1
|
Rivas J, Fuentes A, Maria A, Bergerot B, Siaussat D, Renault D. Effects of phthalate and bisphenol plasticizers on the activity of glycolytic enzymes of the moth Spodoptera littoralis. JOURNAL OF INSECT PHYSIOLOGY 2023; 149:104533. [PMID: 37380125 DOI: 10.1016/j.jinsphys.2023.104533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Environmental plastic pollution has significantly increased in the recent decades, and severely impacts economies, human and biodiversity health. Plastics are made of several chemical additives, including bisphenol and phthalate plasticizers such as bisphenol A (BPA) and Di(2-ethylhexyl)phthalate (DEHP). In some animal species, both BPA and DEHP are known as endocrine disruptor compounds, and can alter physiological and metabolic homeostasis, reproduction, development and/or behavior. To date, the impacts of BPA and DEHP have mainly focused on vertebrates, and to a lesser extent, on aquatic invertebrates. Yet, the few studies which examined the effects of DEHP on terrestrial insects also revealed the impacts this pollutant can have on development, hormone titrations, and metabolic profiles. In particular, it has been hypothesized in the Egyptian cotton leafworm Spodoptera littoralis that the observed metabolic alterations could result from the energetic costs necessary for DEHP detoxification or to the dysregulation of hormonally-controlled enzymatic activities. To get additional insights into the physiological effects of bisphenol and phthalate plasticizers on the moth S. littoralis, larvae were fed with food contaminated by BPA, DEHP, or the mixture of both compounds. Then, activities of four glycolytic enzymes, hexokinase, phosphoglucose isomerase, phosphofructokinase, and pyruvate kinase were measured. BPA and/or DEHP had no effects on the activities of phosphofructokinase and pyruvate kinase. Conversely, BPA-contaminated larvae were characterized by a 1.9-fold increase in phosphoglucose isomerase activity, and BPA + DEHP-fed larvae had highly variable hexokinase activity. Overall, since no disruption of glycolytic enzyme was observed in DEHP-contaminated larvae, our work tended to demonstrate that exposure to bisphenol and DEHP increased the amount of oxidative stress experienced.
Collapse
Affiliation(s)
- Johanna Rivas
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, Évolution)] - UMR 6553, F-35000 Rennes, France; Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, F-75005 Paris, France.
| | - Annabelle Fuentes
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, F-75005 Paris, France
| | - Annick Maria
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, F-75005 Paris, France
| | - Benjamin Bergerot
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, Évolution)] - UMR 6553, F-35000 Rennes, France
| | - David Siaussat
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, F-75005 Paris, France
| | - David Renault
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, Évolution)] - UMR 6553, F-35000 Rennes, France.
| |
Collapse
|
2
|
Hill GM, Kawahara AY, Daniels JC, Bateman CC, Scheffers BR. Climate change effects on animal ecology: butterflies and moths as a case study. Biol Rev Camb Philos Soc 2021; 96:2113-2126. [PMID: 34056827 PMCID: PMC8518917 DOI: 10.1111/brv.12746] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/10/2023]
Abstract
Butterflies and moths (Lepidoptera) are one of the most studied, diverse, and widespread animal groups, making them an ideal model for climate change research. They are a particularly informative model for studying the effects of climate change on species ecology because they are ectotherms that thermoregulate with a suite of physiological, behavioural, and phenotypic traits. While some species have been negatively impacted by climatic disturbances, others have prospered, largely in accordance with their diversity in life-history traits. Here we take advantage of a large repertoire of studies on butterflies and moths to provide a review of the many ways in which climate change is impacting insects, animals, and ecosystems. By studying these climate-based impacts on ecological processes of Lepidoptera, we propose appropriate strategies for species conservation and habitat management broadly across animals.
Collapse
Affiliation(s)
- Geena M. Hill
- Florida Natural Areas InventoryFlorida State University1018 Thomasville Rd., #200‐CTallahasseeFL323303U.S.A.
| | - Akito Y. Kawahara
- Florida Museum of Natural HistoryUniversity of Florida3215 Hull RdGainesvilleFL32611U.S.A.
- Department of BiologyUniversity of Florida876 Newell Dr.GainesvilleFL32611U.S.A.
| | - Jaret C. Daniels
- Florida Museum of Natural HistoryUniversity of Florida3215 Hull RdGainesvilleFL32611U.S.A.
- Department of Entomology and NematologyUniversity of Florida1881 Natural Area Dr.GainesvilleFL32608U.S.A.
| | - Craig C. Bateman
- Florida Museum of Natural HistoryUniversity of Florida3215 Hull RdGainesvilleFL32611U.S.A.
| | - Brett R. Scheffers
- Department of Wildlife Ecology and ConservationUniversity of Florida110 Newins‐Ziegler Hall, P.O. Box 110430GainesvilleFL32611U.S.A.
| |
Collapse
|
3
|
Rank NE, Mardulyn P, Heidl SJ, Roberts KT, Zavala NA, Smiley JT, Dahlhoff EP. Mitonuclear mismatch alters performance and reproductive success in naturally introgressed populations of a montane leaf beetle. Evolution 2020; 74:1724-1740. [PMID: 32246837 DOI: 10.1111/evo.13962] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/22/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
Coordination between nuclear and mitochondrial genomes is critical to metabolic processes underlying animals' ability to adapt to local environments, yet consequences of mitonuclear interactions have rarely been investigated in populations where individuals with divergent mitochondrial and nuclear genomes naturally interbreed. Genetic variation in the leaf beetle Chrysomela aeneicollis was assessed along a latitudinal thermal gradient in California's Sierra Nevada. Variation at mitochondrial cytochrome oxidase II (COII) and the nuclear gene phosphoglucose isomerase (PGI) shows concordance and was significantly greater along a 65 km transect than 10 other loci. STRUCTURE analyses using neutral loci identified a southern and northern subpopulation, which interbreed in the central drainage Bishop Creek. COII and PGI were used as indicators of mitochondrial and nuclear genetic variation in field and laboratory experiments conducted on beetles from this admixed population. Fecundity, larval development rate, running speed and male mating frequency were higher for beetles with geographically "matched" than "mismatched" mitonuclear genotypes. Effects of mitonuclear mismatch were largest for individuals with northern nuclear genotypes possessing southern mitochondria and were most pronounced after heat treatment or at high elevation. These findings suggest that mitonuclear incompatibility diminishes performance and reproductive success in nature, effects that could intensify at environmental extremes.
Collapse
Affiliation(s)
- Nathan E Rank
- Department of Biology, Sonoma State University, Rohnert Park, California, 94928.,White Mountain Research Center, University of California, Bishop, California, 93514
| | - Patrick Mardulyn
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, 1050, Belgium
| | - Sarah J Heidl
- Department of Biology, Sonoma State University, Rohnert Park, California, 94928.,White Mountain Research Center, University of California, Bishop, California, 93514
| | - Kevin T Roberts
- Department of Biology, Sonoma State University, Rohnert Park, California, 94928.,White Mountain Research Center, University of California, Bishop, California, 93514.,Department of Integrative Biology, University of California, Berkeley, Berkeley, California, 94720
| | - Nicolas A Zavala
- White Mountain Research Center, University of California, Bishop, California, 93514.,Department of Biology, Santa Clara University, Santa Clara, California, 95053
| | - John T Smiley
- White Mountain Research Center, University of California, Bishop, California, 93514
| | - Elizabeth P Dahlhoff
- White Mountain Research Center, University of California, Bishop, California, 93514.,Department of Biology, Santa Clara University, Santa Clara, California, 95053
| |
Collapse
|
4
|
Lalonde MML, Marcus JM. Entomological time travel: reconstructing the invasion history of the buckeye butterflies (genus Junonia) from Florida, USA. Biol Invasions 2019. [DOI: 10.1007/s10530-019-01948-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Hanski I, Schulz T, Wong SC, Ahola V, Ruokolainen A, Ojanen SP. Ecological and genetic basis of metapopulation persistence of the Glanville fritillary butterfly in fragmented landscapes. Nat Commun 2017; 8:14504. [PMID: 28211463 PMCID: PMC5321745 DOI: 10.1038/ncomms14504] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 12/27/2016] [Indexed: 01/11/2023] Open
Abstract
Ecologists are challenged to construct models of the biological consequences of habitat loss and fragmentation. Here, we use a metapopulation model to predict the distribution of the Glanville fritillary butterfly during 22 years across a large heterogeneous landscape with 4,415 small dry meadows. The majority (74%) of the 125 networks into which the meadows were clustered are below the extinction threshold for long-term persistence. Among the 33 networks above the threshold, spatial configuration and habitat quality rather than the pooled habitat area predict metapopulation size and persistence, but additionally allelic variation in a SNP in the gene Phosphoglucose isomerase (Pgi) explains 30% of variation in metapopulation size. The Pgi genotypes are associated with dispersal rate and hence with colonizations and extinctions. Associations between Pgi genotypes, population turnover and metapopulation size reflect eco-evolutionary dynamics, which may be a common feature in species inhabiting patch networks with unstable local dynamics.
Collapse
Affiliation(s)
- Ilkka Hanski
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, PO Box 65, Helsinki FI-00014, Finland
| | - Torsti Schulz
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, PO Box 65, Helsinki FI-00014, Finland
| | - Swee Chong Wong
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, PO Box 65, Helsinki FI-00014, Finland
| | - Virpi Ahola
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, PO Box 65, Helsinki FI-00014, Finland
| | - Annukka Ruokolainen
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, PO Box 65, Helsinki FI-00014, Finland
| | - Sami P. Ojanen
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, PO Box 65, Helsinki FI-00014, Finland
| |
Collapse
|
6
|
Li Y, Andersson S. The 3-D Structural Basis for the Pgi Genotypic Differences in the Performance of the Butterfly Melitaea cinxia at Different Temperatures. PLoS One 2016; 11:e0160191. [PMID: 27462709 PMCID: PMC4962976 DOI: 10.1371/journal.pone.0160191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/14/2016] [Indexed: 11/18/2022] Open
Abstract
Although genotype-by-environment interaction has long been used to unveil the genetic variation that affects Darwinian fitness, the mechanisms underlying the interaction usually remain unknown. Genetic variation at the dimeric glycolytic enzyme phosphoglucoisomerase (Pgi) has been observed to interact with temperature to explain the variation in the individual performance of the butterfly Melitaea cinxia. At relatively high temperature, individuals with Pgi-non-f genotypes generally surpass those with Pgi-f genotypes, while the opposite applies at relatively low temperature. In this study, we did protein structure predictions and BlastP homology searches with the aim to understand the structural basis for this temperature-dependent difference in the performance of M. cinxia. Our results show that, at amino acid (AA) site 372, one of the two sites that distinguish Pgi-f (the translated polypeptide of the Pgi-f allele) from Pgi-non-f (the translated polypeptide of the Pgi-non-f allele), the Pgi-non-f-related residue strengthens an electrostatic attraction between a pair of residues (Glu373-Lys472) that are from different monomers, compared to the Pgi-f-related residue. Further, BlastP searches of animal protein sequences reveal a dramatic excess of electrostatically attractive combinations of the residues at the Pgi AA sites equivalent to sites 373 and 472 in M. cinxia. This suggests that factors enhancing the inter-monomer interaction between these two sites, and therefore helping the tight association of two Pgi monomers, are favourable. Our homology-modelling results also show that, at the second AA site that distinguishes Pgi-f from Pgi-non-f in M. cinxia, the Pgi-non-f-related residue is more entropy-favourable (leading to higher structural stability) than the Pgi-f-related residue. To sum up, this study suggests a higher structural stability of the protein products of the Pgi-non-f genotypes than those of the Pgi-f genotypes, which may explain why individuals carrying Pgi-non-f genotypes outperform those carrying Pgi-f genotypes at stressful high temerature.
Collapse
Affiliation(s)
- Yuan Li
- Department of Biology, Lund University, Lund, Sweden
- * E-mail:
| | | |
Collapse
|
7
|
Prentice HC, Li Y, Lönn M, Tunlid A, Ghatnekar L. A horizontally transferred nuclear gene is associated with microhabitat variation in a natural plant population. Proc Biol Sci 2015; 282:20152453. [PMID: 26674953 PMCID: PMC4707765 DOI: 10.1098/rspb.2015.2453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/11/2015] [Indexed: 11/12/2022] Open
Abstract
Horizontal gene transfer involves the non-sexual interspecific transmission of genetic material. Even if they are initially functional, horizontally transferred genes are expected to deteriorate into non-expressed pseudogenes, unless they become adaptively relevant in the recipient organism. However, little is known about the distributions of natural transgenes within wild species or the adaptive significance of natural transgenes within wild populations. Here, we examine the distribution of a natural plant-to-plant nuclear transgene in relation to environmental variation within a wild population. Festuca ovina is polymorphic for an extra (second) expressed copy of the nuclear gene (PgiC) encoding cytosolic phosphoglucose isomerase, with the extra PgiC locus having been acquired horizontally from the distantly related grass genus Poa. We investigated variation at PgiC in samples of F. ovina from a fine-scale, repeating patchwork of grassland microhabitats, replicated within spatially separated sites. Even after accounting for spatial effects, the distributions of F. ovina individuals carrying the additional PgiC locus, and one of the enzyme products encoded by the locus, are significantly associated with fine-scale habitat variation. Our results suggest that the PgiC transgene contributes, together with the unlinked 'native' PgiC locus, to local adaptation to a fine-scale mosaic of edaphic and biotic grassland microhabitats.
Collapse
Affiliation(s)
| | - Yuan Li
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Mikael Lönn
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, 141 89 Huddinge, Sweden
| | - Anders Tunlid
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Lena Ghatnekar
- Department of Biology, Lund University, 223 62 Lund, Sweden
| |
Collapse
|
8
|
Kvist J, Mattila ALK, Somervuo P, Ahola V, Koskinen P, Paulin L, Salmela L, Fountain T, Rastas P, Ruokolainen A, Taipale M, Holm L, Auvinen P, Lehtonen R, Frilander MJ, Hanski I. Flight-induced changes in gene expression in the Glanville fritillary butterfly. Mol Ecol 2015; 24:4886-900. [DOI: 10.1111/mec.13359] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Jouni Kvist
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 9) Helsinki Finland
| | - Anniina L. K. Mattila
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| | - Panu Somervuo
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 9) Helsinki Finland
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 4) Helsinki Finland
| | - Virpi Ahola
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| | - Patrik Koskinen
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 9) Helsinki Finland
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 4) Helsinki Finland
| | - Lars Paulin
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 4) Helsinki Finland
| | - Leena Salmela
- Department of Computer Science and Helsinki Institute for Information Technology HIIT; University of Helsinki; P.O. Box 68 (Gustaf Hällströmin katu 2b) Helsinki Finland
| | - Toby Fountain
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| | - Pasi Rastas
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| | - Annukka Ruokolainen
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| | - Minna Taipale
- Science for Life Laboratory; Department of Biosciences and Nutrition; Karolinska Institutet (Hälsovägen 7); SE-14157 Huddinge Sweden
| | - Liisa Holm
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 4) Helsinki Finland
| | - Petri Auvinen
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 4) Helsinki Finland
| | - Rainer Lehtonen
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| | - Mikko J. Frilander
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 9) Helsinki Finland
| | - Ilkka Hanski
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| |
Collapse
|
9
|
Li Y, Canbäck B, Johansson T, Tunlid A, Prentice HC. Evidence for Positive Selection within the PgiC1 Locus in the Grass Festuca ovina. PLoS One 2015; 10:e0125831. [PMID: 25946223 PMCID: PMC4422690 DOI: 10.1371/journal.pone.0125831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/25/2015] [Indexed: 12/02/2022] Open
Abstract
The dimeric metabolic enzyme phosphoglucose isomerase (PGI, EC 5.3.1.9) plays an essential role in energy production. In the grass Festuca ovina, field surveys of enzyme variation suggest that genetic variation at cytosolic PGI (PGIC) may be adaptively important. In the present study, we investigated the molecular basis of the potential adaptive significance of PGIC in F. ovina by analyzing cDNA sequence variation within the PgiC1 gene. Two, complementary, types of selection test both identified PGIC1 codon (amino acid) sites 200 and 173 as candidate targets of positive selection. Both candidate sites involve charge-changing amino acid polymorphisms. On the homology-modeled F. ovina PGIC1 3-D protein structure, the two candidate sites are located on the edge of either the inter-monomer boundary or the inter-domain cleft; examination of the homology-modeled PGIC1 structure suggests that the amino acid changes at the two candidate sites are likely to influence the inter-monomer interaction or the domain-domain packing. Biochemical studies in humans have shown that mutations at several amino acid sites that are located close to the candidate sites in F. ovina, at the inter-monomer boundary or the inter-domain cleft, can significantly change the stability and/or kinetic properties of the PGI enzyme. Molecular evolutionary studies in a wide range of other organisms suggest that PGI amino acid sites with similar locations to those of the candidate sites in F. ovina may be the targets of positive/balancing selection. Candidate sites 200 and 173 are the only sites that appear to discriminate between the two most common PGIC enzyme electromorphs in F. ovina: earlier studies suggest that these electromorphs are implicated in local adaptation to different grassland microhabitats. Our results suggest that PGIC1 sites 200 and 173 are under positive selection in F. ovina.
Collapse
Affiliation(s)
- Yuan Li
- Department of Biology, Lund University, Lund, Sweden
- * E-mail:
| | - Björn Canbäck
- Department of Biology, Lund University, Lund, Sweden
| | | | - Anders Tunlid
- Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
10
|
Habel JC, Zachos FE, Dapporto L, Rödder D, Radespiel U, Tellier A, Schmitt T. Population genetics revisited - towards a multidisciplinary research field. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12481] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jan Christian Habel
- Terrestrial Ecology Research Group; Department of Ecology and Ecosystem Management; School of Life Sciences Weihenstephan; Technische Universität München; D-85354 Freising-Weihenstephan Germany
| | | | - Leonardo Dapporto
- Department of Biological and Medical Sciences; Oxford Brookes University; Headington Oxford OX3 0BP UK
| | - Dennis Rödder
- Zoologisches Forschungsmuseum Alexander Koenig; D-53113 Bonn Germany
| | - Ute Radespiel
- Institute of Zoology; University of Veterinary Medicine Hannover; D-30559 Hannover Germany
| | - Aurélien Tellier
- Section of Population Genetics; Technische Universität München; D-85354 Freising Germany
| | - Thomas Schmitt
- Senckenberg German Entomological Institute; D-15374 Müncheberg Germany
- Department of Zoology; Institute of Biology; Faculty of Natural Sciences I; Martin-Luther-University Halle-Wittenberg; D-06099 Halle (Saale) Germany
| |
Collapse
|
11
|
Wheat CW, Hill J. Pgi: the ongoing saga of a candidate gene. CURRENT OPINION IN INSECT SCIENCE 2014; 4:42-47. [PMID: 28043407 DOI: 10.1016/j.cois.2014.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/05/2014] [Accepted: 10/13/2014] [Indexed: 05/21/2023]
Abstract
Numerous studies have found amino acid variation at the phosphoglucose isomerase (PGI) gene associated with organismal performance and fitness. Here we focus upon recent advances in the study of this gene, highlighting novel species being studied, new tools being used, and emerging insights into the evolutionary dynamics acting on this gene. Our synthesis highlights questions that are coming into focus, as well as the need for attention in specific areas, such as manipulative experiments to establish mechanistic insights and a causative role of allelic variation.
Collapse
Affiliation(s)
- Christopher W Wheat
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, 10691 Stockholm, Sweden
| | - Jason Hill
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, 10691 Stockholm, Sweden
| |
Collapse
|
12
|
Rauhamäki V, Wolfram J, Jokitalo E, Hanski I, Dahlhoff EP. Differences in the aerobic capacity of flight muscles between butterfly populations and species with dissimilar flight abilities. PLoS One 2014; 9:e78069. [PMID: 24416122 PMCID: PMC3885395 DOI: 10.1371/journal.pone.0078069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/16/2013] [Indexed: 11/22/2022] Open
Abstract
Habitat loss and climate change are rapidly converting natural habitats and thereby increasing the significance of dispersal capacity for vulnerable species. Flight is necessary for dispersal in many insects, and differences in dispersal capacity may reflect dissimilarities in flight muscle aerobic capacity. In a large metapopulation of the Glanville fritillary butterfly in the Åland Islands in Finland, adults disperse frequently between small local populations. Individuals found in newly established populations have higher flight metabolic rates and field-measured dispersal distances than butterflies in old populations. To assess possible differences in flight muscle aerobic capacity among Glanville fritillary populations, enzyme activities and tissue concentrations of the mitochondrial protein Cytochrome-c Oxidase (CytOx) were measured and compared with four other species of Nymphalid butterflies. Flight muscle structure and mitochondrial density were also examined in the Glanville fritillary and a long-distance migrant, the red admiral. Glanville fritillaries from new populations had significantly higher aerobic capacities than individuals from old populations. Comparing the different species, strong-flying butterfly species had higher flight muscle CytOx content and enzymatic activity than short-distance fliers, and mitochondria were larger and more numerous in the flight muscle of the red admiral than the Glanville fritillary. These results suggest that superior dispersal capacity of butterflies in new populations of the Glanville fritillary is due in part to greater aerobic capacity, though this species has a low aerobic capacity in general when compared with known strong fliers. Low aerobic capacity may limit dispersal ability of the Glanville fritillary.
Collapse
Affiliation(s)
- Virve Rauhamäki
- Helsinki Bioenergetics Group, Structural Biology and Biophysics Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Joy Wolfram
- Metapopulation Research Group, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ilkka Hanski
- Metapopulation Research Group, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Elizabeth P. Dahlhoff
- Metapopulation Research Group, Department of Biosciences, University of Helsinki, Helsinki, Finland
- Department of Biology, Santa Clara University, Santa Clara, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Radespiel U, Bruford MW. Fragmentation genetics of rainforest animals: insights from recent studies. CONSERV GENET 2013. [DOI: 10.1007/s10592-013-0550-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Dunning LT, Dennis AB, Thomson G, Sinclair BJ, Newcomb RD, Buckley TR. Positive selection in glycolysis among Australasian stick insects. BMC Evol Biol 2013; 13:215. [PMID: 24079656 PMCID: PMC3850572 DOI: 10.1186/1471-2148-13-215] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/23/2013] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The glycolytic pathway is central to cellular energy production. Selection on individual enzymes within glycolysis, particularly phosphoglucose isomerase (Pgi), has been associated with metabolic performance in numerous organisms. Nonetheless, how whole energy-producing pathways evolve to allow organisms to thrive in different environments and adopt new lifestyles remains little explored. The Lanceocercata radiation of Australasian stick insects includes transitions from tropical to temperate climates, lowland to alpine habitats, and winged to wingless forms. This permits a broad investigation to determine which steps within glycolysis and what sites within enzymes are the targets of positive selection. To address these questions we obtained transcript sequences from seven core glycolysis enzymes, including two Pgi paralogues, from 29 Lanceocercata species. RESULTS Using maximum likelihood methods a signature of positive selection was inferred in two core glycolysis enzymes. Pgi and Glyceraldehyde 3-phosphate dehydrogenase (Gaphd) genes both encode enzymes linking glycolysis to the pentose phosphate pathway. Positive selection among Pgi paralogues and orthologues predominately targets amino acids with residues exposed to the protein's surface, where changes in physical properties may alter enzyme performance. CONCLUSION Our results suggest that, for Lancerocercata stick insects, adaptation to new stressful lifestyles requires a balance between maintaining cellular energy production, efficiently exploiting different energy storage pools and compensating for stress-induced oxidative damage.
Collapse
Affiliation(s)
- Luke T Dunning
- Landcare Research, Private Bag 92170, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Auckland, New Zealand
- Imperial College London, Silwood Park Campus, Buckhurst Road, SL5 7PY, Ascot, Berks, UK
| | - Alice B Dennis
- Landcare Research, Private Bag 92170, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Auckland, New Zealand
| | - Geoffrey Thomson
- Landcare Research, Private Bag 92170, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Brent J Sinclair
- Department of Biology, The University of Western Ontario, London, ON, Canada N6G 1L3
| | - Richard D Newcomb
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Auckland, New Zealand
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Thomas R Buckley
- Landcare Research, Private Bag 92170, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Auckland, New Zealand
| |
Collapse
|
15
|
Lack of variation at phosphoglucose isomerase (pgi) in bumblebees: implications for conservation genetics studies. PLoS One 2013; 8:e65600. [PMID: 23750269 PMCID: PMC3672202 DOI: 10.1371/journal.pone.0065600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/29/2013] [Indexed: 11/30/2022] Open
Abstract
Assessing genetic variation underlying ecologically important traits is increasingly of interest and importance in population and conservation genetics. For some groups generally useful markers exist for examining the relative role of selection and drift in shaping genetic diversity e.g. the major histocompatibility complex in vertebrates and self-incompatibility loci in plants. For invertebrates there is no such generally useful locus. However, phosphoglucose isomerase (Pgi) has been proposed as a useful functional marker in the conservation genetics of invertebrates. Where thermal microclimate varies, balanced polymorphisms may be maintained due to trade-offs between thermally stable and kinetically advantageous allelic forms. We here report very low levels of Pgi variation in bumblebees rendering this locus to be of little use as an adaptive marker in a conservation genetics context in this group. Potential explanations for this lack of variation are considered.
Collapse
|
16
|
Sinclair BJ, Williams CM, Terblanche JS. Variation in Thermal Performance among Insect Populations. Physiol Biochem Zool 2012; 85:594-606. [DOI: 10.1086/665388] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Ellis JS, Turner LM, Knight ME. Patterns of selection and polymorphism of innate immunity genes in bumblebees (Hymenoptera: Apidae). Genetica 2012; 140:205-17. [PMID: 22899493 DOI: 10.1007/s10709-012-9672-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/07/2012] [Indexed: 01/22/2023]
|
18
|
Schoville SD, Flowers JM, Burton RS. Diversifying selection underlies the origin of allozyme polymorphism at the phosphoglucose isomerase locus in Tigriopus californicus. PLoS One 2012; 7:e40035. [PMID: 22768211 PMCID: PMC3386920 DOI: 10.1371/journal.pone.0040035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/04/2012] [Indexed: 11/19/2022] Open
Abstract
The marine copepod Tigriopus californicus lives in intertidal rock pools along the Pacific coast, where it exhibits strong, temporally stable population genetic structure. Previous allozyme surveys have found high frequency private alleles among neighboring subpopulations, indicating that there is limited genetic exchange between populations. Here we evaluate the factors responsible for the diversification and maintenance of alleles at the phosphoglucose isomerase (Pgi) locus by evaluating patterns of nucleotide variation underlying previously identified allozyme polymorphism. Copepods were sampled from eleven sites throughout California and Baja California, revealing deep genetic structure among populations as well as genetic variability within populations. Evidence of recombination is limited to the sample from Pescadero and there is no support for linkage disequilibrium across the Pgi locus. Neutrality tests and codon-based models of substitution suggest the action of natural selection due to elevated non-synonymous substitutions at a small number of sites in Pgi. Two sites are identified as the charge-changing residues underlying allozyme polymorphisms in T. californicus. A reanalysis of allozyme variation at several focal populations, spanning a period of 26 years and over 200 generations, shows that Pgi alleles are maintained without notable frequency changes. Our data suggest that diversifying selection accounted for the origin of Pgi allozymes, while McDonald-Kreitman tests and the temporal stability of private allozyme alleles suggests that balancing selection may be involved in the maintenance of amino acid polymorphisms within populations.
Collapse
Affiliation(s)
- Sean D Schoville
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America.
| | | | | |
Collapse
|
19
|
De Block M, Stoks R. Phosphoglucose isomerase genotype effects on life history depend on latitude and food stress. Funct Ecol 2012. [DOI: 10.1111/j.1365-2435.2012.02015.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marjan De Block
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Debériotstraat 32; BE-3000; Leuven; Belgium
| | - Robby Stoks
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Debériotstraat 32; BE-3000; Leuven; Belgium
| |
Collapse
|
20
|
|
21
|
Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly. Proc Natl Acad Sci U S A 2011; 108:14397-404. [PMID: 21788506 DOI: 10.1073/pnas.1110020108] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time.
Collapse
|
22
|
Wheat CW, Fescemyer HW, Kvist J, Tas E, Vera JC, Frilander MJ, Hanski I, Marden JH. Functional genomics of life history variation in a butterfly metapopulation. Mol Ecol 2011; 20:1813-28. [PMID: 21410806 DOI: 10.1111/j.1365-294x.2011.05062.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In fragmented landscapes, small populations frequently go extinct and new ones are established with poorly understood consequences for genetic diversity and evolution of life history traits. Here, we apply functional genomic tools to an ecological model system, the well-studied metapopulation of the Glanville fritillary butterfly. We investigate how dispersal and colonization select upon existing genetic variation affecting life history traits by comparing common-garden reared 2-day adult females from new populations with those from established older populations. New-population females had higher expression of abdomen genes involved in egg provisioning and thorax genes involved in the maintenance of flight muscle proteins. Physiological studies confirmed that new-population butterflies have accelerated egg maturation, apparently regulated by higher juvenile hormone titer and angiotensin converting enzyme mRNA, as well as enhanced flight metabolism. Gene expression varied between allelic forms of two metabolic genes (Pgi and Sdhd), which themselves were associated with differences in flight metabolic rate, population age and population growth rate. These results identify likely molecular mechanisms underpinning life history variation that is maintained by extinction-colonization dynamics in metapopulations.
Collapse
Affiliation(s)
- Christopher W Wheat
- Department of Biology, 208 Mueller Lab, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Nadeau NJ, Jiggins CD. A golden age for evolutionary genetics? Genomic studies of adaptation in natural populations. Trends Genet 2010; 26:484-92. [DOI: 10.1016/j.tig.2010.08.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/16/2010] [Accepted: 08/18/2010] [Indexed: 12/20/2022]
|
24
|
Allendorf FW, Hohenlohe PA, Luikart G. Genomics and the future of conservation genetics. Nat Rev Genet 2010; 11:697-709. [DOI: 10.1038/nrg2844] [Citation(s) in RCA: 939] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|