1
|
Korenjak B, Tratenšek A, Arko M, Romolo A, Hočevar M, Kisovec M, Berry M, Bedina Zavec A, Drobne D, Vovk T, Iglič A, Nemec Svete A, Erjavec V, Kralj-Iglič V. Assessment of Extracellular Particles Directly in Diluted Plasma and Blood by Interferometric Light Microscopy. A Study of 613 Human and 163 Canine Samples. Cells 2024; 13:2054. [PMID: 39768146 PMCID: PMC11674815 DOI: 10.3390/cells13242054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 01/11/2025] Open
Abstract
Extracellular nanoparticles (EPs) are a subject of increasing interest for their biological role as mediators in cell-cell communication; however, their harvesting and assessment from bodily fluids are challenging, as processing can significantly affect samples. With the aim of minimizing processing artifacts, we assessed the number density (n) and hydrodynamic diameter (Dh) of EPs directly in diluted plasma and blood using the following recently developed technique: interferometric light microscopy (ILM). We analyzed 613 blood and plasma samples from human patients with inflammatory bowel disease (IBD), collected in trisodium citrate and ethylenediaminetetraacetic acid (EDTA) anticoagulants, and 163 blood and plasma samples from canine patients with brachycephalic obstructive airway syndrome (BOAS). We found a highly statistically significant correlation between n in the plasma and n in the blood only in the human (i.e., but not canine) blood samples, between the samples with trisodium citrate and EDTA, and between the respective Dh for both species (all p < 10-3). In the human plasma, the average was 139 ± 31 nm; in the human blood, was 158 ± 11 nm; in the canine plasma, was 155 ± 32 nm; and in the canine blood, was 171 ± 33 nm. The differences within species were statistically significant (p < 10-2), with sufficient statistical power (P > 0.8). For , we found no statistically significant differences between the human plasma and blood samples or between the samples with trisodium citrate and EDTA. Our results prove that measuring n and Dh of EPs in minimally processed fresh blood and in diluted fresh plasma by means of ILM is feasible for large populations of samples.
Collapse
Affiliation(s)
- Boštjan Korenjak
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, SI-1000 Ljubljana, Slovenia; (B.K.); (M.A.); (A.R.); (M.B.)
| | - Armando Tratenšek
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; (A.T.); (T.V.)
| | - Matevž Arko
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, SI-1000 Ljubljana, Slovenia; (B.K.); (M.A.); (A.R.); (M.B.)
| | - Anna Romolo
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, SI-1000 Ljubljana, Slovenia; (B.K.); (M.A.); (A.R.); (M.B.)
| | - Matej Hočevar
- Institute of Metals and Technology, SI-1000 Ljubljana, Slovenia;
| | - Matic Kisovec
- National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (A.B.Z.)
| | - Maxence Berry
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, SI-1000 Ljubljana, Slovenia; (B.K.); (M.A.); (A.R.); (M.B.)
- College for Basic and Applied Sciences, University of Poitiers, 86000 Poitiers, France
| | | | - David Drobne
- Department of Gastroenterology, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia;
- University of Ljubljana, Faculty of Medicine, SI-1000 Ljubljana, Slovenia
| | - Tomaž Vovk
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; (A.T.); (T.V.)
| | - Aleš Iglič
- University of Ljubljana, Faculty of Electrical Engineering, Laboratory of Physics, SI-1000 Ljubljana, Slovenia;
| | - Alenka Nemec Svete
- University of Ljubljana, Veterinary Faculty, Small Animal Clinic, SI-1000 Ljubljana, Slovenia; (A.N.S.); (V.E.)
| | - Vladimira Erjavec
- University of Ljubljana, Veterinary Faculty, Small Animal Clinic, SI-1000 Ljubljana, Slovenia; (A.N.S.); (V.E.)
| | - Veronika Kralj-Iglič
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, SI-1000 Ljubljana, Slovenia; (B.K.); (M.A.); (A.R.); (M.B.)
| |
Collapse
|
2
|
Efthymakis K, Bologna G, Simeone P, Pierdomenico L, Catitti G, Vespa S, Milano A, De Bellis D, Laterza F, Pandolfi A, Pipino C, Sallese M, Marchisio M, Miscia S, Neri M, Lanuti P. Circulating Extracellular Vesicles Are Increased in Newly Diagnosed Celiac Disease Patients. Nutrients 2022; 15:71. [PMID: 36615729 PMCID: PMC9824360 DOI: 10.3390/nu15010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Extracellular vesicles (EVs) are a class of circulating entities that are involved in intercellular crosstalk mechanisms, participating in homeostasis maintenance, and diseases. Celiac disease is a gluten-triggered immune-mediated disorder, characterized by the inflammatory insult of the enteric mucosa following local lymphocytic infiltration, resulting in villous atrophy. The goal of this research was the assessment and characterization of circulating EVs in celiac disease patients, as well as in patients already on an adequate gluten-free regimen (GFD). For this purpose, a novel and validated technique based on polychromatic flow cytometry that allowed the identification and enumeration of different EV sub-phenotypes was applied. The analysis evidenced that the total, annexin V+, leukocyte (CD45+), and platelet (CD41a+) EV counts were significantly higher in both newly diagnosed celiac disease patients and patients under GFD compared with the healthy controls. Endothelial-derived (CD31+) and epithelial-derived (EpCAM+) EV counts were significantly lower in subjects under gluten exclusion than in celiac disease patients, although EpCAM+ EVs maintained higher counts than healthy subjects. The numbers of EpCAM+ EVs were a statistically significant predictor of intraepithelial leukocytes (IEL). These data demonstrate that EVs could represent novel and potentially powerful disease-specific biomarkers in the context of celiac disease.
Collapse
Affiliation(s)
- Konstantinos Efthymakis
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
- Digestive Endoscopy and Gastroenterology Unit, SS Annunziata Hospital, ASL2 Abruzzo, 66100 Chieti, Italy
| | - Giuseppina Bologna
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Pasquale Simeone
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Laura Pierdomenico
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Giulia Catitti
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Simone Vespa
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Angelo Milano
- Digestive Endoscopy and Gastroenterology Unit, SS Annunziata Hospital, ASL2 Abruzzo, 66100 Chieti, Italy
| | - Domenico De Bellis
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Francesco Laterza
- Digestive Endoscopy and Gastroenterology Unit, SS Annunziata Hospital, ASL2 Abruzzo, 66100 Chieti, Italy
| | - Assunta Pandolfi
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Caterina Pipino
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Michele Sallese
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Marchisio
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Sebastiano Miscia
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Matteo Neri
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
3
|
A pilot study evaluating the Calibrated Automated Thrombogram assay and application of plasma-thromboelastography for detection of hemostatic aberrations in horses with gastrointestinal disease. BMC Vet Res 2021; 17:346. [PMID: 34749707 PMCID: PMC8573990 DOI: 10.1186/s12917-021-03058-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/19/2021] [Indexed: 01/15/2023] Open
Abstract
Background Critically ill horses, such as horses with gastrointestinal (GI) disease, often suffer from hemostatic aberrations. Global hemostatic tests examining the initiation of coagulation, clot strength and fibrinolysis, such as the Calibrated Automated Thrombogram (CAT) and plasma-thromboelastography (TEG) have not been evaluated in horses. This study aimed to evaluate CAT and apply plasma-TEG in horses. Test performance of CAT was evaluated on equine platelet poor plasma with intra- and inter-assay variability (CV) and a heparin dilution curve. To examine clinical performance of both tests, group comparisons were assessed comparing healthy horses, horses with mild and severe GI disease with both CAT and plasma-TEG. Results For CAT, intra- and inter-assay CVs were established for lag-time (1.7, 4.7%), endogenous thrombin potential (1.6, 4.6%), peak (2.6, 3.9%) and time to peak (ttPeak) (1.9, 3.4%). Increasing heparin concentrations led to the expected decrease in thrombin generation. In the group comparison analysis, CAT showed significant higher peak (p = 0.04) and ttPeak (p = 0.008) in the severe GI disease group compared to horses with mild GI disease and healthy horses, respectively. Plasma-TEG showed an increased angle (p = 0.032), maximum amplitude (p = 0.017) and shear elastic force (G) (p = 0.017) in the severe GI disease group compared to healthy horses. Conclusions CAT performed well in horses. Both CAT and plasma-TEG identified hemostatic aberrations in horses with severe GI disease compared to healthy horses. Further studies including more horses, are needed to fully appreciate the use of CAT and plasma-TEG in this species. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-03058-7.
Collapse
|
4
|
Gaetani E, Del Zompo F, Marcantoni M, Gatto I, Giarretta I, Porfidia A, Scaldaferri F, Laterza L, Lopetuso L, Gasbarrini A, Pola R. Microparticles Produced by Activated Platelets Carry a Potent and Functionally Active Angiogenic Signal in Subjects with Crohn's Disease. Int J Mol Sci 2018; 19:ijms19102921. [PMID: 30261608 PMCID: PMC6212893 DOI: 10.3390/ijms19102921] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/07/2018] [Accepted: 09/21/2018] [Indexed: 12/17/2022] Open
Abstract
Microparticles (MPs) are submicron vesicles shed from various cell types upon activation, stimulation, and death. Activated platelets are an important source of circulating MPs in subjects with inflammatory diseases, including Crohn’s disease (CD). Angiogenesis is a hallmark of inflammation in CD and plays an active role in sustaining disease progression, while targeting angiogenesis may be an effective approach to block colitis. In this study, we analyzed the angiogenic content of the MPs produced by activated platelets in subjects with CD. We also evaluated whether the angiogenic signal carried by these MPs was functionally active, or able to induce angiogenesis. We found that, in subjects with CD, MPs produced by activated platelets contain significantly higher levels of angiogenic mRNAs, such as epidermal growth factor (EGF), platelet-derived growth factor-α (PDGFα), fibroblast growth factor (FGF-2), and angiopoietin-1 (ANGPT1), compared to MPs isolated from control subjects. They also contain significantly higher levels of prototypical angiogenic proteins, including vascular endothelial growth factor (VEGF), angiopoietin-1, endoglin, endothelin-1, pentraxin 3, platelet factor-4, plasminogen activator inhibitor-1 (PAI-1), tissue inhibitor of metalloproteinases-1 (TIMP-1), and thrombospondin 1. The protein content of these MPs is functionally active, since it has the ability to induce a robust angiogenic process in an endothelial cell/interstitial cell co-culture in vitro assay. Our results reveal a potential novel mechanism through which the angiogenic signal is delivered in subjects with CD, with potentially important clinical and therapeutic implications.
Collapse
Affiliation(s)
- Eleonora Gaetani
- Division of Internal Medicine and Gastroenterology, Department of Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Fabio Del Zompo
- Division of Internal Medicine and Gastroenterology, Department of Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Margherita Marcantoni
- Division of Vascular Medicine, Department of Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Ilaria Gatto
- Division of Vascular Medicine, Department of Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Igor Giarretta
- Division of Vascular Medicine, Department of Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Angelo Porfidia
- Division of Vascular Medicine, Department of Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Franco Scaldaferri
- Division of Internal Medicine and Gastroenterology, Department of Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Lucrezia Laterza
- Division of Internal Medicine and Gastroenterology, Department of Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Loris Lopetuso
- Division of Internal Medicine and Gastroenterology, Department of Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Antonio Gasbarrini
- Division of Internal Medicine and Gastroenterology, Department of Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Roberto Pola
- Division of Vascular Medicine, Department of Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| |
Collapse
|
5
|
Barteneva NS, Baiken Y, Fasler-Kan E, Alibek K, Wang S, Maltsev N, Ponomarev ED, Sautbayeva Z, Kauanova S, Moore A, Beglinger C, Vorobjev IA. Extracellular vesicles in gastrointestinal cancer in conjunction with microbiota: On the border of Kingdoms. Biochim Biophys Acta Rev Cancer 2017; 1868:372-393. [DOI: 10.1016/j.bbcan.2017.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 12/16/2022]
|
6
|
Tian LL, Huang LY. Inflammatory bowel disease and thromboembolic events. Shijie Huaren Xiaohua Zazhi 2017; 25:589-595. [DOI: 10.11569/wcjd.v25.i7.589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Thromboembolism (TE) is an extraintestinal manifestation (EIM) of inflammatory bowel disease (IBD). According to previous pathological reports, the incidence of IBD complicated with TE is as high as 41%. However, this EIM is often overlooked. This review summarizes the results of the relevant clinical studies to date, analyzes the potential prothrombotic risk of IBD drug therapy, and discusses the current status on the treatment and prevention of TE, with an aim to provide a comprehensive reference for clinical work.
Collapse
|
7
|
Kanzler P, Mahoney A, Leitner G, Witt V, Maurer-Spurej E. Microparticle detection to guide platelet management for the reduction of platelet refractoriness in children – A study proposal. Transfus Apher Sci 2017; 56:39-44. [DOI: 10.1016/j.transci.2016.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Jiang J, Kao CY, Papoutsakis ET. How do megakaryocytic microparticles target and deliver cargo to alter the fate of hematopoietic stem cells? J Control Release 2016; 247:1-18. [PMID: 28024915 DOI: 10.1016/j.jconrel.2016.12.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 12/18/2022]
Abstract
Megakaryocytic microparticles (MkMPs), the most abundant MPs in circulation, can induce the differentiation of hematopoietic stem and progenitor cells (HSPCs) into functional megakaryocytes. This MkMP capability could be explored for applications in transfusion medicine but also for delivery of nucleic acids and other molecules to HSPCs for targeted molecular therapy. Understanding how MkMPs target, deliver cargo and alter the fate of HSPCs is important for exploring such applications. We show that MkMPs, which are distinct from Mk exosomes (MkExos), target HSPCs with high specificity since they have no effect on other ontologically or physiologically related cells, namely mesenchymal stem cells, endothelial cells or granulocytes. The outcome is also specific: only cells of the megakaryocytic lineage are generated. Observation of intact fluorescently-tagged MkMPs inside HSPCs demonstrates endocytosis as one mechanism of cargo delivery. Fluorescent labeling and scanning electron microscopy (SEM) imaging show that direct fusion of MkMPs into HSPCs is also engaged in cargo delivery. SEM imaging detailed the membrane-fusion process in four stages leading to full adsorption of MkMPs into HSPCs. Furthermore, macropinocytosis and lipid raft-mediated were shown here as mechanisms of MkMP uptake by HSPC. In contrast, the ontologically related platelet-derived MPs (PMPs) cannot be taken up by HSPCs although they bind to and induce HSPC aggregation. We show that platelet-like thrombin activation is apparently responsible for the different biological effects of MkMPs versus PMPs on HSPCs. We show that HSPC uropods are the preferential site for MkMP binding, and that CD54 (ICAM-1), CD11b, CD18 and CD43, localized on HSPC uropods, are involved in MkMP binding to HSPCs. Finally, we show that MkMP RNA is largely responsible for HSPC programming into Mk differentiation.
Collapse
Affiliation(s)
- Jinlin Jiang
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States; Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Chen-Yuan Kao
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States; Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Eleftherios T Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States; Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States; Department of Biological Sciences, University of Delaware, Newark, DE, United States.
| |
Collapse
|
9
|
Tziatzios G, Polymeros D, Spathis A, Triantafyllou M, Gkolfakis P, Karakitsos P, Dimitriadis G, Triantafyllou K. Increased levels of circulating platelet derived microparticles in Crohn's disease patients. Scand J Gastroenterol 2016; 51:1184-1192. [PMID: 27191369 DOI: 10.1080/00365521.2016.1182582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/13/2016] [Accepted: 04/17/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Platelet activation is a consistent feature in inflammatory bowel disease. However, the role of circulating platelet derived microparticles (PDMPs) and the effects of disease activity and treatment on their levels has not been clarified yet in this disorder. MATERIAL AND METHODS Using flow cytometry, we measured platelet derived microparticles and platelet derived microparticles expressing Annexin V in platelet rich plasma from 47 Crohn's disease and 43 ulcerative colitis patients and 24 healthy controls. RESULTS Crohn's disease patients have greater PDMPs (0.31% ± 0.07% versus 0.14% ± 0.04%, p = 0.02) and PDMPs expressing Annexin V (27% ± 2.6% versus 14.6% ± 2.7%, p = 0.002) levels in comparison with healthy controls; however, both microparticles levels are not related with disease activity. Crohn's disease patients on 5-ASA therapy show lower levels of PDMPs in comparison with those on no 5-ASA (0.30% ± 0.07% versus 0.32% ± 0.09%, p = 0.048). Ulcerative colitis patients have similar PDMPs and PDMPs expressing Annexin V levels, compared to healthy controls (p = 0.06 and p = 0.2, respectively) and there is no correlation of both microparticles expression with disease activity. 5-ASA has no effect on both microparticles levels in ulcerative colitis patients. Anti-TNF-α treatment has no effect on study's microparticles expression in Crohn's and ulcerative colitis patients. CONCLUSIONS Circulating levels of platelet derived microparticles are increased only in Crohn's patients, but they do not correlate with disease activity. 5-ASA treatment is associated with lower levels of PDMPs only in Crohn's, while anti-TNF-α treatment does not influence expression of microparticles in inflammatory bowel disease patients.
Collapse
Affiliation(s)
- Georgios Tziatzios
- a Hepatogastroenterology Unit, Second Department of Internal Medicine - Propaedeutic Research Institute and Diabetes Center , "Attikon" University General Hospital , Athens , Greece
| | - Dimitrios Polymeros
- a Hepatogastroenterology Unit, Second Department of Internal Medicine - Propaedeutic Research Institute and Diabetes Center , "Attikon" University General Hospital , Athens , Greece
| | - Aris Spathis
- b Laboratory of Cytopathology , Medical School, National and Kapodistrian University, "Attikon" University General Hospital , Athens , Greece
| | - Maria Triantafyllou
- a Hepatogastroenterology Unit, Second Department of Internal Medicine - Propaedeutic Research Institute and Diabetes Center , "Attikon" University General Hospital , Athens , Greece
| | - Paraskevas Gkolfakis
- a Hepatogastroenterology Unit, Second Department of Internal Medicine - Propaedeutic Research Institute and Diabetes Center , "Attikon" University General Hospital , Athens , Greece
| | - Petros Karakitsos
- b Laboratory of Cytopathology , Medical School, National and Kapodistrian University, "Attikon" University General Hospital , Athens , Greece
| | - George Dimitriadis
- a Hepatogastroenterology Unit, Second Department of Internal Medicine - Propaedeutic Research Institute and Diabetes Center , "Attikon" University General Hospital , Athens , Greece
| | - Konstantinos Triantafyllou
- a Hepatogastroenterology Unit, Second Department of Internal Medicine - Propaedeutic Research Institute and Diabetes Center , "Attikon" University General Hospital , Athens , Greece
| |
Collapse
|
10
|
Maurer-Spurej E, Larsen R, Labrie A, Heaton A, Chipperfield K. Microparticle content of platelet concentrates is predicted by donor microparticles and is altered by production methods and stress. Transfus Apher Sci 2016; 55:35-43. [DOI: 10.1016/j.transci.2016.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Amiral J, Seghatchian J. Measurement of extracellular vesicles as biomarkers of consequences or cause complications of pathological states, and prognosis of both evolution and therapeutic safety/efficacy. Transfus Apher Sci 2016; 55:23-34. [PMID: 27475803 DOI: 10.1016/j.transci.2016.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Utility of EVs, as biomarkers of cause or consequence of various pathological complications, and prognosis of blood components' therapy in terms of safety/efficacy and their potential associated hazards, primed by EVs involvements in pro-inflammatory, immunomodulatory and activations of both pro/anti-coagulatory and others associated pathways, as well as various cellular cross talks, are highlighted as the fundamental. Today EVs are becoming the "buzz" words of the current diagnosis, development and research [DDR] strategies, with the aim of ensuring safer therapeutic approaches in the current clinical practices, also incorporating their potential in long term cost effectiveness in health care systems. The main focus of this manuscript is to review the current opinions in some fundamental areas of EVs involvements in health and diseases. Firstly, our goal is highlighting what are EVs/MVs/MPs and how are they generated in physiology, pathology or blood products; classification and significance of EVs generated in vivo; followed by consequences and physiological/pathological induced effects of EVs generation in vivo. Secondly, specific cell origin EVs and association with malignancy; focus on EVs carrying TF and annexin V as a protective protein for harmful effects of EVs, and associations with LA; and incidence of anti-annexin V antibodies are also discussed. Thirdly, utility of EVs is presented: as diagnostic tools of disease markers; prognosis and follow-up of clinical states; evaluation of therapy efficacy; quality and risk assessment of blood products; followed by the laboratory tools for exploring, characterizing and measuring EVs, and/or their associated activity, using our own experiences of capture based assays. Finally, in perspective, the upcoming low volume sampling, fast, reliable and reproducibility and friendly use laboratory tools and the standardization of measurement methods are highlighted with the beneficial effects that we are witnessing in both wound healing and tissue remodeling, with an expected blockbuster status EVs as future therapeutic directions.
Collapse
Affiliation(s)
- Jean Amiral
- Hyphen BioMed, Neuville sur Oise, Paris, France.
| | - Jerard Seghatchian
- International Consultancy in Blood Components Quality/Safety Improvement, Audit/Inspection and DDR Strategies, London, UK
| |
Collapse
|
12
|
Voudoukis E, Vetsika EK, Giannakopoulou K, Karmiris K, Theodoropoulou A, Sfiridaki A, Georgoulias V, Paspatis GA, Koutroubakis IE. Distinct features of circulating microparticles and their relationship with disease activity in inflammatory bowel disease. Ann Gastroenterol 2016; 29:180-7. [PMID: 27065731 PMCID: PMC4805738 DOI: 10.20524/aog.2016.0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background There is evidence that circulating microparticles (MPs) and annexin (+) platelet-derived MPs (PDMPs) are increased in inflammatory bowel disease (IBD). The aim of our study was to characterize the abundance, origin, and annexin V binding of MPs in patients with IBD and correlate them with the disease characteristics. Methods Case-control study of 46 IBD patients (23 Crohn’s disease, 23 ulcerative colitis) and 40 matched healthy controls (HC). MPs were divided according to annexin V binding, their origin was estimated based on specific cell membrane markers in plasma samples and their number was calculated via flow cytometry. Clinical and laboratory activity indices were also analyzed. Results Annexin (-) PDMPs (P=0.0004), total (P=0.04) and annexin (+) monocyte-derived MPs (P=0.02) were increased and annexin (-) total MPs (P=0.0007) were decreased in IBD patients compared to HC. The annexin (+)/(-) ratio of all MP types were significantly elevated in IBD patients compared to HC (P<0.003). IBD patients with active disease displayed elevated total and annexin (+) total MPs, total, annexin (+) and (-) PDMPs compared with those in remission (P<0.05). Annexin (-) PDMPs were considerably increased in IBD patients with active compared to those with inactive disease (P=0.0013). Total and annexin (-) PDMPs were significantly correlated with most of the disease activity indices (P<0.05). Conclusion The majority of circulating MPs, their counterparts and particularly annexin (-) PDMPs are increased in active IBD patients. Annexin (+)/(-) ratio proved to be the most reliable distinctive MP index between HC and IBD patients.
Collapse
Affiliation(s)
- Evangelos Voudoukis
- Department of Gastroenterology, Venizelion General Hospital (Evangelos Voudoukis, Konstantina Giannakopoulou, Konstantinos Karmiris, Angeliki Theodoropoulou, Gregorios A. Paspatis), Crete, Greece
| | - Eleni-Kyriaki Vetsika
- Laboratory of Tumor Biology, School of Medicine, University of Crete (Eleni-Kyriaki Vetsika, Vassilis Georgoulias), Crete, Greece
| | - Konstantina Giannakopoulou
- Department of Gastroenterology, Venizelion General Hospital (Evangelos Voudoukis, Konstantina Giannakopoulou, Konstantinos Karmiris, Angeliki Theodoropoulou, Gregorios A. Paspatis), Crete, Greece
| | - Konstantinos Karmiris
- Department of Gastroenterology, Venizelion General Hospital (Evangelos Voudoukis, Konstantina Giannakopoulou, Konstantinos Karmiris, Angeliki Theodoropoulou, Gregorios A. Paspatis), Crete, Greece
| | - Angeliki Theodoropoulou
- Department of Gastroenterology, Venizelion General Hospital (Evangelos Voudoukis, Konstantina Giannakopoulou, Konstantinos Karmiris, Angeliki Theodoropoulou, Gregorios A. Paspatis), Crete, Greece
| | | | - Vassilis Georgoulias
- Laboratory of Tumor Biology, School of Medicine, University of Crete (Eleni-Kyriaki Vetsika, Vassilis Georgoulias), Crete, Greece
| | - Gregorios A Paspatis
- Department of Gastroenterology, Venizelion General Hospital (Evangelos Voudoukis, Konstantina Giannakopoulou, Konstantinos Karmiris, Angeliki Theodoropoulou, Gregorios A. Paspatis), Crete, Greece
| | - Ioannis E Koutroubakis
- Department of Gastroenterology, University Hospital, Heraklion (Ioannis E. Koutroubakis), Crete, Greece
| |
Collapse
|
13
|
The diagnostic usefulness of capture assays for measuring global/specific extracellular micro-particles in plasma. Transfus Apher Sci 2015; 53:127-36. [PMID: 26572801 DOI: 10.1016/j.transci.2015.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Capture assays were developed and validated for measuring the global pro-coagulant activity of micro-particles (MPs, mainly originated from platelets), or specific extravascular cellular MPs (released from erythrocytes, leukocytes, monocytes, endothelial cells) as those exposing TF (MP-TF, mainly observed in patients with some cancers). Conversely to Flow Cytometry methods, these capture assays measure all coagulant activity associated with MPs, through thrombin generation (MP-Activity) or Factor Xa generation (MP-TF), and therefore they bring a complementary information, as they are more specific for the pro-coagulant activity associated with MPs. Small particles (<0.40 µ) exposing Phosphatidyl Serine (PS) exhibit a greater pro-coagulant surface than larger MPs (0.40 to >1.00 µ), those preferentially measured with flow cytometry. Activity associated with MPs is a consequence of disease but can also be a cause contributing to pathological processes and development of thrombo-embolic events. In many diseases, flow cytometry and capture assays do not totally correlate, and have different associations with disease evolution. Optimized capture based assays are presented and discussed, along with their performance characteristics and some applications. They can be performed in any technically skillful hemostasis laboratory, using a thermostated ELISA equipment, or an incubator. Dynamic ranges for MP-Activity assay is from <0.1 nM to >2.5 nM Phospholipids, expressed as Phosphatidyl Serine (PS) equivalent, in the tested dilution. For MP-TF the very sensitive bio-immunoassay reported allows measuring concentrations from <0.10 pg/ml (TF equivalent) to >5.00 pg/ml, in the assayed dilution. No measurable MP-TF was found in normals, although an important concentration was generated from whole blood treated with Lipo-Poly-Saccharides. Capture based assays are then highly useful in the laboratory setting for measuring the activities associated with pro-coagulant, or specific cellular MPs.
Collapse
|
14
|
Yemm A, Adams D, Kalia N. Targeting the delivery of systemically administered haematopoietic stem/progenitor cells to the inflamed colon using hydrogen peroxide and platelet microparticle pre-treatment strategies. Stem Cell Res 2015; 15:569-580. [PMID: 26479027 DOI: 10.1016/j.scr.2015.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 12/13/2022] Open
Abstract
Haematopoietic stem and progenitor cell (HSC) therapy may be promising for the treatment of inflammatory bowel disorders (IBDs). However, clinical success remains poor, partly explained by limited HSC recruitment following systemic delivery. The mechanisms governing HSC adhesion within inflamed colon, and whether this event can be enhanced, are not known. An immortalised HSC-like line (HPC7) was pre-treated with hydrogen peroxide (H2O2), activated platelet releasate enriched supernatant (PES) or platelet microparticles (PMPs). Subsequent adhesion was monitored using adhesion assays or in vivo ischaemia-reperfusion (IR) and colitis injured mouse colon intravitally. Integrin clustering was determined confocally and cell morphology using scanning electron microscopy. Both injuries resulted in increased HPC7 adhesion within colonic mucosal microcirculation. H2O2 and PES significantly enhanced adhesion in vitro and in the colitis, but not IR injured, colon. PMPs had no effect on adhesion. PES and PMPs induced clustering of integrins on the HPC7 surface, but did not alter their expression. Adhesion to the colon is modulated by injury but only in colitis injury can this recruitment be enhanced. The enhanced adhesion induced by PES is likely through integrin distribution changes on the HPC7 surface. Improving local HSC presence in injured colon may result in better therapeutic efficacy for treatment of IBD.
Collapse
Affiliation(s)
- Adrian Yemm
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - David Adams
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; School of Immunity and Infection, Institute of Biomedical Research, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Neena Kalia
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
15
|
Rousseau M, Belleannee C, Duchez AC, Cloutier N, Levesque T, Jacques F, Perron J, Nigrovic PA, Dieude M, Hebert MJ, Gelb MH, Boilard E. Detection and quantification of microparticles from different cellular lineages using flow cytometry. Evaluation of the impact of secreted phospholipase A2 on microparticle assessment. PLoS One 2015; 10:e0116812. [PMID: 25587983 PMCID: PMC4294685 DOI: 10.1371/journal.pone.0116812] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 12/15/2014] [Indexed: 11/20/2022] Open
Abstract
Microparticles, also called microvesicles, are submicron extracellular vesicles produced by plasma membrane budding and shedding recognized as key actors in numerous physio(patho)logical processes. Since they can be released by virtually any cell lineages and are retrieved in biological fluids, microparticles appear as potent biomarkers. However, the small dimensions of microparticles and soluble factors present in body fluids can considerably impede their quantification. Here, flow cytometry with improved methodology for microparticle resolution was used to detect microparticles of human and mouse species generated from platelets, red blood cells, endothelial cells, apoptotic thymocytes and cells from the male reproductive tract. A family of soluble proteins, the secreted phospholipases A2 (sPLA2), comprises enzymes concomitantly expressed with microparticles in biological fluids and that catalyze the hydrolysis of membrane phospholipids. As sPLA2 can hydrolyze phosphatidylserine, a phospholipid frequently used to assess microparticles, and might even clear microparticles, we further considered the impact of relevant sPLA2 enzymes, sPLA2 group IIA, V and X, on microparticle quantification. We observed that if enriched in fluids, certain sPLA2 enzymes impair the quantification of microparticles depending on the species studied, the source of microparticles and the means of detection employed (surface phosphatidylserine or protein antigen detection). This study provides analytical considerations for appropriate interpretation of microparticle cytofluorometric measurements in biological samples containing sPLA2 enzymes.
Collapse
Affiliation(s)
- Matthieu Rousseau
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l’Université Laval, Québec, QC, Canada
| | - Clemence Belleannee
- Centre de Recherche du CHUQ and Département d’Obstétrique-Gynécologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Anne-Claire Duchez
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l’Université Laval, Québec, QC, Canada
| | - Nathalie Cloutier
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l’Université Laval, Québec, QC, Canada
| | - Tania Levesque
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l’Université Laval, Québec, QC, Canada
| | | | - Jean Perron
- Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Peter A. Nigrovic
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Melanie Dieude
- Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Marie-Josee Hebert
- Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Michael H. Gelb
- Department of Chemistry, University of Washington, Seattle, WA, United States of America
| | - Eric Boilard
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l’Université Laval, Québec, QC, Canada
- * E-mail:
| |
Collapse
|
16
|
Microparticles: a new perspective in central nervous system disorders. BIOMED RESEARCH INTERNATIONAL 2014; 2014:756327. [PMID: 24860829 PMCID: PMC4000927 DOI: 10.1155/2014/756327] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/13/2014] [Indexed: 12/12/2022]
Abstract
Microparticles (MPs) are a heterogeneous population of small cell-derived vesicles, ranging in size from 0.1 to 1 μm. They contain a variety of bioactive molecules, including proteins, biolipids, and nucleic acids, which can be transferred between cells without direct cell-to-cell contact. Consequently, MPs represent a novel form of intercellular communication, which could play a role in both physiological and pathological processes. Growing evidence indicates that circulating MPs contribute to the development of cancer, inflammation, and autoimmune and cardiovascular diseases. Most cell types of the central nervous system (CNS) have also been shown to release MPs, which could be important for neurodevelopment, CNS maintenance, and pathologies. In disease, levels of certain MPs appear elevated; therefore, they may serve as biomarkers allowing for the development of new diagnostic tools for detecting the early stages of CNS pathologies. Quantification and characterization of MPs could also provide useful information for making decisions on treatment options and for monitoring success of therapies, particularly for such difficult-to-treat diseases as cerebral malaria, multiple sclerosis, and Alzheimer's disease. Overall, studies on MPs in the CNS represent a novel area of research, which promises to expand the knowledge on the mechanisms governing some of the physiological and pathophysiological processes of the CNS.
Collapse
|
17
|
Voudoukis E, Karmiris K, Koutroubakis IE. Multipotent role of platelets in inflammatory bowel diseases: A clinical approach. World J Gastroenterol 2014; 20:3180-3190. [PMID: 24696603 PMCID: PMC3964390 DOI: 10.3748/wjg.v20.i12.3180] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
There is evidence that inflammatory bowel diseases (IBD) combine both inflammation and coagulation in their pathogenesis and clinical manifestations. Although platelets (PLT) are well known for their role in hemostasis, there are a rising number of studies supporting their considerable role as inflammatory amplifiers in chronic inflammatory conditions. IBD are associated with several alterations of PLT, including number, shape, and function, and these abnormalities are mainly attributed to the highly activated state of circulating PLT in IBD patients. When PLT activate, they increase in size, release a great variety of bio-active inflammatory and procoagulant molecules/particles, and express a variety of inflammatory receptors. These inflammatory products may represent a part of the missing link between coagulation and inflammation, and can be considered as possible IBD pathogenesis instigators. In clinical practice, thrombocytosis is associated both with disease activity and iron deficiency anemia. Controlling inflammation and iron replacement in anemic patients usually leads to a normalization of PLT count. The aim of this review is to update the role of PLT in IBD and present recent data revealing the possible therapeutic implications of anti-PLT agents in future IBD remedies.
Collapse
|
18
|
Bryant RV, Jairath V, Curry N, Travis SPL. Thrombosis in inflammatory bowel disease: are we tailoring prophylaxis to those most at risk? J Crohns Colitis 2014; 8:166-71. [PMID: 24095288 DOI: 10.1016/j.crohns.2013.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 09/06/2013] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is a disease-specific risk factor for incident and recurrent venous thromboembolism (VTE). The reasons are acquired, multifactorial, and related to prothrombotic aberrations during active disease, although the mechanisms remain incompletely elucidated. VTE represents a potentially life-threatening extraintestinal manifestation of IBD, but the associated morbidity and mortality can be reduced by appropriate use of thromboprophylaxis. Nevertheless, despite international guidelines advocating thromboprophylaxis in hospitalised patients with IBD, practice is highly variable, since 65% of gastroenterologists may not use pharmacological VTE prophylaxis in hospitalised patients with acute severe colitis. Furthermore, there is no guidance on appropriate prophylaxis for ambulatory outpatients with active disease who are at an appreciable risk of VTE. Thus the question: are we tailoring thromboprophylaxis to those patients with IBD who are most at risk?
Collapse
Affiliation(s)
- Robert V Bryant
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, United Kingdom.
| | - Vipul Jairath
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, United Kingdom; NHS Blood and Transplant, Oxford University Hospitals NHS Trust, United Kingdom.
| | - Nicola Curry
- Oxford Haemophilia and Thrombosis Centre, Churchill Hospital, Oxford University Hospitals NHS Trust, United Kingdom.
| | - Simon P L Travis
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, United Kingdom.
| |
Collapse
|
19
|
Wilhelmsen P, Kjær J, Thomsen KL, Nielsen CT, Dige A, Maniecki MB, Heegaard N, Grønbæk H, Dahlerup J, Handberg A. Elevated platelet expression of CD36 may contribute to increased risk of thrombo-embolism in active inflammatory bowel disease. Arch Physiol Biochem 2013; 119:202-8. [PMID: 23862574 DOI: 10.3109/13813455.2013.808671] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CONTEXT Inflammatory bowel disease (IBD) induces increased risk of thrombo-embolism. CD36 is involved in platelet activation, glucose metabolism and inflammation. OBJECTIVE The relationship between CD36 expression on platelets and monocytes, plasma sCD36, and CD36-positive platelet-derived microparticles (PDMPs) and inflammation in both active IBD and after one week of anti-tumour necrosis alpha antibody (anti-TNF) treatment was investigated. MATERIAL AND METHODS Patients with exacerbation of Crohn's disease (n = 8) or ulcerative colitis (n = 5) and 13 healthy controls were enrolled. Seven patients underwent anti-TNF treatment for one week. Platelet, monocyte, and PDMP-CD36 were measured by flow-cytometry. RESULTS Platelet CD36 expression was 34% higher in patients, and correlated with insulin resistance and fasting glucose. sCD36 was 37% lower and restored after anti-TNF treatment. CONCLUSION Elevated platelet CD36 expression may contribute to increased risk of thrombo-embolism in active IBD. This may not entirely be attributed to inflammation and secondary insulin resistance may play a role.
Collapse
Affiliation(s)
- Peter Wilhelmsen
- Department of Clinical Biochemistry, Aarhus University Hospital , Aarhus , Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Leonetti D, Reimund JM, Tesse A, Viennot S, Martinez MC, Bretagne AL, Andriantsitohaina R. Circulating microparticles from Crohn's disease patients cause endothelial and vascular dysfunctions. PLoS One 2013; 8:e73088. [PMID: 24019899 PMCID: PMC3760904 DOI: 10.1371/journal.pone.0073088] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 07/18/2013] [Indexed: 12/19/2022] Open
Abstract
Background Microparticles (MPs) are small vesicles released during cell activation or apoptosis. They are involved in coagulation, inflammation and vascular dysfunction in several diseases. We characterized circulating MPs from Crohn’s Disease (CD) patients and evaluated their effects on endothelial function and vascular reactivity after in vivo injection into mice. Methods Circulating MPs and their cellular origins were examined by flow cytometry from blood samples from healthy subjects (HS) and inactive or active CD patients. MPs were intravenously injected into mice. After 24 hours, endothelial function and vascular reactivity were assessed. Results Circulating MP levels did not differ between HS and inactive CD patients except for an increase in leukocyte-derived MPs in CD. Active CD patients compared to HS displayed increased total circulating MPs, pro-coagulant MPs and those from platelets, endothelium, erythrocytes, leukocytes, activated leukocytes and activated platelets. A significant correlation was found between total levels of MPs, those from platelets and endothelial cells, and the Harvey-Bradshaw clinical activity index. MPs from CD, but not from HS, impaired endothelium-dependent relaxation in mice aorta and flow-induced dilation in mice small mesenteric arteries, MPs from inactive CD patients being more effective than those from active patients. CDMPs induced vascular hypo-reactivity in aorta that was prevented by a nitric oxide (NO)-synthase inhibitor, and was associated with a subtle alteration of the balance between NO, reactive oxygen species and the release of COX metabolites. Conclusions We provide evidence that MPs from CD patients significantly alter endothelial and vascular function and therefore, may play a role in CD pathophysiology, at least by contributing to uncontrolled vascular-dependent intestinal damage.
Collapse
Affiliation(s)
| | - Jean-Marie Reimund
- Université de Caen Basse-Normandie, UFR de Médecine, EA 4652 (Laboratoire «Microenvironnement Cellulaire et Pathologies»), SF 4206 ICORE, Caen, France
- CHU de Caen, Service d’Hépato-Gastro-Entérologie et Nutrition, Pôle Médecine d’Organes et Cancérologie, Caen, France
| | | | - Stéphanie Viennot
- CHU de Caen, Service d’Hépato-Gastro-Entérologie et Nutrition, Pôle Médecine d’Organes et Cancérologie, Caen, France
| | | | - Anne-Laure Bretagne
- CHU de Caen, Service d’Hépato-Gastro-Entérologie et Nutrition, Pôle Médecine d’Organes et Cancérologie, Caen, France
| | | |
Collapse
|
21
|
|
22
|
Increased procoagulant function of microparticles in pediatric inflammatory bowel disease: role in increased thrombin generation. J Pediatr Gastroenterol Nutr 2013; 56:401-7. [PMID: 23164759 DOI: 10.1097/mpg.0b013e31827daf72] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Patients with inflammatory bowel disease (IBD) have a higher risk for venous thromboembolism compared with non-IBD subjects. The pathogenic mechanisms of the thrombotic events are not fully understood. We investigated levels of circulating microparticles and their influence on thrombin generation in pediatric patients with IBD during active and quiescent disease compared with healthy controls. METHODS Plasma samples were collected from 33 pediatric patients with Crohn disease (CD), 20 pediatric patients with ulcerative colitis (UC), and 60 healthy controls. Microparticles' procoagulant activity was measured by enzyme-linked immunosorbent assay, and the dependency of thrombin generation on microparticles-derived tissue factor was determined by means of calibrated automated thrombography. RESULTS The procoagulant function of microparticles was significantly increased in patients with active and inactive CD, and active UC compared with controls. Endogenous thrombin potential was significantly higher in patients with CD and UC compared with controls. A minor influence of microparticles on thrombin generation was only observed for patients with active UC. CONCLUSIONS Our study shows increased procoagulant function of microparticles in pediatric patients with active and quiescent CD and active UC compared with controls, but demonstrates that they are not a major cause for the higher thrombin generation in pediatric patients with IBD.
Collapse
|
23
|
Palkovits J, Novacek G, Kollars M, Hron G, Osterode W, Quehenberger P, Kyrle PA, Vogelsang H, Reinisch W, Papay P, Weltermann A. Tissue factor exposing microparticles in inflammatory bowel disease. J Crohns Colitis 2013; 7:222-9. [PMID: 22705067 DOI: 10.1016/j.crohns.2012.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 03/22/2012] [Accepted: 05/19/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND Circulating procoagulant microparticles (MPs) are thought to be involved in the pathogenesis of venous thromboembolism in patients with inflammatory bowel disease (IBD). However, the exposure of tissue factor, the primary initiator of coagulation activation, on microparticles (TF(+)MPs) and its association with hemostasis activation has not yet been studied in IBD patients. METHODS In this case-control study 49 IBD patients (28 Crohn's disease, 21 ulcerative colitis) and 49 sex- and age-matched, healthy controls were included. Clinical disease activity (Crohn's Disease Activity Index and Clinical Activity Index, respectively) was assessed and IBD-related data were determined by chart review. Numbers, cellular origin and procoagulant activity of TF(+)MPs in plasma were determined using flow cytometry and a chromogenic activity assay. D-dimer and high-sensitive C-reactive protein (CRP) served as markers for coagulation activation and inflammation, respectively. The primary endpoint was the number of TF(+)MPs in IBD patients compared to controls. RESULTS Median number (interquartile range) of TF(+)MPs was higher in IBD patients than in controls (14.0 (11.9-22.8)×10(3)/mL vs. 11.9 (11.9-19.1)×10(3)/mL plasma, P=0.029). This finding was due to generally higher plasma levels of MPs from platelets and leukocytes in IBD patients. However, the number of TF(+)MPs was neither correlated with their procoagulant activity and D-dimer nor with disease activity and CRP. CONCLUSIONS Increased numbers of circulating TF(+)MPs represent a new facet of hemostatic abnormalities in IBD. However, the lack of association with activation of the coagulation system and disease activity questions their pathogenetic role for venous thromboembolism in this patient group.
Collapse
Affiliation(s)
- Julia Palkovits
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology; Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Crookston KP, Sibbitt WL, Chandler WL, Qualls CR, Roldan CA. Circulating microparticles in neuropsychiatric systemic lupus erythematosus. Int J Rheum Dis 2013; 16:72-80. [DOI: 10.1111/1756-185x.12026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | | | - Wayne. L. Chandler
- Department of Pathology and Genomic Medicine; The Methodist Hospital; Houston; Texas; USA
| | - Clifford R. Qualls
- Department of Mathematics and Statistics; University of New Mexico; Albuquerque; New Mexico; USA
| | - Carlos A. Roldan
- Department of Internal Medicine; University of New Mexico School of Medicine; Albuquerque; New Mexico; USA
| |
Collapse
|
25
|
Abstract
Factor V Leiden, is a variant of human factor V (FV), also known as proaccelerin, which leads to a hypercoagulable state. Along these years, factor V Leiden (FVL) has been studied from the pathophysiologic point of view, and research has been focused on finding clinical approaches for the management of the FVL associated to a trombophilic state. Less attention has been paid about the possible role of FVL in inflammatory conditions known to be present in different disorders such as uremia, cirrhosis, liver transplantation, depression as well as sepsis, infection or, inflammatory bowel disease (IBD). Whether platelet FVL will increase the activation of coagulation and/or in which proportion is able to determine the final outcome in the previously mentioned inflammatory conditions is a subject that remains uncertain. This paper will review the association of FVL with inflammation. Specifically, it will analyze the important role of the endothelium and the contribution of other inflammatory components involved at both the immune and vascular levels. This paper will also try to emphasize the importance of being a FVL carrier in associations to diseases where a chronic inflammation occurs, and how this condition may be determinant in the progression and outcome of a specific clinic situation.
Collapse
|
26
|
Zitomersky NL, Verhave M, Trenor CC. Thrombosis and inflammatory bowel disease: a call for improved awareness and prevention. Inflamm Bowel Dis 2011; 17:458-70. [PMID: 20848518 DOI: 10.1002/ibd.21334] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thrombotic complications in patients with inflammatory bowel disease (IBD) are common and require improved awareness and prevention. In this review the interface between IBD and thrombosis is discussed, with emphasis on risk assessment and data to aid clinical decision making. Thromboembolic complications are 3-fold more likely in IBD patients than controls and the relative risk exceeds 15 during disease flares. Improved assessment of thrombosis risk for an individual patient includes thorough personal and family history and awareness of prothrombotic medications and lifestyle choices. Patients with the highest risk of thrombosis are those with active colonic disease, personal or strong family history of thrombosis, and those with significant acquired risk factors. Combined risk factors or hospitalization should prompt mechanical thromboprophylaxis. Indications for prophylactic anticoagulation are not defined currently by clinical studies, especially in pediatric patients, although some groups now advocate prophylactic anticoagulation for all hospitalized IBD patients and even some outpatients with disease flares. Thrombosis management requires a multidisciplinary therapeutic approach to balance anticoagulation and bleeding risk. While bleeding may occur with anticoagulation in IBD, data and experience indicate that therapeutic heparin is safe and bleeding manifestations can be managed supportively in most patients. Until prospective trials of prophylactic anticoagulation are published, management of thrombotic risk and prophylaxis in IBD will remain a clinical challenge.
Collapse
Affiliation(s)
- Naamah L Zitomersky
- Division of Gastroenterology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
27
|
Roda G, Caponi A, Benevento M, Nanni P, Mezzanotte L, Belluzzi A, Mayer L, Roda A. New proteomic approaches for biomarker discovery in inflammatory bowel disease. Inflamm Bowel Dis 2010; 16:1239-46. [PMID: 20127998 DOI: 10.1002/ibd.21212] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is an increasing interest in the discovery of new inflammatory bowel disease (IBD) biomarkers able to predict the future patterns of disease and to help in diagnosis, treatment, and prognosis. A biomarker is a substance that can be measured biologically and is associated with an increased risk of the disease. Biomarkers can be a genetic testing factor or proteins in biological samples such as serum, plasma, and cellular subpopulations. All of them should be studied to find out their utility in the management of IBD. Ulcerative colitis and Crohn's disease are relapsing and remitting chronic IBDs characterized by a global immune defect. The gold standard of their diagnosis is histological evaluation performed during endoscopic procedures. Several studies have focused on the identification and combination of less invasive diagnostic serum biomarkers. Nowadays, diagnostic serum tests are not able either to determine whether and when the relapse will occur once the disease is in remission state or to select a patient phenotype more responsive to a specific therapy and more susceptible to different types of complication. In this review we analyze and report the current understanding in IBD biomarkers and discuss potential future biomarkers and new developments of proteomics, such as subproteomics, as an innovative approach for the classification of patients according to their pattern of protein expression.
Collapse
Affiliation(s)
- Giulia Roda
- Gastroenterology Unit, S. Orsola Hospital, University of Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Sellam J, Proulle V, Jüngel A, Ittah M, Miceli Richard C, Gottenberg JE, Toti F, Benessiano J, Gay S, Freyssinet JM, Mariette X. Increased levels of circulating microparticles in primary Sjögren's syndrome, systemic lupus erythematosus and rheumatoid arthritis and relation with disease activity. Arthritis Res Ther 2009; 11:R156. [PMID: 19832990 PMCID: PMC2787287 DOI: 10.1186/ar2833] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 09/22/2009] [Accepted: 10/15/2009] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Cell stimulation leads to the shedding of phosphatidylserine (PS)-rich microparticles (MPs). Because autoimmune diseases (AIDs) are characterized by cell activation, we investigated level of circulating MPs as a possible biomarker in primary Sjögren's syndrome (pSS), systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). METHODS We measured plasma levels of total, platelet and leukocyte MPs by prothrombinase capture assay and flow cytometry in 43 patients with pSS, 20 with SLE and 24 with RA and in 44 healthy controls (HCs). Secretory phospholipase A2 (sPLA2) activity was assessed by fluorometry. Soluble CD40 ligand (sCD40L) and soluble P-selectin (sCD62P), reflecting platelet activation, were measured by ELISA. RESULTS Patients with pSS showed increased plasma level of total MPs (mean +/- SEM 8.49 +/- 1.14 nM PS equivalent (Eq), P < 0.0001), as did patients with RA (7.23 +/- 1.05 n PS Eq, P = 0.004) and SLE (7.3 +/- 1.25 nM PS Eq, P = 0.0004), as compared with HCs (4.13 +/- 0.2 nM PS Eq). Patients with AIDs all showed increased level of platelet MPs (P < 0.0001), but only those with pSS showed increased level of leukocyte MPs (P < 0.0001). Results by capture assay and flow cytometry were correlated. In patients with high disease activity according to extra-glandular complications (pSS), DAS28 (RA) or SLEDAI (SLE) compared with low-activity patients, the MP level was only slightly increased in comparison with those having a low disease activity. Platelet MP level was inversely correlated with anti-DNA antibody level in SLE (r = -0.65; P = 0.003) and serum beta2 microglobulin level in pSS (r = -0.37; P < 0.03). The levels of total and platelet MPs were inversely correlated with sPLA2 activity (r = -0.37, P = 0.0007; r = -0.36, P = 0.002, respectively). sCD40L and sCD62P concentrations were significantly higher in pSS than in HC (P < or = 0.006). CONCLUSIONS Plasma MP level is elevated in pSS, as well as in SLE and RA, and could be used as a biomarker reflecting systemic cell activation. Level of leukocyte-derived MPs is increased in pSS only. The MP level is low in case of more severe AID, probably because of high secretory phospholipase A2 (sPLA2) activity, which leads to consumption of MPs. Increase of platelet-derived MPs, sCD40L and sCD62P, highlights platelet activation in pSS.
Collapse
Affiliation(s)
- Jérémie Sellam
- Rhumatologie, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (AP-HP), INSERM U802, Université Paris-Sud 11, 78 rue du Général Leclerc, 94270, Le Kremlin Bicêtre, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Thomas GM, Panicot-Dubois L, Lacroix R, Dignat-George F, Lombardo D, Dubois C. Cancer cell-derived microparticles bearing P-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo. ACTA ACUST UNITED AC 2009; 206:1913-27. [PMID: 19667060 PMCID: PMC2737159 DOI: 10.1084/jem.20082297] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent publications have demonstrated the presence of tissue factor (TF)–bearing microparticles (MPs) in the blood of patients suffering from cancer. However, whether these MPs are involved in thrombosis remains unknown. We show that pancreatic and lung cancer cells produce MPs that express active TF and P-selectin glycoprotein ligand 1 (PSGL-1). Cancer cell–derived MPs aggregate platelets via a TF-dependent pathway. In vivo, cancer cell–derived MPs, but not their parent cells, infused into a living mouse accumulate at the site of injury and reduce tail bleeding time and the time to occlusion of venules and arterioles. This thrombotic state is also observed in mice developing tumors. In such mice, the amount of circulating platelet-, endothelial cell–, and cancer cell–derived MPs is increased. Endogenous cancer cell–derived MPs shed from the growing tumor are able to accumulate at the site of injury. Infusion of a blocking P-selectin antibody abolishes the thrombotic state observed after injection of MPs or in mice developing a tumor. Collectively, our results indicate that cancer cell–derived MPs bearing PSGL-1 and TF play a key role in thrombus formation in vivo. Targeting these MPs could be of clinical interest in the prevention of thrombosis and to limit formation of metastasis in cancer patients.
Collapse
Affiliation(s)
- Grace M Thomas
- Institut National de Santé et de Recherche Médicale (INSERM) UMR911, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, 13385 Marseille, France
| | | | | | | | | | | |
Collapse
|
30
|
Chironi GN, Boulanger CM, Simon A, Dignat-George F, Freyssinet JM, Tedgui A. Endothelial microparticles in diseases. Cell Tissue Res 2008; 335:143-51. [PMID: 18989704 DOI: 10.1007/s00441-008-0710-9] [Citation(s) in RCA: 321] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 09/23/2008] [Indexed: 01/05/2023]
Abstract
Microparticles are submicron vesicles shed from plasma membranes in response to cell activation, injury, and/or apoptosis. The measurement of the phospholipid content (mainly phosphatidylserine; PSer) of microparticles and the detection of proteins specific for the cells from which they are derived has allowed their quantification and characterization. Microparticles of various cellular origin (platelets, leukocytes, endothelial cells) are found in the plasma of healthy subjects, and their amount increases under pathological conditions. Endothelial microparticles (EMP) not only constitute an emerging marker of endothelial dysfunction, but are also considered to play a major biological role in inflammation, vascular injury, angiogenesis, and thrombosis. Although the mechanisms leading to their in vivo formation remain obscure, the release of EMP from cultured cells can be caused in vitro by a number of cytokines and apoptotic stimuli. Recent studies indicate that EMP are able to decrease nitric-oxide-dependent vasodilation, increase arterial stiffness, promote inflammation, and initiate thrombosis at their PSer-rich membrane, which highly co-expresses tissue factor. EMP are known to be elevated in acute coronary syndromes, in severe hypertension with end organ damage, and in thrombotic thrombocytopenic purpura, all conditions associated with endothelial injury and pro-thrombotic state. The release of EMP has also been associated with endothelial dysfunction of patients with multiple sclerosis and lupus anticoagulant. More recent studies have focused on the role of low shear stress leading to endothelial cell apoptosis and subsequent EMP release in end-stage renal disease. Improved knowledge of EMP composition, their biological effects, and the mechanisms leading to their clearance will probably open new therapeutic approaches in the treatment of atherothrombosis.
Collapse
Affiliation(s)
- Gilles N Chironi
- AP-HP, Hôpital Européen Georges Pompidou, Centre de Médecine Préventive Cardiovasculaire and Université René Descartes, Paris, France.
| | | | | | | | | | | |
Collapse
|
31
|
Agouni A, Lagrue-Lak-Hal AH, Ducluzeau PH, Mostefai HA, Draunet-Busson C, Leftheriotis G, Heymes C, Martinez MC, Andriantsitohaina R. Endothelial dysfunction caused by circulating microparticles from patients with metabolic syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1210-9. [PMID: 18772329 DOI: 10.2353/ajpath.2008.080228] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Microparticles are membrane vesicles that are released during cell activation and apoptosis. Elevated levels of microparticles occur in many cardiovascular diseases; therefore, we characterized circulating microparticles from both metabolic syndrome (MS) patients and healthy patients. We evaluated microparticle effects on endothelial function; however, links between circulating microparticles and endothelial dysfunction have not yet been demonstrated. Circulating microparticles and their cellular origins were examined by flow cytometry of blood samples from patients and healthy subjects. Microparticles were used either to treat human endothelial cells in vitro or to assess endothelium function in mice after intravenous injection. MS patients had increased circulating levels of microparticles compared with healthy patients, including microparticles from platelet, endothelial, erythrocyte, and procoagulant origins. In vitro treatment of endothelial cells with microparticles from MS patients reduced both nitric oxide (NO) and superoxide anion production, resulting in protein tyrosine nitration. These effects were associated with enhanced phosphorylation of endothelial NO synthase at the site of inhibition. The reduction of O2(-) was linked to both reduced expression of p47 phox of NADPH oxidase and overexpression of extracellular superoxide dismutase. The decrease in NO production was triggered by nonplatelet-derived microparticles. In vivo injection of MS microparticles into mice impaired endothelium-dependent relaxation and decreased endothelial NO synthase expression. These data provide evidence that circulating microparticles from MS patients influence endothelial dysfunction.
Collapse
Affiliation(s)
- Abdelali Agouni
- INSERM U771, Centre National de la Recherche Scientifique Unité Mixte de Recherche, 6214, the Université d'Angers, Angers, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Abstract
Thrombosis remains one of the leading causes of mortality and morbidity in developed countries. Relevant markers of the primary thrombotic risk however remain of limited accessibility, and clinicians are left with markers of essentially etiological nature. Fortunately, new entities, testifying to cellular activation or damage within the vascular compartment, have been recently described and are in the validation process. Microparticles (MP) are plasma membrane fragments released by stimulated or apoptotic cells. In the vascular compartment, they constitute a disseminated storage pool of bioactive effectors involved in inflammation, thrombosis, vascular tone, angiogenesis. Their biological characteristics are predetermined by the cytosolic and membraneous components hijacked from the activated cells. Their procoagulant properties are based on, (i) the accessibility of phosphatidylserine, a procoagulant aminophospholipid exposed after stimulation and necessary for the assembly of the blood clotting enzyme complexes, and (ii) the possible presence of tissue factor, the major initiator of the coagulation cascade. The incidence of MP in haemostatic processes has been demonstrated in physiology and pathology. They are now considered true pathogenic markers of the thrombotic risk.
Collapse
Affiliation(s)
- O Morel
- Unité 143 Inserm, Hôpital de Bicêtre, France
| | | | | |
Collapse
|
34
|
Danese S, Papa A, Saibeni S, Repici A, Malesci A, Vecchi M. Inflammation and coagulation in inflammatory bowel disease: The clot thickens. Am J Gastroenterol 2007; 102:174-86. [PMID: 17100967 DOI: 10.1111/j.1572-0241.2006.00943.x] [Citation(s) in RCA: 280] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inflammation and coagulation play crucial roles in the pathogenesis of multiple chronic inflammatory disorders. Growing evidence highlights a tight mutual network in which inflammation, coagulation, and fibrinolysis play closely related roles. Crohn's disease (CD) and ulcerative colitis (UC), the two major forms of inflammatory bowel disease (IBD), are chronic inflammatory conditions, characterized by a hypercoagulable state and prothrombotic conditions, and accompanied by abnormalities in coagulation. From a pathophysiological point of view, cells and molecules classically implicated in the physiological process of coagulation have now been shown to behave abnormally in IBD and possibly to also play an active role in disease pathogenesis and/or disease progression. This paper reviews studies performed on the coagulation profile and risk factors for thrombosis in IBD. In particular, an overview is provided of the epidemiology, clinical features, and etiology of thromboembolic complications in IBD. Furthermore, we review hemostatic abnormalities in IBD, as well as the cell types involved in such processes. Finally, we highlight the coagulation system as a dynamic participant in the multifaceted process of chronic intestinal inflammation. Overall, an overview is provided that the coagulation system represents an important, though previously underestimated, component of IBD pathogenesis, and may be a possible target for therapeutic intervention.
Collapse
Affiliation(s)
- Silvio Danese
- Division of Gastroenterology, IRCCS Istituto Clinico Humanitas, Rozzano, Milan, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Morel O, Toti F, Hugel B, Bakouboula B, Camoin-Jau L, Dignat-George F, Freyssinet JM. Procoagulant Microparticles. Arterioscler Thromb Vasc Biol 2006; 26:2594-604. [PMID: 16990554 DOI: 10.1161/01.atv.0000246775.14471.26] [Citation(s) in RCA: 350] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Apoptosis and vascular cell activation are main contributors to the release of procoagulant microparticles (MPs), deleterious partners in atherothrombosis. Elevated levels of circulating platelet, monocyte, or endothelial-derived MPs are associated with most of the cardiovascular risk factors and appear indicative of poor clinical outcome. In addition to being a valuable hallmark of vascular cell damage, MPs are at the crossroad of atherothrombosis processes by exerting direct effects on vascular or blood cells. Under pathological circumstances, circulating MPs would support cellular cross-talk leading to vascular inflammation and tissue remodeling, endothelial dysfunction, leukocyte adhesion, and stimulation. Exposed membrane phosphatidylserine and functional tissue factor (TF) are 2 procoagulant entities conveyed by circulating MPs. At sites of vascular injury, P-selectin exposure by activated endothelial cells or platelets leads to the rapid recruitment of MPs bearing the P-selectin glycoprotein ligand-1 and blood-borne TF, thereby triggering coagulation. Within the atherosclerotic plaque, sequestered MPs constitute the main reservoir of TF activity, promoting coagulation after plaque erosion or rupture. Lesion-bound MPs, eventually harboring proteolytic and angiogenic effectors are additional actors in plaque vulnerability. Pharmacological strategies aimed at modulating the release of procoagulant MPs appear a promising therapeutic approach of both thrombotic processes and bleeding disorders.
Collapse
Affiliation(s)
- Olivier Morel
- Université Louis Pasteur, Faculté de Médecine, Institut d'Hématologie et d'Immunologie, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Morel N, Morel O, Delabranche X, Jesel L, Sztark F, Dabadie P, Freyssinet JM, Toti F. [Microparticles during sepsis and trauma. A link between inflammation and thrombotic processes]. ACTA ACUST UNITED AC 2006; 25:955-66. [PMID: 16926090 DOI: 10.1016/j.annfar.2006.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 04/13/2006] [Indexed: 12/26/2022]
Abstract
Sepsis and trauma lead to a sustained activation of monocytes and endothelium. In the vascular compartment, stimulated cells release microparticles. Circulating MP provide an additional procoagulant phospholipid surface enabling the assembly of the clotting enzymes complexes and thrombin generation. Their procoagulant properties rely on the exposition of phosphatidylserine, made accessible after cell stimulation and on the possible presence of tissue factor, the main cellular initiator of blood coagulation. Microparticles constitute the main reservoir of blood-borne tissue factor activity. At sites of endothelium injury, enhanced release or recruitment of procoagulant MP through P-selectin-PSGL-1 pathway could concentrate TF activity above a threshold allowing blood coagulation to be triggered. Converging evidences from experimental or clinical data highlight a role for MP harboring tissue factor in the initiation of disseminated intravascular coagulopathy. In these settings, the pharmacological modulation of MP levels or biological functions through activated protein C or factor VIIa allows challenging issues.
Collapse
Affiliation(s)
- N Morel
- Service d'urgences et de réanimation chirurgicale, hôpital Pellegrin, Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Boulanger CM, Amabile N, Tedgui A. Circulating microparticles: a potential prognostic marker for atherosclerotic vascular disease. Hypertension 2006; 48:180-6. [PMID: 16801490 DOI: 10.1161/01.hyp.0000231507.00962.b5] [Citation(s) in RCA: 288] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Chantal M Boulanger
- Institut National de la Santé et de la Recherche Médicale, Cardiovascular Research Center INSERM Lariboisière, Paris, France.
| | | | | |
Collapse
|
38
|
Morel O, Morel N, Hugel B, Jesel L, Vinzio S, Goichot B, Bakouboula B, Grunebaum L, Freyssinet JM, Toti F. Les microparticules circulantes : rôles physiologiques et implications dans les maladies inflammatoires et thrombotiques. Rev Med Interne 2005; 26:791-801. [PMID: 15936118 DOI: 10.1016/j.revmed.2005.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 03/11/2005] [Indexed: 01/13/2023]
Abstract
BACKGROUND In multicellular organisms, apoptosis and subsequent microparticle shedding play a key role in homeostasis. Having long been considered as << cellular dust >>, microparticles released in biological fluids upon cell activation or apoptosis appear as multifunctional bioeffectors involved in the modulation of key functions including immunity, inflammation, hemostasis and thrombosis, angiogenesis. MP constitute reliable markers of vascular damage, accessible to biological detection whilst the cells they originate from remain sequestered in tissues or are promptly submitted to phagocytosis. RECENT FINDINGS MP modulate biological functions of target cells through the transfer of cytoplasmic content, lipids and membrane receptors. The pharmacological modulation of circulating levels of microparticles could be of particular interest in thrombotic or inflammatory diseases, cancer or hemophilia. CONCLUSION MP can now be viewed not only as a hallmark of cell damage but also as a true biological tool.
Collapse
Affiliation(s)
- O Morel
- Fédération de cardiologie des hôpitaux universitaires de Strasbourg, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|