1
|
Pan H, Tian X, Shao M, Xie Y, Huang H, Hu J, Ju J. Genome mining and metabolic profiling illuminate the chemistry driving diverse biological activities of Bacillus siamensis SCSIO 05746. Appl Microbiol Biotechnol 2019; 103:4153-4165. [DOI: 10.1007/s00253-019-09759-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 10/27/2022]
|
2
|
Wu Q, Nay B, Yang M, Ni Y, Wang H, Yao L, Li X. Marine sponges of the genus Stelletta as promising drug sources: chemical and biological aspects. Acta Pharm Sin B 2019; 9:237-257. [PMID: 30972275 PMCID: PMC6437601 DOI: 10.1016/j.apsb.2018.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/20/2018] [Accepted: 10/03/2018] [Indexed: 12/18/2022] Open
Abstract
Marine sponges of the genus Stelletta are well known as rich sources of diverse and complex biologically relevant natural products, including alkaloids, terpenoids, peptides, lipids, and steroids. Some of these metabolites, with novel structures and promising biological activities, have attracted a lot of attention from chemists seeking to perform their total synthesis in parallel to intensive biological studies towards new drug leads. In this review, we summarized the distribution of the chemically investigated Stelletta sponges, the isolation, synthesis and biological activities of their secondary metabolites, covering the literature from 1982 to early 2018.
Collapse
|
3
|
In Silico Discovery of Novel Ligands for Antimicrobial Lipopeptides for Computer-Aided Drug Design. Probiotics Antimicrob Proteins 2019; 10:129-141. [PMID: 29218506 DOI: 10.1007/s12602-017-9356-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The increase in antibiotic-resistant strains of pathogens has created havoc worldwide. These antibiotic-resistant pathogens require potent drugs for their inhibition. Lipopeptides, which are produced as secondary metabolites by many microorganisms, have the ability to act as potent safe drugs. Lipopeptides are amphiphilic molecules containing a lipid chain bound to the peptide. They exhibit broad-spectrum activities against both bacteria and fungi. Other than their antimicrobial properties, they have displayed anti-cancer properties as well, but their mechanism of action is not understood. In silico drug design uses computer simulation to discover and develop new drugs. This technique reduces the need of expensive and tedious lab work and clinical trials, but this method becomes a challenge due to complex structures of lipopeptides. Specific agonists (ligands) must be identified to initiate a physiological response when combined with a receptor (lipopeptide). In silico drug design and homology modeling talks about the interaction between ligands and the binding sites. This review summarizes the mechanism of selected lipopeptides, their respective ligands, and in silico drug design.
Collapse
|
4
|
Zhou M, Liu F, Yang X, Jin J, Dong X, Zeng KW, Liu D, Zhang Y, Ma M, Yang D. Bacillibactin and Bacillomycin Analogues with Cytotoxicities against Human Cancer Cell Lines from Marine Bacillus sp. PKU-MA00093 and PKU-MA00092. Mar Drugs 2018; 16:E22. [PMID: 29320403 PMCID: PMC5793070 DOI: 10.3390/md16010022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/21/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022] Open
Abstract
Nonribosomal peptides from marine Bacillus strains have received considerable attention for their complex structures and potent bioactivities. In this study, we carried out PCR-based genome mining for potential nonribosomal peptides producers from our marine bacterial library. Twenty-one "positive" strains were screened out from 180 marine bacterial strains, and subsequent small-scale fermentation, HPLC and phylogenetic analysis afforded Bacillus sp. PKU-MA00092 and PKU-MA00093 as two candidates for large-scale fermentation and isolation. Ten nonribosomal peptides, including four bacillibactin analogues (1-4) and six bacillomycin D analogues (5-10) were discovered from Bacillus sp. PKU-MA00093 and PKU-MA00092, respectively. Compounds 1 and 2 are two new compounds and the ¹H NMR and 13C NMR data of compounds 7 and 9 is first provided. All compounds 1-10 were assayed for their cytotoxicities against human cancer cell lines HepG2 and MCF7, and the bacillomycin D analogues 7-10 showed moderate cytotoxicities with IC50 values from 2.9 ± 0.1 to 8.2 ± 0.2 µM. The discovery of 5-10 with different fatty acid moieties gave us the opportunity to reveal the structure-activity relationships of bacillomycin analogues against these human cancer cell lines. These results enrich the structural diversity and bioactivity properties of nonribosomal peptides from marine Bacillus strains.
Collapse
Affiliation(s)
- Mengjie Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Fawang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Xiaoyan Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Jing Jin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Xin Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Yingtao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Donghui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China.
| |
Collapse
|
5
|
Kim JD, Jeon BJ, Han JW, Park MY, Kang SA, Kim BS. Evaluation of the endophytic nature of Bacillus amyloliquefaciens strain GYL4 and its efficacy in the control of anthracnose. PEST MANAGEMENT SCIENCE 2016; 72:1529-36. [PMID: 26518268 DOI: 10.1002/ps.4181] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/29/2015] [Accepted: 10/29/2015] [Indexed: 05/26/2023]
Abstract
BACKGROUND Endophytic bacteria are viewed as a potential new source of biofungicides because they have beneficial characteristics as control agents for plant disease. This study was performed to examine the endophytic feature and disease control efficacy of Bacillus amyloliquefaciens strain GYL4 and to identify the antifungal compounds produced by this strain. RESULTS B. amyloliquefaciens strain GYL4 was isolated from leaf tissue of pepper plants (Capsicum annuum L.). Anthracnose symptoms were markedly reduced in the leaves of pepper plants colonised by GYL4. An egfp-expressing strain of GYL4 (GYL4-egfp) was constructed and reintroduced into pepper plants, which confirmed its ability to colonise the internal tissues of pepper plants. GYL4-egfp was observed in the root and stem tissues 4 days after treatment and abundantly found in the internal leaf tissue 9 days after treatment. Bacillomycin derivatives purified from the culture extract of GYL4 displayed control efficacy on anthracnose development in cucumber (Cucumis sativus L. cv. Chunsim). CONCLUSION The present study is the first report on evaluation of the endophytic and systemic nature of B. amyloliquefaciens strain GYL4 and its potential as a biocontrol agent for anthracnose management. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jeong Do Kim
- Laboratory of Plant Pharmacology, Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University Graduate School, Seoul, 136-713, Republic of Korea
| | - Byeong Jun Jeon
- Laboratory of Plant Pharmacology, Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University Graduate School, Seoul, 136-713, Republic of Korea
| | - Jae Woo Han
- Laboratory of Plant Pharmacology, Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University Graduate School, Seoul, 136-713, Republic of Korea
| | - Min Young Park
- Laboratory of Plant Pharmacology, Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University Graduate School, Seoul, 136-713, Republic of Korea
| | - Sin Ae Kang
- Laboratory of Plant Pharmacology, Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University Graduate School, Seoul, 136-713, Republic of Korea
| | - Beom Seok Kim
- Laboratory of Plant Pharmacology, Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University Graduate School, Seoul, 136-713, Republic of Korea
| |
Collapse
|
6
|
Biniarz P, Łukaszewicz M, Janek T. Screening concepts, characterization and structural analysis of microbial-derived bioactive lipopeptides: a review. Crit Rev Biotechnol 2016; 37:393-410. [PMID: 27098391 DOI: 10.3109/07388551.2016.1163324] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lipopeptide biosurfactants are surface active biomolecules that are produced by a variety of microorganisms. Microbial lipopeptides have gained the interest of microbiologists, chemists and biochemists for their high biodiversity as well as efficient action, low toxicity and good biodegradability in comparison to synthetic counterparts. In this report, we review methods for the production, isolation and screening, purification and structural characterization of microbial lipopeptides. Several techniques are currently available for each step, and we describe the most commonly utilized and recently developed techniques in this review. Investigations on lipopeptide biosurfactants in natural products require efficient isolation techniques for the characterization and evaluation of chemical and biological properties. A combination of chromatographic and spectroscopic techniques offer opportunities for a better characterization of lipopeptide structures, which in turn can lead to the application of lipopeptides in food, pharmaceutical, cosmetics, agricultural and bioremediation industries.
Collapse
Affiliation(s)
- Piotr Biniarz
- a Faculty of Biotechnology, University of Wroclaw , Wroclaw, Poland
| | | | - Tomasz Janek
- a Faculty of Biotechnology, University of Wroclaw , Wroclaw, Poland.,b Department of Inorganic Chemistry, Faculty of Pharmacy, Wroclaw Medical University , Wroclaw, Poland
| |
Collapse
|
7
|
Gong Q, Zhang C, Lu F, Zhao H, Bie X, Lu Z. Identification of bacillomycin D from Bacillus subtilis fmbJ and its inhibition effects against Aspergillus flavus. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.07.034] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Hajare SN, Subramanian M, Gautam S, Sharma A. Induction of apoptosis in human cancer cells by a Bacillus lipopeptide bacillomycin D. Biochimie 2013; 95:1722-31. [DOI: 10.1016/j.biochi.2013.05.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 05/23/2013] [Indexed: 12/20/2022]
|
9
|
Martínez-Luis S, Gómez JF, Spadafora C, Guzmán HM, Gutiérrez M. Antitrypanosomal alkaloids from the marine bacterium Bacillus pumilus. Molecules 2012; 17:11146-55. [PMID: 22990456 PMCID: PMC6268621 DOI: 10.3390/molecules170911146] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 11/16/2022] Open
Abstract
Fractionation of the ethyl acetate extract of the marine bacterium Bacillus pumilus isolated from the black coral Antipathes sp. led to the isolation of five compounds: cyclo-(L-Leu-L-Pro) (1), 3-hydroxyacetylindole (2), N-acetyl-β-oxotryptamine (3), cyclo-(L-Phe-L-Pro) (4), and 3-formylindole (5). The structures of compounds 1−5 were established by spectroscopic analyses, including HRESITOF-MS and NMR (1H, 13C, HSQC, HMBC and COSY). Compounds 2, 3 and 5 caused the inhibition on the growth of Trypanosoma cruzi (T. cruzi), with IC50 values of 20.6, 19.4 and 26.9 μM, respectively, with moderate cytotoxicity against Vero cells. Compounds 1−5 were found to be inactive when tested against Plasmodium falciparum and Leishmania donovani, therefore showing selectivity against T. cruzi parasites.
Collapse
Affiliation(s)
- Sergio Martínez-Luis
- Center for Biodiversity and Drug Discovery, Institute for Scientific Research and High Technology Services, City of Knowledge, P.O. Box 0843-01103, Panama;
| | - José Félix Gómez
- Center for Biodiversity and Drug Discovery, Institute for Scientific Research and High Technology Services, City of Knowledge, P.O. Box 0843-01103, Panama;
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, México D.F. 07360, Mexico;
| | - Carmenza Spadafora
- Center for Cellular and Molecular Biology of Diseases, Institute for Scientific Research and High Technology Services, City of Knowledge, P.O. Box 0843-01103, Panama;
| | - Héctor M. Guzmán
- Smithsonian Tropical Research Institute, Balboa, Ancon, P.O. Box 0843-03092, Panama;
| | - Marcelino Gutiérrez
- Center for Biodiversity and Drug Discovery, Institute for Scientific Research and High Technology Services, City of Knowledge, P.O. Box 0843-01103, Panama;
- Author to whom correspondence should be addressed; ; Tel.: +507-517-0732; Fax: +507-517-0701
| |
Collapse
|
10
|
Isolation and characterization of a new iturinic lipopeptide, mojavensin A produced by a marine-derived bacterium Bacillus mojavensis B0621A. J Antibiot (Tokyo) 2012; 65:317-22. [PMID: 22491138 DOI: 10.1038/ja.2012.19] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Three lipopeptides were isolated by bioactivity-guided fractionation from the fermentation broth of Bacillus mojavensis B0621A. A new iturinic lipopeptide, named mojavensin A, was tentatively characterized by 1D, 2D NMR and MS spectroscopy, Marfey's method containing a novel peptide backbone of L-Asn₁, D-Tyr₂, D-Asn₃, L-Gln₄, L-Pro₅, D-Asn₆, L-Asn₇ and an anteiso-type of the saturated β-fatty acid side chain. Compound 2 and 3 were tentatively identified as iso-C16 fengycin B and anteiso-C17 fengycin B, respectively. These lipopeptides displayed dose-dependent antifungal activity against a broad spectra of phytopathogens and were weakly antagonistic to Staphylococcus aureus. Moreover, they all revealed cytotoxic activities against the human leukemia (HL-60) cell line. Mojavensin A, iso-C16 fengycin B, and anteiso-C17 fengycin B inhibited the growth of HL-60 with IC₅₀ of 100, 100 and 1.6 μM, respectively.
Collapse
|
11
|
Tabbene O, Kalai L, Ben Slimene I, Karkouch I, Elkahoui S, Gharbi A, Cosette P, Mangoni ML, Jouenne T, Limam F. Anti-Candida effect of bacillomycin D-like lipopeptides from Bacillus subtilis B38. FEMS Microbiol Lett 2011; 316:108-14. [DOI: 10.1111/j.1574-6968.2010.02199.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
12
|
Abstract
This review describes secondary metabolites that have been shown to be synthesized by symbiotic bacteria, or for which this possibility has been discussed. It includes 365 references.
Collapse
Affiliation(s)
- Jörn Piel
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany.
| |
Collapse
|
13
|
Li Z, Peng C, Shen Y, Miao X, Zhang H, Lin H. l,l-Diketopiperazines from Alcaligenes faecalis A72 associated with South China Sea sponge Stelletta tenuis. BIOCHEM SYST ECOL 2008. [DOI: 10.1016/j.bse.2007.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Zhang T, Shi ZQ, Hu LB, Cheng LG, Wang F. Antifungal compounds from Bacillus subtilis B-FS06 inhibiting the growth of Aspergillus flavus. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9533-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Abstract
This review covers the literature published in 2005 for marine natural products, with 704 citations (493 for the period January to December 2005) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, coelenterates, bryozoans, molluscs, tunicates and echinoderms. The emphasis is on new compounds (812 for 2005), together with their relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | | | |
Collapse
|