterize MH II DAA and DAB loci in grayling and to investigate immune genetic variation in relation to management practice in this species. High-throughput Illumina sequencing of "introduced," "stocked native" and "non-stocked native" populations revealed significantly higher levels of allelic richness and heterozygosity for MH markers than microsatellites exclusively in non-stocked native populations. Likewise, significantly lower differentiation at the MH II than for microsatellites was apparent when considering non-stocked native populations, but not stocked populations. We developed a simulation model to test the effects of relaxation of selection during the early life stage within captivity. Dependent on the census population size and stocking intensity, there may be long-term effects of stocking on MH II, but not neutral genetic diversity. This is consistent with our empirical results. This study highlights the necessity for considering adaptive genetic variation in conservation decisions and raises concerns about the efficiency of stocking as a management practice.
Collapse
Affiliation(s)
- J Vanessa Huml
- School of Science & Environment, Manchester Metropolitan University, Manchester, UK.,School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Martin I Taylor
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - W Edwin Harris
- School of Science & Environment, Manchester Metropolitan University, Manchester, UK
| | - Robin Sen
- School of Science & Environment, Manchester Metropolitan University, Manchester, UK
| | - Jonathan S Ellis
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
9
|
Consumption of carotenoids not increased by bacterial infection in brown trout embryos (Salmo trutta). PLoS One 2018; 13:e0198834. [PMID: 29897970 PMCID: PMC5999266 DOI: 10.1371/journal.pone.0198834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/25/2018] [Indexed: 02/02/2023] Open
Abstract
Carotenoids are organic pigment molecules that play important roles in signalling, control of oxidative stress, and immunity. Fish allocate carotenoids to their eggs, which gives them the typical yellow to red colouration and supports their resistance against microbial infections. However, it is still unclear whether carotenoids act mainly as a shield against infection or are used up during the embryos' immune defence. We investigated this question with experimental families produced from wild-caught brown trout (Salmo trutta). Singly raised embryos were either exposed to the bacterial pathogen Pseudomonas fluorescens or sham-treated at one of two stages during their development. A previous study on these experimental families reported positive effects of egg carotenoids on embryo growth and resistance against the infection. Here, we quantified carotenoid consumption, i.e. the active metabolization of carotenoids into compounds that are not other carotenoid types, in these infected and sham-infected maternal sib groups. We found that carotenoid contents mostly decreased during embryogenesis. However, these decreases were neither linked to the virulence induced by the pathogen nor dependent on the time point of infection. We conclude that egg carotenoids are not significantly used up by the embryos' immune defence.
Collapse
|
10
|
Thorn MW, Morbey YE. Egg size and the adaptive capacity of early life history traits in Chinook salmon ( Oncorhynchus tshawytscha). Evol Appl 2018; 11:205-219. [PMID: 29387156 PMCID: PMC5775492 DOI: 10.1111/eva.12531] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/03/2017] [Indexed: 12/14/2022] Open
Abstract
Offspring traits are greatly influenced by maternal effects, and these maternal effects may provide an important pathway through which populations can adapt to changing thermal environments. We investigated the effect of egg size on the among- and within-population variation in early life history traits among introduced Great Lakes Chinook salmon (Oncorhynchus tshawytscha) populations under varying thermal conditions. We reared Chinook salmon from three populations in a common-garden hatchery study at 6.5, 9.4, and 15.2°C and measured a variety of fitness-related traits during development. We found that most of the among-population variation in early life history traits was explained by egg size. However, the contribution of egg size to the among-population variation decreased with an increase in temperature suggesting that other effects, such as genetic, contribute at high temperature. Within populations, egg size explained much of the dam variance and maternal effect for traits in every temperature, whereas egg size generally had little to no influence on the sire variance and heritability. Overall, our results demonstrate the significant contribution egg size makes to shaping early life history phenotypes among and within populations, and suggest that egg size is an important pathway through which offspring phenotypes can evolve on contemporary timescales.
Collapse
Affiliation(s)
- Michael W Thorn
- Department of Biology University of Western Ontario London ON Canada
| | - Yolanda E Morbey
- Department of Biology University of Western Ontario London ON Canada
| |
Collapse
|
11
|
Wilkins LGE, Marques da Cunha L, Glauser G, Vallat A, Wedekind C. Environmental stress linked to consumption of maternally derived carotenoids in brown trout embryos ( Salmo trutta). Ecol Evol 2017; 7:5082-5093. [PMID: 28770048 PMCID: PMC5528241 DOI: 10.1002/ece3.3076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/29/2017] [Accepted: 04/25/2017] [Indexed: 01/09/2023] Open
Abstract
The yellow, orange, or red colors of salmonid eggs are due to maternally derived carotenoids whose functions are not sufficiently understood yet. Here, we studied the significance of naturally acquired carotenoids as maternal environmental effects during embryo development in brown trout (Salmo trutta). We collected eggs from wild females, quantified their egg carotenoid content, fertilized them in vitro in full‐factorial breeding blocks to separate maternal from paternal effects, and raised 3,278 embryos singly at various stress conditions until hatching. We found significant sire effects that revealed additive genetic variance for embryo survival and hatching time. Dam effects were 5.4 times larger than these sire effects, indicating that maternal environmental effects play an important role in determining embryo stress tolerance. Of the eight pigment molecules that we targeted, only astaxanthin, zeaxanthin (that both affected egg redness), and lutein were detected above our confidence thresholds. No strong link could be observed between carotenoid content in unfertilized eggs and embryo mortality or hatching timing. However, the consumption of carotenoids during our stress treatment was negatively correlated to embryo survival among sib groups and explained about 14% of the maternal environmental variance. We conclude that maternally derived carotenoids play a role in the ability of embryos to cope with environmental stress, but that the initial susceptibility to the organic pollution was mainly determined by other factors.
Collapse
Affiliation(s)
- Laetitia G E Wilkins
- Department of Ecology and Evolution Biophore, University of Lausanne Lausanne Switzerland.,Department of Environmental Sciences Policy & Management University of California Berkeley CA USA
| | - Lucas Marques da Cunha
- Department of Ecology and Evolution Biophore, University of Lausanne Lausanne Switzerland
| | - Gaëtan Glauser
- Neuchâtel Platform of Analytical Chemistry University of Neuchâtel Neuchâtel Switzerland
| | - Armelle Vallat
- Neuchâtel Platform of Analytical Chemistry University of Neuchâtel Neuchâtel Switzerland
| | - Claus Wedekind
- Department of Ecology and Evolution Biophore, University of Lausanne Lausanne Switzerland
| |
Collapse
|
12
|
Lehnert SJ, Butts IAE, Flannery EW, Peters KM, Heath DD, Pitcher TE. Effects of ovarian fluid and genetic differences on sperm performance and fertilization success of alternative reproductive tactics in Chinook salmon. J Evol Biol 2017; 30:1236-1245. [PMID: 28387056 DOI: 10.1111/jeb.13088] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 03/03/2017] [Accepted: 03/30/2017] [Indexed: 12/20/2022]
Abstract
In many species, sperm velocity affects variation in the outcome of male competitive fertilization success. In fishes, ovarian fluid (OF) released with the eggs can increase male sperm velocity and potentially facilitate cryptic female choice for males of specific phenotypes and/or genotypes. Therefore, to investigate the effect of OF on fertilization success, we measured sperm velocity and conducted in vitro competitive fertilizations with paired Chinook salmon (Oncorhynchus tshawytscha) males representing two alternative reproductive tactics, jacks (small sneaker males) and hooknoses (large guarding males), in the presence of river water alone and OF mixed with river water. To determine the effect of genetic differences on fertilization success, we genotyped fish at neutral (microsatellites) and functional [major histocompatibility complex (MHC) II ß1] markers. We found that when sperm were competed in river water, jacks sired significantly more offspring than hooknoses; however, in OF, there was no difference in paternity between the tactics. Sperm velocity was significantly correlated with paternity success in river water, but not in ovarian fluid. Paternity success in OF, but not in river water alone, was correlated with genetic relatedness between male and female, where males that were less related to the female attained greater paternity. We found no relationship between MHC II ß1 divergence between mates and paternity success in water or OF. Our results indicate that OF can influence the outcome of sperm competition in Chinook salmon, where OF provides both male tactics with fertilization opportunities, which may in part explain what maintains both tactics in nature.
Collapse
Affiliation(s)
- S J Lehnert
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - I A E Butts
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - E W Flannery
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada
| | - K M Peters
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada.,Department of Biological Sciences, University of Windsor, Windsor, ON, Canada
| | - D D Heath
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada.,Department of Biological Sciences, University of Windsor, Windsor, ON, Canada
| | - T E Pitcher
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada.,Department of Biological Sciences, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
13
|
Siddique MAM, Linhart O, Krejszeff S, Żarski D, Pitcher TE, Politis SN, Butts IAE. Paternal identity impacts embryonic development for two species of freshwater fish. Gen Comp Endocrinol 2017; 245:30-35. [PMID: 27401263 DOI: 10.1016/j.ygcen.2016.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 06/02/2016] [Accepted: 07/07/2016] [Indexed: 11/19/2022]
Abstract
Paternal, compared to maternal, contributions were believed to have only a limited influence on embryonic development and larval fitness traits in fishes. Therefore, the perspective of male influence on early life history traits has come under scrutiny. This study was conducted to determine parental effects on the rate of eyed embryos of Ide Leuciscus idus and Northern pike Esox lucius. Five sires and five dams from each species were crossed using a quantitative genetic breeding design and the resulting 25 sib groups of each species were reared to the embryonic eyed stage. We then partition variation in embryonic phenotypic performance to maternal, paternal, and parental interactions using the Restricted Maximum Likelihood (REML) model. Results showed that paternal, maternal, and the paternal×maternal interaction terms were highly significant for both species; clearly demonstrating that certain family combinations were more compatible than others. Paternal effects explained 20.24% of the total variance, which was 2-fold higher than the maternal effects (10.73%) in Ide, while paternal effects explained 18.9% of the total variance, which was 15-fold higher than the maternal effects (1.3%) in Northern pike. Together, these results indicate that male effects are of major importance during embryonic development for these species. Furthermore, this study demonstrates that genetic compatibility between sires and dams plays an important role and needs to be taken into consideration for reproduction of these and likely other economically important fish species.
Collapse
Affiliation(s)
- Mohammad Abdul Momin Siddique
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - Otomar Linhart
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Sławomir Krejszeff
- Department of Lake and River Fisheries, Warmia and Mazury University in Olsztyn, ul. Oczapowskiego 5, PL 10-719 Olsztyn-Kortowo, Poland
| | - Daniel Żarski
- Department of Lake and River Fisheries, Warmia and Mazury University in Olsztyn, ul. Oczapowskiego 5, PL 10-719 Olsztyn-Kortowo, Poland; Szent István University, Faculty of Agricultural and Environmental Sciences, Institute of Aquaculture and Environmental Safety, Department of Aquaculture, 2100 Gödöllő, Páter K. u. 1, Hungary
| | - Trevor E Pitcher
- Department of Biological Sciences, University of Windsor, Windsor, Ontario N9B 3P4, Canada; Great Lakes Institute for Environmental Research, University of Windsor, Ontario N9B 3P4, Canada
| | - Sebastian Nikitas Politis
- DTU Aqua-National Institute of Aquatic Resources, Section for Marine Ecology and Oceanography, Technical University of Denmark, Charlottenlund Slot, Jægersborg Allé 1, 2920 Charlottenlund, Denmark
| | - Ian Anthony Ernest Butts
- DTU Aqua-National Institute of Aquatic Resources, Section for Marine Ecology and Oceanography, Technical University of Denmark, Charlottenlund Slot, Jægersborg Allé 1, 2920 Charlottenlund, Denmark
| |
Collapse
|
14
|
Lewis JA, Pitcher TE. Tactic-specific benefits of polyandry in Chinook salmon Oncorhynchus tshawytscha. JOURNAL OF FISH BIOLOGY 2017; 90:1244-1256. [PMID: 27873318 DOI: 10.1111/jfb.13223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
This study examined whether polyandrous female Chinook salmon Oncorhynchus tshawytscha obtain benefits compared with monandrous females through an increase in hatching success. Both of the alternative reproductive tactics present in male O. tshawytscha (large hooknoses and small, precocious jacks) were used, such that eggs were either fertilized by a single male (from each tactic) or multiple males (using two males from the same or different tactics). The results show that fertilized eggs from the polyandrous treatments had a significantly higher hatching success than those from the monandrous treatments. It is also shown that sperm speed was positively related with offspring hatching success. Finally, there were tactic-specific effects on the benefits females received. The inclusion of jacks in any cross resulted in offspring with higher hatching success, with the cross that involved a male from each tactic providing offspring with the highest hatching success than any other cross. This study has important implications for the evolution of multiple mating and why it is so prevalent across taxa, while also providing knowledge on the evolution of mating systems, specifically those with alternative reproductive tactics.
Collapse
Affiliation(s)
- J A Lewis
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - T E Pitcher
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
- Department of Biological Sciences, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| |
Collapse
|
15
|
Wells SJ, Ji W, Gleeson D, Jones B, Dale J. Population Social Structure Facilitates Indirect Fitness Benefits from Extra-Pair Mating. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Gombar R, Pitcher TE, Lewis JA, Auld J, Vacratsis PO. Proteomic characterization of seminal plasma from alternative reproductive tactics of Chinook salmon ( Oncorhynchus tswatchysha ). J Proteomics 2017; 157:1-9. [DOI: 10.1016/j.jprot.2017.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/24/2017] [Accepted: 01/28/2017] [Indexed: 12/11/2022]
|
17
|
Loranger MJ, Bertram SM. The effect of sire dominance and aggression on fitness measures in a field cricket (Gryllus assimilis). Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Houde ALS, Wilson CC, Pitcher TE. Genetic architecture and maternal contributions of early-life survival in lake trout Salvelinus namaycush. JOURNAL OF FISH BIOLOGY 2016; 88:2088-2094. [PMID: 27097972 DOI: 10.1111/jfb.12965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/22/2016] [Indexed: 06/05/2023]
Abstract
The influences of additive, non-additive and maternal effects on early survival (uneyed embryo survival, eyed embryo survival, alevin survival and overall survival to first feeding) were quantified in lake trout Salvelinus namaycush using a 7 × 7 full-factorial breeding design. Maternal effects followed by non-additive genetic effects explained around one third of the phenotypic variance of the survival traits. Although the amount of additive genetic effects were low (<1%), suggesting a limited potential of the traits to respond to new selection pressures, how maternal and non-additive genetic effects may respond to selection under certain circumstances are discussed.
Collapse
Affiliation(s)
- A L S Houde
- Department of Biological Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - C C Wilson
- Aquatic Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Trent University, Peterborough, ON, K9J 7B8, Canada
| | - T E Pitcher
- Department of Biological Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada
| |
Collapse
|
19
|
Rosengrave P, Montgomerie R, Gemmell N. Cryptic female choice enhances fertilization success and embryo survival in chinook salmon. Proc Biol Sci 2016; 283:20160001. [PMID: 27009221 PMCID: PMC4822462 DOI: 10.1098/rspb.2016.0001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 02/24/2016] [Indexed: 12/27/2022] Open
Abstract
In this study, we investigated two potentially important intersexual postcopulatory gametic interactions in a population of chinook salmon (Oncorhynchus tshawytscha): (i) the effect of female ovarian fluid (OF) on the behaviour of spermatozoa during fertilization and (ii) the effects of multilocus heterozygosity (MLH) (as an index of male quality) and female-male genetic relatedness on sperm behaviour and male fertilization success when there is sperm competition in the presence of that OF. To do this, we conducted a series of in vitro competitive fertilization experiments and found that, when ejaculates from two males are competing for access to a single female's unfertilized eggs, fertilization success was significantly biased towards the male whose sperm swam fastest in the female's OF. Embryo survival--a measure of fitness--was also positively correlated with both sperm swimming speed in OF and male MLH, providing novel evidence that cryptic female choice is adaptive for the female, enhancing the early survival of her offspring and potentially influencing her fitness.
Collapse
Affiliation(s)
- Patrice Rosengrave
- Department of Anatomy, University of Otago, Dunedin, New Zealand Allan Wilson Centre for Molecular Ecology and Evolution, Department of Anatomy University of Otago, Dunedin, New Zealand
| | - Robert Montgomerie
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7 L 3N6
| | - Neil Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand Allan Wilson Centre for Molecular Ecology and Evolution, Department of Anatomy University of Otago, Dunedin, New Zealand
| |
Collapse
|
20
|
Lymbery RA, Kennington WJ, Evans JP. Fluorescent sperm offer a method for tracking the real-time success of ejaculates when they compete to fertilise eggs. Sci Rep 2016; 6:22689. [PMID: 26941059 PMCID: PMC4778040 DOI: 10.1038/srep22689] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/17/2016] [Indexed: 12/25/2022] Open
Abstract
Despite intensive research effort, many uncertainties remain in the field of gamete-level sexual selection, particularly in understanding how sperm from different males interact when competing for fertilisations. Here, we demonstrate the utility of broadcast spawning marine invertebrates for unravelling these mysteries, highlighting their mode of reproduction and, in some species, unusual patterns of mitochondrial inheritance. We present a method utilising both properties in the blue mussel, Mytilus galloprovincialis. In mytilids and many other bivalves, both sperm and egg mitochondria are inherited. We exploit this, using the vital mitochondrial dye MitoTracker, to track the success of sperm from individual males when they compete with those from rivals to fertilise eggs. We confirm that dying mitochondria has no adverse effects on in vitro measures of sperm motility (reflecting mitochondrial energetics) or sperm competitive fertilisation success. Therefore, we propose the technique as a powerful and logistically tractable tool for sperm competition studies. Importantly, our method allows the competitive fertilisation success of sperm from any male to be measured directly and disentangled from confounding effects of post-fertilisation embryo survival. Moreover, the mitochondrial dye has broader applications in taxa without paternal mitochondrial inheritance, for example by tracking the dynamics of competing ejaculates prior to fertilisation.
Collapse
Affiliation(s)
- Rowan A Lymbery
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley 6009, WA, Australia
| | - W Jason Kennington
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley 6009, WA, Australia
| | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley 6009, WA, Australia
| |
Collapse
|
21
|
Houde ALS, Pitcher TE. fullfact: an R package for the analysis of genetic and maternal variance components from full factorial mating designs. Ecol Evol 2016; 6:1656-65. [PMID: 26909144 PMCID: PMC4752957 DOI: 10.1002/ece3.1943] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 11/25/2022] Open
Abstract
Full factorial breeding designs are useful for quantifying the amount of additive genetic, nonadditive genetic, and maternal variance that explain phenotypic traits. Such variance estimates are important for examining evolutionary potential. Traditionally, full factorial mating designs have been analyzed using a two‐way analysis of variance, which may produce negative variance values and is not suited for unbalanced designs. Mixed‐effects models do not produce negative variance values and are suited for unbalanced designs. However, extracting the variance components, calculating significance values, and estimating confidence intervals and/or power values for the components are not straightforward using traditional analytic methods. We introduce fullfact – an R package that addresses these issues and facilitates the analysis of full factorial mating designs with mixed‐effects models. Here, we summarize the functions of the fullfact package. The observed data functions extract the variance explained by random and fixed effects and provide their significance. We then calculate the additive genetic, nonadditive genetic, and maternal variance components explaining the phenotype. In particular, we integrate nonnormal error structures for estimating these components for nonnormal data types. The resampled data functions are used to produce bootstrap‐t confidence intervals, which can then be plotted using a simple function. We explore the fullfact package through a worked example. This package will facilitate the analyses of full factorial mating designs in R, especially for the analysis of binary, proportion, and/or count data types and for the ability to incorporate additional random and fixed effects and power analyses.
Collapse
Affiliation(s)
- Aimee Lee S Houde
- Department of Biological Sciences University of Windsor Windsor Ontario N9B 3P4 Canada; Great Lakes Institute for Environmental Research University of Windsor Windsor Ontario N9B 3P4 Canada
| | - Trevor E Pitcher
- Department of Biological Sciences University of Windsor Windsor Ontario N9B 3P4 Canada; Great Lakes Institute for Environmental Research University of Windsor Windsor Ontario N9B 3P4 Canada
| |
Collapse
|
22
|
Sherman CDH, Ab Rahim ES, Olsson M, Careau V. The more pieces, the better the puzzle: sperm concentration increases gametic compatibility. Ecol Evol 2015; 5:4354-64. [PMID: 26664684 PMCID: PMC4667825 DOI: 10.1002/ece3.1684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 12/24/2022] Open
Abstract
The genetic benefits individuals receive from mate choice have been the focus of numerous studies, with several showing support for both intrinsic genetic benefits and compatibility effects on fertilization success and offspring viability. However, the robustness of these effects have rarely been tested across an ecologically relevant environmental gradient. In particular, sperm environment is a crucial factor determining fertilization success in many species, especially those with external fertilization. Here, we test the importance of sperm environment in mediating compatibility‐based selection on fertilization using a factorial breeding design. We detected a significant intrinsic male effect on fertilization success at only one of four sperm concentrations. Compatibility effects were significant at the two highest sperm concentrations and, interestingly, the magnitude of the compatibility effect consistently increased with sperm concentration. This suggests that females are able to modify the probability of sperm–egg fusion as the amount of sperm available increases.
Collapse
Affiliation(s)
- Craig D H Sherman
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria 3216 Australia
| | - Emi S Ab Rahim
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria 3216 Australia ; School of Biological Sciences Universiti Sains Malaysia 11800 Minden Penang Malaysia
| | - Mats Olsson
- School of Biological Sciences The University of Sydney Sydney New South Wales 2006 Australia
| | - Vincent Careau
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria 3216 Australia
| |
Collapse
|
23
|
Neff BD, Garner SR, Fleming IA, Gross MR. Reproductive success in wild and hatchery male coho salmon. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150161. [PMID: 26361548 PMCID: PMC4555853 DOI: 10.1098/rsos.150161] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/13/2015] [Indexed: 06/05/2023]
Abstract
Salmon produced by hatcheries have lower fitness in the wild than naturally produced salmon, but the factors underlying this difference remain an active area of research. We used genetic parentage analysis of alevins produced by experimentally mixed groups of wild and hatchery coho salmon (Oncorhynchus kisutch) to quantify male paternity in spawning hierarchies. We identify factors influencing paternity and revise previously published behavioural estimates of reproductive success for wild and hatchery males. We observed a strong effect of hierarchy size and hierarchy position on paternity: in two-male hierarchies, the first male sired 63% (±29%; s.d.) of the alevins and the second male 37% (±29%); in three-male hierarchies, the first male sired 64% (±26%), the second male 24% (±20%) and the third male 12% (±10%). As previously documented, hatchery males hold inferior positions in spawning hierarchies, but we also discovered that hatchery males had only 55-84% the paternity of wild males when occupying the same position within a spawning hierarchy. This paternity difference may result from inferior performance of hatchery males during sperm competition, female mate choice for wild males, or differential offspring survival. Regardless of its cause, the combination of inferior hierarchical position and inferior success at a position resulted in hatchery males having only half (51%) the reproductive success of wild males.
Collapse
Affiliation(s)
- Bryan D. Neff
- Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Shawn R. Garner
- Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Ian A. Fleming
- Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Newfoundland and Labrador, Canada A1C 5S7
| | - Mart R. Gross
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| |
Collapse
|
24
|
Schulte-Hostedde AI, Mastromonaco GF. Integrating evolution in the management of captive zoo populations. Evol Appl 2015; 8:413-22. [PMID: 26029256 PMCID: PMC4430766 DOI: 10.1111/eva.12258] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 02/27/2015] [Indexed: 01/12/2023] Open
Abstract
Both natural animal populations and those in captivity are subject to evolutionary forces. Evolutionary changes to captive populations may be an important, but poorly understood, factor that can affect the sustainability of these populations. The importance of maintaining the evolutionary integrity of zoo populations, especially those that are used for conservation efforts including reintroductions, is critical for the conservation of biodiversity. Here, we propose that a greater appreciation for an evolutionary perspective may offer important insights that can enhance the reproductive success and health for the sustainability of captive populations. We provide four examples and associated strategies that highlight this approach, including minimizing domestication (i.e., genetic adaptation to captivity), integrating natural mating systems into captive breeding protocols, minimizing the effects of translocation on variation in photoperiodism, and understanding the interplay of parasites/pathogens and inflammation. There are a myriad of other issues that may be important for captive populations, and we conclude that these may often be species specific. Nonetheless, an evolutionary perspective may mitigate some of the challenges currently facing captive populations that are important from a conservation perspective, including their sustainability.
Collapse
|
25
|
Brazzola G, Chèvre N, Wedekind C. Additive genetic variation for tolerance to estrogen pollution in natural populations of Alpine whitefish (Coregonus sp., Salmonidae). Evol Appl 2014; 7:1084-93. [PMID: 25553069 PMCID: PMC4231597 DOI: 10.1111/eva.12216] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/14/2014] [Indexed: 11/28/2022] Open
Abstract
The evolutionary potential of natural populations to adapt to anthropogenic threats critically depends on whether there exists additive genetic variation for tolerance to the threat. A major problem for water-dwelling organisms is chemical pollution, and among the most common pollutants is 17α-ethinylestradiol (EE2), the synthetic estrogen that is used in oral contraceptives and that can affect fish at various developmental stages, including embryogenesis. We tested whether there is variation in the tolerance to EE2 within Alpine whitefish. We sampled spawners from two species of different lakes, bred them in vitro in a full-factorial design each, and studied growth and mortality of embryos. Exposure to EE2 turned out to be toxic in all concentrations we tested (≥1 ng/L). It reduced embryo viability and slowed down embryogenesis. We found significant additive genetic variation in EE2-induced mortality in both species, that is, genotypes differed in their tolerance to estrogen pollution. We also found maternal effects on embryo development to be influenced by EE2, that is, some maternal sib groups were more susceptible to EE2 than others. In conclusion, the toxic effects of EE2 were strong, but both species demonstrated the kind of additive genetic variation that is necessary for an evolutionary response to this type of pollution.
Collapse
Affiliation(s)
- Gregory Brazzola
- Department of Ecology and Evolution, Biophore, University of Lausanne Lausanne, Switzerland
| | - Nathalie Chèvre
- Institute of Earth Surface Dynamics, University of Lausanne Lausanne, Switzerland
| | - Claus Wedekind
- Department of Ecology and Evolution, Biophore, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
26
|
Lehnert SJ, Love OP, Pitcher TE, Higgs DM, Heath DD. Multigenerational outbreeding effects in Chinook salmon (Oncorhynchus tshawytscha). Genetica 2014; 142:281-93. [DOI: 10.1007/s10709-014-9774-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/12/2014] [Indexed: 11/27/2022]
|
27
|
Chargé R, Sorci G, Saint Jalme M, Lesobre L, Hingrat Y, Lacroix F, Teplitsky C. Does recognized genetic management in supportive breeding prevent genetic changes in life-history traits? Evol Appl 2014; 7:521-32. [PMID: 24944566 PMCID: PMC4055174 DOI: 10.1111/eva.12150] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 02/02/2014] [Indexed: 01/16/2023] Open
Abstract
Supportive breeding is one of the last resort conservation strategies to avoid species extinction. Management of captive populations is challenging because several harmful genetic processes need to be avoided. Several recommendations have been proposed to limit these deleterious effects, but empirical assessments of these strategies remain scarce. We investigated the outcome of a genetic management in a supportive breeding for the Houbara Bustard. At the phenotypic level, we found an increase over generations in the mean values of gamete production, body mass and courtship display rate. Using an animal model, we found that phenotypic changes reflected genetic changes as evidenced by an increase in breeding values for all traits. These changes resulted from selection acting on gamete production and to a lesser extent on courtship display. Selection decreased over years for female gametes, emphasizing the effort of managers to increase the contribution of poor breeders to offspring recruited in the captive breeding. Our results shed light on very fast genetic changes in an exemplary captive programme that follows worldwide used recommendations and emphasizes the need of more empirical evidence of the effects of genetic guidelines on the prevention of genetic changes in supportive breeding.
Collapse
Affiliation(s)
- Rémi Chargé
- Centre d'Ecologie et de Sciences de la Conservation UMR 7204 CNRS/MNHN/UPMC, Muséum National d'Histoire Naturelle Paris, France ; Emirates Center for Wildlife Propagation (ECWP), Province de Boulemane Missour, Morocco ; Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyväskylä Jyväskylä, Finland
| | - Gabriele Sorci
- Biogéosciences, UMR CNRS 6282, Université de Bourgogne Dijon, France
| | - Michel Saint Jalme
- Centre d'Ecologie et de Sciences de la Conservation UMR 7204 CNRS/MNHN/UPMC, Muséum National d'Histoire Naturelle Paris, France
| | - Loïc Lesobre
- Reneco Wildlife Consultants LLC Abu Dhabi, United Arab Emirates
| | - Yves Hingrat
- Reneco Wildlife Consultants LLC Abu Dhabi, United Arab Emirates
| | | | - Céline Teplitsky
- Centre d'Ecologie et de Sciences de la Conservation UMR 7204 CNRS/MNHN/UPMC, Muséum National d'Histoire Naturelle Paris, France
| |
Collapse
|
28
|
Stelkens RB, Pompini M, Wedekind C. Testing the effects of genetic crossing distance on embryo survival within a metapopulation of brown trout (Salmo trutta). CONSERV GENET 2014. [DOI: 10.1007/s10592-013-0545-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Yeates SE, Diamond SE, Einum S, Emerson BC, Holt WV, Gage MJG. Cryptic choice of conspecific sperm controlled by the impact of ovarian fluid on sperm swimming behavior. Evolution 2013; 67:3523-36. [PMID: 24299405 PMCID: PMC3912916 DOI: 10.1111/evo.12208] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 06/29/2013] [Indexed: 12/19/2022]
Abstract
Despite evidence that variation in male-female reproductive compatibility exists in many fertilization systems, identifying mechanisms of cryptic female choice at the gamete level has been a challenge. Here, under risks of genetic incompatibility through hybridization, we show how salmon and trout eggs promote fertilization by conspecific sperm. Using in vitro fertilization experiments that replicate the gametic microenvironment, we find complete interfertility between both species. However, if either species' ova were presented with equivalent numbers of both sperm types, conspecific sperm gained fertilization precedence. Surprisingly, the species' identity of the eggs did not explain this cryptic female choice, which instead was primarily controlled by conspecific ovarian fluid, a semiviscous, protein-rich solution that bathes the eggs and is released at spawning. Video analyses revealed that ovarian fluid doubled sperm motile life span and straightened swimming trajectory, behaviors allowing chemoattraction up a concentration gradient. To confirm chemoattraction, cell migration tests through membranes containing pores that approximated to the egg micropyle showed that conspecific ovarian fluid attracted many more spermatozoa through the membrane, compared with heterospecific fluid or water. These combined findings together identify how cryptic female choice can evolve at the gamete level and promote reproductive isolation, mediated by a specific chemoattractive influence of ovarian fluid on sperm swimming behavior.
Collapse
Affiliation(s)
- Sarah E Yeates
- School of Biological Sciences, University of East AngliaNorwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Sian E Diamond
- School of Biological Sciences, University of East AngliaNorwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Sigurd Einum
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NO-7491Trondheim, Norway
- Norwegian Institute for Nature Research, NO-7485Trondheim, Norway
| | - Brent C Emerson
- School of Biological Sciences, University of East AngliaNorwich Research Park, Norwich, NR4 7TJ, United Kingdom
- Island Ecology and Evolution Research Group (IPNA-CSIC), C/Astrofísico Francisco Sánchez 338206 La Laguna, Tenerife, Canary Islands, Spain
| | - William V Holt
- Academic Department of Reproductive and Developmental Medicine, University of SheffieldLevel 4, Jessop Wing, Tree Root Walk, Sheffield, S10 2SF, United Kingdom
| | - Matthew J G Gage
- School of Biological Sciences, University of East AngliaNorwich Research Park, Norwich, NR4 7TJ, United Kingdom
| |
Collapse
|
30
|
Lymbery RA, Evans JP. Genetic variation underlies temperature tolerance of embryos in the sea urchin Heliocidaris erythrogramma armigera. J Evol Biol 2013; 26:2271-82. [PMID: 23980665 DOI: 10.1111/jeb.12225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 11/29/2022]
Abstract
Ocean warming can alter natural selection on marine systems, and in many cases, the long-term persistence of affected populations will depend on genetic adaptation. In this study, we assess the potential for adaptation in the sea urchin Heliocidaris erythrogramma armigera, an Australian endemic, that is experiencing unprecedented increases in ocean temperatures. We used a factorial breeding design to assess the level of heritable variation in larval hatching success at two temperatures. Fertilized eggs from each full-sibling family were tested at 22 °C (current spawning temperature) and 25 °C (upper limit of predicted warming this century). Hatching success was significantly lower at higher temperatures, confirming that ocean warming is likely to exert selection on this life-history stage. Our analyses revealed significant additive genetic variance and genotype-by-environment interactions underlying hatching success. Consistent with prior work, we detected significant nonadditive (sire-by-dam) variance in hatching success, but additionally found that these interactions were modified by temperature. Although these findings suggest the potential for genetic adaptation, any evolutionary responses are likely to be influenced (and possibly constrained) by complex genotype-by-environment and sire-by-dam interactions and will additionally depend on patterns of genetic covariation with other fitness traits.
Collapse
Affiliation(s)
- R A Lymbery
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley, 6009, WA, Australia
| | | |
Collapse
|
31
|
Johnson SL, Brockmann HJ. Parental effects on early development: testing for indirect benefits of polyandry. Behav Ecol 2013. [DOI: 10.1093/beheco/art056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
32
|
Rodriguez-Barreto D, Consuegra S, Jerez S, Cejas JR, Martín V, Lorenzo A. Using molecular markers for pedigree reconstruction of the greater amberjack (Seriola dumerili) in the absence of parental information. Anim Genet 2013; 44:596-600. [PMID: 23506386 DOI: 10.1111/age.12039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2013] [Indexed: 11/28/2022]
Abstract
Ensuring appropriate levels of genetic diversity in captive populations is essential to avoid inbreeding and loss of rare alleles by genetic drift. Pedigree reconstruction and parentage analysis in the absence of parental genotypes can be a challenging task that relies in the assignment of sibship relationships among the offspring. Here, we used eight highly variable microsatellite markers and three different assignment methods to reconstruct the most likely genotypes of a parental group of wild Seriola dumerili fish based on the genotypes of six cohorts of their offspring, to assess their relative contributions to the offspring. We found that a combination of the four most variable microsatellites was enough to identify the number of parents and their contribution to the offspring, suggesting that the variability of the markers can be more critical than the number of markers. Estimated effective population sizes were lower than the number of breeders and variable among years. The results suggest unequal parental contribution that should be accounted for breeding programs in the future.
Collapse
Affiliation(s)
- D Rodriguez-Barreto
- Departamento de Biología Animal, Facultad de Biología, Universidad de La Laguna, Tenerife, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Parental influences on pathogen resistance in brown trout embryos and effects of outcrossing within a river network. PLoS One 2013; 8:e57832. [PMID: 23451273 PMCID: PMC3579773 DOI: 10.1371/journal.pone.0057832] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/26/2013] [Indexed: 11/19/2022] Open
Abstract
Phenotypic plasticity can increase tolerance to heterogeneous environments but the elevations and slopes of reaction norms are often population specific. Disruption of locally adapted reaction norms through outcrossing can lower individual viability. Here, we sampled five genetically distinct populations of brown trout (Salmo trutta) from within a river network, crossed them in a full-factorial design, and challenged the embryos with the opportunistic pathogen Pseudomonas fluorescens. By virtue of our design, we were able to disentangle effects of genetic crossing distance from sire and dam effects on early life-history traits. While pathogen infection did not increase mortality, it was associated with delayed hatching of smaller larvae with reduced yolk sac reserves. We found no evidence of a relationship between genetic distance (W, FST) and the expression of early-life history traits. Moreover, hybrids did not differ in phenotypic means or reaction norms in comparison to offspring from within-population crosses. Heritable variation in early life-history traits was found to remain stable across the control and pathogen environments. Our findings show that outcrossing within a rather narrow geographical scale can have neutral effects on F1 hybrid viability at the embryonic stage, i.e. at a stage when environmental and genetic effects on phenotypes are usually large.
Collapse
|
34
|
Madison BN, Heath JW, Heath DD, Bernier NJ. Effect of parental mate choice and semi-natural early rearing environment on the growth performance and seawater tolerance of Chinook salmon Oncorhynchus tshawytscha. JOURNAL OF FISH BIOLOGY 2013; 82:618-636. [PMID: 23398072 DOI: 10.1111/jfb.12018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 11/05/2012] [Indexed: 06/01/2023]
Abstract
To assess whether parental mate choice and early rearing in a semi-natural spawning channel may benefit the culture of Chinook salmon Oncorhynchus tshawytscha, 90 day growth trials were conducted using hatchery O. tshawytscha (hatchery), mate choice O. tshawytscha (i.e. the offspring of parents allowed to choose their own mate) that spent 6 months in a spawning channel prior to hatchery rearing (channel) and mate choice O. tshawytscha transferred to the hatchery as fertilized eggs (transfer). During the growth trials, all O. tshawytscha stocks were reared separately or in either mixed channel and hatchery or transfer and hatchery groups for comparison of performance to traditional practices. After 60 days in fresh water, all O. tshawytscha were transferred to seawater for an additional 30 days. Reared separately, all stocks grew c. 4.5 fold over 90 days but specific growth rate (G) and food conversion efficiency were higher in fresh water than after seawater transfer on day 60. In contrast, hatchery O. tshawytscha from mixed hatchery and channel and hatchery and transfer growth trials had a larger mass and length gain than their counterparts on day 60, but reduced G in seawater. In general, plasma levels of growth hormone, insulin-like growth factor I and cortisol did not differ among any O. tshawytscha groups in either the separate or mixed growth trials. Despite some differences in gill Na(+),K(+)-ATPase activity, all O. tshawytscha had a high degree of seawater tolerance and experienced virtually no perturbation in plasma chloride following seawater transfer. Overall, all O. tshawytscha exhibited similar growth and seawater performance under traditional hatchery conditions and any benefit derived from either parental mate choice or semi-natural early rearing environment was only observed in the presence of mutual competition with hatchery O. tshawytscha.
Collapse
Affiliation(s)
- B N Madison
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | | | | | | |
Collapse
|
35
|
Falica BK, Higgs DM. Paternal Genetic Effects on Offspring Swimming Performance Vary with Age of Juvenile Chinook Salmon, Oncorhynchus tshawytscha. Evol Biol 2012. [DOI: 10.1007/s11692-012-9217-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Flannery EW, Butts IAE, Słowińska M, Ciereszko A, Pitcher TE. Reproductive investment patterns, sperm characteristics, and seminal plasma physiology in alternative reproductive tactics of Chinook salmon (Oncorhynchus tshawytscha). Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.01980.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Erin W. Flannery
- Department of Biological Sciences; University of Windsor; Windsor; Ontario; Canada; N9B 3P4
| | - Ian A. E. Butts
- Department of Biological Sciences; University of Windsor; Windsor; Ontario; Canada; N9B 3P4
| | - Mariola Słowińska
- Semen Biology Group; Institute of Animal Reproduction and Food Research; Polish Academy of Sciences; 10-747; Olsztyn; Poland
| | - Andrzej Ciereszko
- Semen Biology Group; Institute of Animal Reproduction and Food Research; Polish Academy of Sciences; 10-747; Olsztyn; Poland
| | - Trevor E. Pitcher
- Department of Biological Sciences; University of Windsor; Windsor; Ontario; Canada; N9B 3P4
| |
Collapse
|
37
|
Aykanat T, Heath JW, Dixon B, Heath DD. Additive, non-additive and maternal effects of cytokine transcription in response to immunostimulation with Vibrio vaccine in Chinook salmon (Oncorhynchus tshawytscha). Immunogenetics 2012; 64:691-703. [PMID: 22684247 DOI: 10.1007/s00251-012-0624-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/25/2012] [Indexed: 12/31/2022]
Abstract
Estimation of quantitative genetic parameters is important for improving salmonid broodstock management in commercial and government hatcheries. Using a replicated 2 × 2 factorial breeding design (48 families and 192 individuals), we partitioned early immune response transcription variation into additive genetic, non-additive genetic, and maternal components in juvenile Chinook salmon (Oncorhynchus tshawytscha). Transcription of four cytokine genes (IL1, TNF-α, IL-8, IL8-R) and two control genes (IgM and RPS-11) was measured relative to an endogenous control (EF1a) before and 24 h after immune stimulation with Vibrio vaccine. Additive genetic variation was not significant for cytokine transcription and heritability ranged from 0.44 (in pre-challenge IL1) to 0.04 (in post-challenge TNF-α). Non-additive genetic variance was significant in post-challenge IL1 (18 %) and TNF-α (12 %) while maternal effects contributed to pre-challenge cytokine transcription. Cytokine transcription co-expressed within but not between pre- and post-challenge states. The lack of additive genetic effects indicates that cytokine transcription is not a likely candidate for selection programs to improve immune function in Chinook salmon. Our results add to the growing evidence that non-additivity in salmon is common and contributes to our understanding of the genetic architecture of transcription. This indicates that transcription variation may act to maintain genetic variation and facilitate rapid adaptive response in salmonids.
Collapse
Affiliation(s)
- Tutku Aykanat
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada N9B 3P4
| | | | | | | |
Collapse
|
38
|
Prokop ZM, Michalczyk Ł, Drobniak SM, Herdegen M, Radwan J. META-ANALYSIS SUGGESTS CHOOSY FEMALES GET SEXY SONS MORE THAN “GOOD GENES”. Evolution 2012; 66:2665-73. [DOI: 10.1111/j.1558-5646.2012.01654.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Johnson SL, Brockmann HJ. Alternative reproductive tactics in female horseshoe crabs. Behav Ecol 2012. [DOI: 10.1093/beheco/ars063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
40
|
Butts IAE, Love OP, Farwell M, Pitcher TE. Primary and secondary sexual characters in alternative reproductive tactics of Chinook salmon: Associations with androgens and the maturation-inducing steroid. Gen Comp Endocrinol 2012; 175:449-56. [PMID: 22172341 DOI: 10.1016/j.ygcen.2011.11.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 11/18/2011] [Accepted: 11/24/2011] [Indexed: 11/17/2022]
Abstract
The proximate mechanisms that underlie the evolution of within-sex variation in mating behavior, sexual characters and reproductive investment patterns are still poorly understood. Species exhibiting alternative reproductive tactics (ARTs) are ideal model systems to examine these mechanisms. Chinook salmon (Oncorhynchus tshawytscha) exhibits two distinct ARTs: hooknoses, which are large males that establish spawning dominance hierarchies via intense male-male competition and jacks, which are smaller precocious sneaking males that steal fertilizations via sperm competition. In this study, we examine plasma testosterone (T), 11-ketotestosterone (11-KT) and maturation-inducing steroid (MIS; 17α,20β-dihydroxy-4-pregnen-3-one) profiles of spawning hooknoses and jacks. Furthermore, we examine relationships between androgens and primary (gonad mass, gonadosomatic index and sperm traits) and secondary (total mass, body size, hump depth and kype length) sexual characters. Relationships between MIS and sperm traits are also examined. We found that hooknoses and jacks did not significantly differ in terms of plasma T, 11-KT or MIS concentrations. Moreover, we found significant positive relationships between levels of both androgens within each ART. There were no significant relationships between androgens, MIS and sperm traits. T and 11-KT concentrations co-varied positively with gonad investment and kype length in jacks. In hooknoses, 11-KT concentration was positively related to total mass, hump depth and condition factor. Overall, these findings suggest that there are differential androgen effects for each of the ARTs in Chinook salmon.
Collapse
Affiliation(s)
- Ian A E Butts
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B 3P4.
| | | | | | | |
Collapse
|
41
|
Burt JM, Hinch SG, Patterson DA. Parental identity influences progeny responses to incubation thermal stress in sockeye salmon Onchorhynchus nerka. JOURNAL OF FISH BIOLOGY 2012; 80:444-462. [PMID: 22268440 DOI: 10.1111/j.1095-8649.2011.03190.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The influence of individual parentage on progeny responses to early developmental temperature stress was examined in a cross-fertilization experiment using sockeye salmon Oncorhynchus nerka. Differences in survival, hatch timing and size were examined among five paternally linked and five maternally linked offspring families (Weaver Creek population, British Columbia, Canada) incubated at 12, 14 and 16° C from just after fertilization to hatch. Mean embryonic survival was significantly lower at 14 and 16° C; however, offspring families had substantially different survival responses across the thermal gradient (crossing reaction norms). Within temperature treatments, substantial variation in embryonic survival, alevin mass, time-to-hatch and hatch duration were attributable to family identity; however, most traits were governed by significant temperature-family interactions. For embryonic survival, large differences between families at 16° C were due to both female and male spawner influence, whereas inter-family differences were obscured at 14° C (high intra-family variation), and minimal at 12° C (only maternal influence detected). Despite post-hatch rearing under a common cool thermal regime, persistent effects of both temperature and parentage were detected in alevin and 3 week-old fry. Collectively, these findings highlight the crucial role that parental influences on offspring may have in shaping future selection within salmonid populations exposed to elevated thermal regimes. An increased understanding of parental and temperature influences and their persistence in early development will be essential to developing a more comprehensive view of population spawning success and determining the adaptive capacity of O. nerka populations in the face of environmental change.
Collapse
Affiliation(s)
- J M Burt
- Pacific Salmon Ecology and Conservation Laboratory, Centre for Applied Conservation Research, Department of Forest Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, V6T 1Z4 Canada
| | | | | |
Collapse
|
42
|
Chargé R, Sorci G, Hingrat Y, Lacroix F, Saint Jalme M. Immune-mediated change in the expression of a sexual trait predicts offspring survival in the wild. PLoS One 2011; 6:e25305. [PMID: 21984912 PMCID: PMC3184954 DOI: 10.1371/journal.pone.0025305] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 08/31/2011] [Indexed: 11/24/2022] Open
Abstract
Background The “good genes” theory of sexual selection postulates that females choose mates that will improve their offspring's fitness through the inheritance of paternal genes. In spite of the attention that this hypothesis has given rise to, the empirical evidence remains sparse, mostly because of the difficulties of controlling for the many environmental factors that may covary with both the paternal phenotype and offspring fitness. Here, we tested the hypothesis that offspring sired by males of a preferred phenotype should have better survival in an endangered bird, the houbara bustard (Chlamydotis undulata undulata). Methodology/Principal Findings We tested if natural and experimentally-induced variation in courtship display (following an inflammatory challenge) predicts the survival of offspring. Chicks were produced by artificial insemination of females, ensuring that any effect on survival could only arise from the transfer of paternal genes. One hundred and twenty offspring were equipped with radio transmitters, and their survival monitored in the wild for a year. This allowed assessment of the potential benefits of paternal genes in a natural setting, where birds experience the whole range of environmental hazards. Although natural variation in sire courtship display did not predict offspring survival, sires that withstood the inflammatory insult and maintained their courtship activity sired offspring with the best survival upon release. Conclusions This finding is relevant both to enlighten the debate on “good genes” sexual selection and the management of supportive breeding programs.
Collapse
Affiliation(s)
- Rémi Chargé
- Muséum national d'Histoire naturelle, Conservation des Espèces, Restauration et Suivi des Populations, Paris, France
- Emirates Center for Wildlife Propagation, Province de Boulemane, Missour, Morocco
| | - Gabriele Sorci
- Université de Bourgogne, Unité Mixte de Recherche, Centre national de la recherche scientifique, Dijon, France
- * E-mail:
| | - Yves Hingrat
- Emirates Center for Wildlife Propagation, Province de Boulemane, Missour, Morocco
| | - Frédéric Lacroix
- Emirates Center for Wildlife Propagation, Province de Boulemane, Missour, Morocco
| | - Michel Saint Jalme
- Muséum national d'Histoire naturelle, Conservation des Espèces, Restauration et Suivi des Populations, Paris, France
| |
Collapse
|
43
|
Nystrand M, Dowling DK, Simmons LW. Complex genotype by environment interactions and changing genetic architectures across thermal environments in the Australian field cricket, Teleogryllus oceanicus. BMC Evol Biol 2011; 11:222. [PMID: 21791118 PMCID: PMC3161011 DOI: 10.1186/1471-2148-11-222] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 07/27/2011] [Indexed: 12/02/2022] Open
Abstract
Background Biologists studying adaptation under sexual selection have spent considerable effort assessing the relative importance of two groups of models, which hinge on the idea that females gain indirect benefits via mate discrimination. These are the good genes and genetic compatibility models. Quantitative genetic studies have advanced our understanding of these models by enabling assessment of whether the genetic architectures underlying focal phenotypes are congruent with either model. In this context, good genes models require underlying additive genetic variance, while compatibility models require non-additive variance. Currently, we know very little about how the expression of genotypes comprised of distinct parental haplotypes, or how levels and types of genetic variance underlying key phenotypes, change across environments. Such knowledge is important, however, because genotype-environment interactions can have major implications on the potential for evolutionary responses to selection. Results We used a full diallel breeding design to screen for complex genotype-environment interactions, and genetic architectures underlying key morphological traits, across two thermal environments (the lab standard 27°C, and the cooler 23°C) in the Australian field cricket, Teleogryllus oceanicus. In males, complex three-way interactions between sire and dam parental haplotypes and the rearing environment accounted for up to 23 per cent of the scaled phenotypic variance in the traits we measured (body mass, pronotum width and testes mass), and each trait harboured significant additive genetic variance in the standard temperature (27°C) only. In females, these three-way interactions were less important, with interactions between the paternal haplotype and rearing environment accounting for about ten per cent of the phenotypic variance (in body mass, pronotum width and ovary mass). Of the female traits measured, only ovary mass for crickets reared at the cooler temperature (23°C), exhibited significant levels of additive genetic variance. Conclusions Our results show that the genetics underlying phenotypic expression can be complex, context-dependent and different in each of the sexes. We discuss the implications of these results, particularly in terms of the evolutionary processes that hinge on good and compatible genes models.
Collapse
Affiliation(s)
- Magdalena Nystrand
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
| | | | | |
Collapse
|
44
|
JANHUNEN MATTI, KEKÄLÄINEN JUKKA, KORTET RAINE, HYVÄRINEN PEKKA, PIIRONEN JORMA. No evidence for an indirect benefit from female mate preference in Arctic charr Salvelinus alpinus, but female ornamentation decreases offspring viability. Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2011.01659.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Eizaguirre C, Lenz TL. Major histocompatibility complex polymorphism: dynamics and consequences of parasite-mediated local adaptation in fishes. JOURNAL OF FISH BIOLOGY 2010; 77:2023-2047. [PMID: 21133915 DOI: 10.1111/j.1095-8649.2010.02819.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Parasitism is a common form of life and represents a strong selective pressure for host organisms. In response to this evolutionary pressure, vertebrates have developed genetically coded defences such as the major histocompatibility complex (MHC). Mechanisms of parasite-mediated selection not only maintain outstanding polymorphism in these genes but have also been proposed to further promote host population divergence and ultimately speciation because it can drive evolution of local adaptation in which MHC genes play a crucial role. This review first highlights the dynamics and complexity of parasite-mediated selection in natural systems, which not only depends on dominating parasite strategies and on the taxonomic diversity of the parasite community but also includes the differences in parasite communities between habitats and niches, creating divergent selection on locally adapted populations. Then the different ways in which MHC genes potentially allow vertebrates to respond to these dynamics and to adapt locally are outlined. Finally, it is proposed that varying selection strength in time and space may lead to variation in the strength of precopulatory reproductive isolation which has evolved to maintain local adaptation.
Collapse
Affiliation(s)
- C Eizaguirre
- Leibniz Institute for Marine Sciences (IFM GEOMAR), Department of Evolutionary Ecology of Marine Fishes, Düsternbrooker Weg 20, 24105, Kiel, Germany.
| | | |
Collapse
|
46
|
Janhunen M, Peuhkuri N, Primmer CR, Kolari I, Piironen J. Does Breeding Ornamentation Signal Genetic Quality in Arctic charr, Salvelinus alpinus? Evol Biol 2010. [DOI: 10.1007/s11692-010-9100-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Jacob A, Evanno G, Von Siebenthal BA, Grossen C, Wedekind C. Effects of different mating scenarios on embryo viability in brown trout. Mol Ecol 2010; 19:5296-307. [PMID: 21040055 DOI: 10.1111/j.1365-294x.2010.04884.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mating with attractive or dominant males is often predicted to offer indirect genetic benefits to females, but it is still largely unclear how important such non-random mating can be with regard to embryo viability. We sampled a natural population of adult migratory brown trout (Salmo trutta), bred them in vitro in a half-sib breeding design to separate genetic from maternal environmental effects, raised 2098 embryos singly until hatching, and exposed them experimentally to different levels of pathogen stress at a late embryonic stage. We found that the embryos' tolerance to the induced pathogen stress was linked to the major histocompatibility complex (MHC) of their parents, i.e. certain MHC genotypes appeared to provide better protection against infection than others. We also found significant additive genetic variance for stress tolerance. Melanin-based dark skin patterns revealed males with 'good genes', i.e. embryos fathered by dark coloured males had a high tolerance to infection. Mating with large and dominant males would, however, not improve embryo viability when compared to random mating. We used simulations to provide estimates of how mate choice based on MHC or melanin-based skin patterns would influence embryos' tolerance to the experimentally induced pathogen stress.
Collapse
Affiliation(s)
- Alain Jacob
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
48
|
Garcia-Gonzalez F, Evans JP. Fertilization success and the estimation of genetic variance in sperm competitiveness. Evolution 2010; 65:746-56. [PMID: 20880262 DOI: 10.1111/j.1558-5646.2010.01127.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A key question in sexual selection is whether the ability of males to fertilize eggs under sperm competition exhibits heritable genetic variation. Addressing this question poses a significant problem, however, because a male's ability to win fertilizations ultimately depends on the competitive ability of rival males. Attempts to partition genetic variance in sperm competitiveness, as estimated from measures of fertilization success, must therefore account for stochastic effects due to the random sampling of rival sperm competitors. In this contribution, we suggest a practical solution to this problem. We advocate the use of simple cross-classified breeding designs for partitioning sources of genetic variance in sperm competitiveness and fertilization success and show how these designs can be used to avoid stochastic effects due to the random sampling of rival sperm competitors. We illustrate the utility of these approaches by simulating various scenarios for estimating genetic parameters in sperm competitiveness, and show that the probability of detecting additive genetic variance in this trait is restored when stochastic effects due to the random sampling of rival sperm competitors are controlled. Our findings have important implications for the study of the evolutionary maintenance of polyandry.
Collapse
Affiliation(s)
- Francisco Garcia-Gonzalez
- Centre for Evolutionary Biology, School of Animal Biology, The University of Western Australia, Nedlands, WA 6009, Australia.
| | | |
Collapse
|
49
|
Janhunen M, Piironen J, Peuhkuri N. Parental effects on embryonic viability and growth in Arctic charr Salvelinus alpinus at two incubation temperatures. JOURNAL OF FISH BIOLOGY 2010; 76:2558-2570. [PMID: 20557608 DOI: 10.1111/j.1095-8649.2010.02648.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The parental influences on three progeny traits (survival to eyed-embryo stage, post-hatching body length and yolk-sac volume) of Arctic charr Salvelinus alpinus were studied under two thermal conditions (2 and 7 degrees C) using a factorial mating design. The higher temperature resulted in elevated mortality rates and less advanced development at hatching. Survival was mostly attributable to maternal effects at both temperatures, but the variation among families was dependent on egg size only at the low temperature. No additive genetic variation (or pure sire effect) could be observed, whereas the non-additive genetic effects (parental combination) contributed to offspring viability at 2 degrees C. In contrast, any observable genetic variance in survival was lost at 7 degrees C, most likely due to the increased environmental variance. Irrespective of temperature, dam and sire-dam interaction contributed significantly to the phenotypic variation in both larval length and yolk size. A significant proportion of the variation in larval length was also due to the sire effect at 2 degrees C. Maternal effects were mediated partly through egg size, but as a whole, they decreased in importance at the high temperature, enabling a concomitant increase in non-additive genetic effects. For larval length, however, the additive component, like maternal effects, decreased at 7 degrees C. The present results suggest that an exposure to thermal stress during incubation can modify the genetic architecture of early developmental traits in S. alpinus and presumably constrain their short-term adaptive potential and evolvability by increasing the amount of environmentally induced variation.
Collapse
Affiliation(s)
- M Janhunen
- Joensuu Game and Fisheries Research, Yliopistokatu 6, FI-80100 Joensuu, Finland.
| | | | | |
Collapse
|
50
|
EVANS ML, NEFF BD, HEATH DD. Quantitative genetic and translocation experiments reveal genotype-by-environment effects on juvenile life-history traits in two populations of Chinook salmon (Oncorhynchus tshawytscha). J Evol Biol 2010; 23:687-98. [DOI: 10.1111/j.1420-9101.2010.01934.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|