1
|
Tong G, Qian H, Li D, Li J, Chen J, Li X, Tan Z. Intestinal Flora Imbalance Induced by Antibiotic Use in Rats. J Inflamm Res 2024; 17:1789-1804. [PMID: 38528993 PMCID: PMC10961240 DOI: 10.2147/jir.s447098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/14/2024] [Indexed: 03/27/2024] Open
Abstract
Aim This study aims to explore the effect of different doses of antibiotics on rats in order to observe alterations in their fecal microbiota, inflammatory changes in the colonic mucosa and four types of inflammatory markers in blood serum. Methods Our methodology involved separating 84 female Sprague Dawley rats into groups A-G, with each group consisting of 12 rats. We collected the rat feces for analysis, using a distinct medium for bacterial cultivation and counting colonies under a microscope. On the 11th and 15th days of the experiment, half of the rats from each group were euthanized and 5 mL of abdominal aortic blood and colon tissues were collected. Inflammations changes of colon were observed and assessed by pathological Hematoxylin Eosin (HE) staining. Enzyme-linked immune sorbent assay (ELISA) was adopted for detecting C-reactive protein (CRP), IL-6, IL1-β and TNF-α. Results Our findings revealed that the initial average weight of the rats did not differ between groups (p>0.05); but significant differences were observed between stool samples, water intake, food intake and weight (p=0.009, <0.001, 0.016 and 0.04, respectively) within two hours after the experiment. Additionally, there were notable differences among the groups in nine tested microbiota before and after weighting methods (all p<0.001). There were no difference in nine microbiota at day 1 (all p>0.05); at day 4 A/B (p=0.044), A/D (p<0.001), A/E (p=0.029); at day 8, all p<0.01, at day 11, only A/F exist significant difference (p<0.001); at day 14 only A/D has difference (p=0.045). Inflammation changes of colon were observed between groups A-G at days 11 and 15. Significant differences between all groups can be observed for CRP, IL-6, IL1-β and TNF-α (p<0.001). Conclusion This study suggests that antibiotics administration can disrupt the balance of bacteria in the rat gut ecosystem, resulting in an inflammatory response in their bloodstream and inducing inflammation changes of colon.
Collapse
Affiliation(s)
- Guojun Tong
- General Surgery, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, People’s Republic of China
- Central Laboratory, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, People’s Republic of China
| | - Hai Qian
- General Surgery, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, People’s Republic of China
| | - Dongli Li
- Central Laboratory, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, People’s Republic of China
| | - Jing Li
- Central Laboratory, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, People’s Republic of China
| | - Jing Chen
- Central Laboratory, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, People’s Republic of China
| | - Xiongfeng Li
- Orthopedic Surgery, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, People’s Republic of China
| | - Zhenhua Tan
- General Surgery, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, People’s Republic of China
| |
Collapse
|
2
|
The Host Cellular Immune Response to Infection by Campylobacter Spp. and Its Role in Disease. Infect Immun 2021; 89:e0011621. [PMID: 34031129 DOI: 10.1128/iai.00116-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Campylobacter spp. are the leading cause of bacterium-derived gastroenteritis worldwide, impacting 96 million individuals annually. Unlike other bacterial pathogens of the gastrointestinal tract, Campylobacter spp. lack many of the classical virulence factors that are often associated with the ability to induce disease in humans, including an array of canonical secretion systems and toxins. Consequently, the clinical manifestations of human campylobacteriosis and its resulting gastrointestinal pathology are believed to be primarily due to the host immune response toward the bacterium. Further, while gastrointestinal infection is usually self-limiting, numerous postinfectious disorders can occur, including the development of Guillain-Barré syndrome, reactive arthritis, and irritable bowel syndrome. Because gastrointestinal disease likely results from the host immune response, the development of these postinfectious disorders may be due to dysregulation or misdirection of the same inflammatory response. As a result, it is becoming increasingly important to the Campylobacter field, and human health, that the cellular immune responses toward Campylobacter be better understood, including which immunological events are critical to the development of disease and the postinfectious disorders mentioned above. In this review, we collectively cover the cellular immune responses across susceptible hosts to Campylobacter jejuni infection, along with the tissue pathology and postinfectious disorders which may develop.
Collapse
|
3
|
Zaki MES, Elhammady D, Foda Salama M, Abdelsalam M, Osman AOB. Study of Antibodies to Cytolethal Distending Toxin B (CdtB) and Antibodies to Vinculin in Patients with Irritable Bowel Syndrome. F1000Res 2021; 10:303. [PMID: 34754418 PMCID: PMC8546732 DOI: 10.12688/f1000research.52086.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Irritable bowel syndrome (IBS) is a common gastrointestinal disorder, categorized into various subtypes. Post-infection IBS may be attributed to the release of cytolethal distending toxin B (CdtB), which cross-reacts with the adhesion protein vinculin responsible for normal intestinal contractility. Objective: This study aims to identify anti-CdtB and anti-vinculin levels in IBS patients compared to healthy control. Subjects and methods: This retrospective case-control study was conducted on 100 subjects with IBS, as determined by a questionnaire based on Rome III criteria, recruited from the outpatient clinics of the Tropical Medicine at Mansoura University Hospital from January 2019 to January 2020. Results: The optical density (OD) results of the anti-vinculin and anti-CdtB levels were significantly elevated in patients with IBS (1.58±0.496 OD, 2.47±0.60 OD) when compared to control subjects (1.13±0.249 OD, 2.1±0.24 OD), respectively with P=0.001 for both. Anti-vinculin level was significantly higher in the IBS-D subtype than the other subtypes (P=0.001) while, Anti-CdtB was significantly elevated in IBS-C, IBS-D subgroups compared to control subjects (P=0.001). Conclusion: Findings of the present study support the hypothesis that IBS results from post-infectious disorders initiated by bacterial enteritis. A hypothesis could be applied to all IBS subgroups. On the other hand. These biomarkers might reflect the post-infectious state's severity.
Collapse
Affiliation(s)
| | | | - Mona Foda Salama
- Medical Microbiology and Immunology, Mansoura University, Mansoura, Egypt
| | - Mostafa Abdelsalam
- Nephrology and Dialysis Unit, Internal Medicine Department,, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
4
|
Zaki MES, Elhammady D, Foda Salama M, Abdelsalam M, Osman AOB. Study of Antibodies to Cytolethal Distending Toxin B (CdtB) and Antibodies to Vinculin in Patients with Irritable Bowel Syndrome. F1000Res 2021; 10:303. [PMID: 34754418 PMCID: PMC8546732 DOI: 10.12688/f1000research.52086.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/18/2021] [Indexed: 04/04/2024] Open
Abstract
Background: Irritable bowel syndrome (IBS) is a common gastrointestinal disorder, categorized into various subtypes. Post-infection IBS may be attributed to the release of cytolethal distending toxin B (CdtB), which cross-reacts with the adhesion protein vinculin responsible for normal intestinal contractility. Objective: This study aims to identify anti-CdtB and anti-vinculin levels in IBS patients compared to healthy control. Subjects and methods: This retrospective case-control study was conducted on 100 subjects with IBS, as determined by a questionnaire based on Rome III criteria, recruited from the outpatient clinics of the Tropical Medicine at Mansoura University Hospital from January 2019 to January 2020. Results: Anti-vinculin and anti-CdtB levels were significantly elevated in patients with IBS (1.58±0.496, 2.47±0.60) when compared to control subjects (1.13±0.249ng/ml, 2.1±0.24 ng/ml), respectively with P=0.001 for both. Anti-vinculin level was significantly higher in the IBS-D subtype than the other subtypes (P=0.001) while, Anti-CdtB was significantly elevated in IBS-C, IBS-D subgroups compared to control subjects (P=0.001). Conclusion: Findings of the present study support the hypothesis that IBS results from post-infectious disorders initiated by bacterial enteritis. A hypothesis could be applied to all IBS subgroups. On the other hand. These biomarkers might reflect the post-infectious state's severity.
Collapse
Affiliation(s)
| | | | - Mona Foda Salama
- Medical Microbiology and Immunology, Mansoura University, Mansoura, Egypt
| | - Mostafa Abdelsalam
- Nephrology and Dialysis Unit, Internal Medicine Department,, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
5
|
Zaki MES, Elhammady D, Foda Salama M, Abdelsalam M, Osman AOB. Study of Antibodies to Cytolethal Distending Toxin B (CdtB) and Antibodies to Vinculin in Patients with Irritable Bowel Syndrome. F1000Res 2021; 10:303. [PMID: 34754418 PMCID: PMC8546732 DOI: 10.12688/f1000research.52086.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2021] [Indexed: 04/04/2024] Open
Abstract
Background: Irritable bowel syndrome (IBS) is a common gastrointestinal disorder, categorized into various subtypes. Post-infection IBS may be attributed to the release of cytolethal distending toxin B (CdtB), which cross-reacts with the adhesion protein vinculin responsible for normal intestinal contractility. Objective: This study aims to identify anti-CdtB and anti-vinculin levels in IBS patients compared to healthy control. Subjects and methods: This retrospective case-control study was conducted on 100 patients with IBS, as determined by a questionnaire based on Rome IV criteria, recruited from the outpatient clinics of the Tropical Medicine at Mansoura University Hospital from January 2019 to January 2020. Results: Anti-vinculin and anti-CdtB levels were significantly elevated in patients with IBS (1.58±0.496ng/ml, 2.47±0.60ng/ml) when compared to control subjects (1.13±0.249ng/ml, 2.1±0.24 ng/ml), respectively with P=0.001 for both. Anti-vinculin level was significantly higher in the IBS-D subtype than the other subtypes (P=0.001) while, Anti-CdtB was significantly elevated in IBS-C, IBS-D subgroups compared to control subjects (P=0.001). Conclusion: Findings of the present study support the hypothesis that IBS results from post-infectious disorders initiated by bacterial enteritis. A hypothesis could be applied to all IBS subgroups. On the other hand. These biomarkers might reflect the post-infectious state's severity. These findings need further extensive longitudinal studies in patients with IBS.
Collapse
Affiliation(s)
| | | | - Mona Foda Salama
- Medical Microbiology and Immunology, Mansoura University, Mansoura, Egypt
| | - Mostafa Abdelsalam
- Nephrology and Dialysis Unit, Internal Medicine Department,, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
6
|
Zaki MES, Elhammady D, Foda Salama M, Abdelsalam M, Osman AOB. Study of Antibodies to Cytolethal Distending Toxin B (CdtB) and Antibodies to Vinculin in Patients with Irritable Bowel Syndrome. F1000Res 2021; 10:303. [PMID: 34754418 PMCID: PMC8546732.2 DOI: 10.12688/f1000research.52086.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 04/04/2024] Open
Abstract
Background: Irritable bowel syndrome (IBS) is a common gastrointestinal disorder, categorized into various subtypes. Post-infection IBS may be attributed to the release of cytolethal distending toxin B (CdtB), which cross-reacts with the adhesion protein vinculin responsible for normal intestinal contractility. Objective: This study aims to identify anti-CdtB and anti-vinculin levels in IBS patients compared to healthy control. Subjects and methods: This retrospective case-control study was conducted on 100 subjects with IBS, as determined by a questionnaire based on Rome IV criteria, recruited from the outpatient clinics of the Tropical Medicine at Mansoura University Hospital from January 2019 to January 2020. Results: Anti-vinculin and anti-CdtB levels were significantly elevated in patients with IBS (1.58±0.496ng/ml, 2.47±0.60ng/ml) when compared to control subjects (1.13±0.249ng/ml, 2.1±0.24 ng/ml), respectively with P=0.001 for both. Anti-vinculin level was significantly higher in the IBS-D subtype than the other subtypes (P=0.001) while, Anti-CdtB was significantly elevated in IBS-C, IBS-D subgroups compared to control subjects (P=0.001). Conclusion: Findings of the present study support the hypothesis that IBS results from post-infectious disorders initiated by bacterial enteritis. A hypothesis could be applied to all IBS subgroups. On the other hand. These biomarkers might reflect the post-infectious state's severity. These findings need further extensive longitudinal studies in patients with IBS.
Collapse
Affiliation(s)
| | | | - Mona Foda Salama
- Medical Microbiology and Immunology, Mansoura University, Mansoura, Egypt
| | - Mostafa Abdelsalam
- Nephrology and Dialysis Unit, Internal Medicine Department,, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
7
|
Morales W, Triantafyllou K, Parodi G, Weitsman S, Park SC, Rezaie A, Pichetshote N, Lin E, Pimentel M. Immunization with cytolethal distending toxin B produces autoantibodies to vinculin and small bowel bacterial changes in a rat model of postinfectious irritable bowel syndrome. Neurogastroenterol Motil 2020; 32:e13875. [PMID: 32436301 DOI: 10.1111/nmo.13875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 03/25/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Recent data substantiate the importance of acute gastroenteritis in the development of irritable bowel syndrome (IBS). An animal model of postinfectious IBS determined the importance of cytolethal distending toxin B (CdtB) during live Campylobacter jejuni infection and its development of autoimmunity to vinculin. In this study, we examine whether subcutaneous exposure to CdtB alone is sufficient to produce the postinfectious IBS effect and autoimmunity. METHODS Sixty adult Sprague Dawley rats were randomized into 2 groups to receive subcutaneous injection of either CdtB or vehicle and administered a booster injection of the same product 3 weeks later. Serum was collected for anti-CdtB and anti-vinculin titers. Duodenal and ileal luminal contents for total eubacterial qPCR, and ileal bowel segments were harvested for vinculin and ileal expression. In a second experiment, 4 adult, Sprague Dawley rats were injected with either Cy7-labeled anti-CdtB and anti-vinculin antibodies were injected into the tail vein and imaged to determine organ localization of the antibodies. KEY RESULTS Rats that received CdtB increased in serum anti-CdtB after injection. CdtB exposure also precipitated significant elevation in anti-vinculin antibodies (P < .001). This was associated with a reduction in intestinal vinculin expression (P < .001) that negatively correlated with serum anti-CdtB levels. CdtB exposure was also associated with greater levels of duodenal (P < .001) and ileal (P < .01) bacteria by qPCR that positively correlated with anti-CdtB levels. CONCLUSIONS AND INFERENCES Rats injected with CdtB developed a postinfectious IBS-like phenotype and autoimmunity to vinculin with corresponding reduction in intestinal vinculin expression.
Collapse
Affiliation(s)
- Walter Morales
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, 2nd Department of Internal Medicine - Propaedeutic, Research Institute and Diabetes Center, Medical School, Attikon University General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Gonzalo Parodi
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stacy Weitsman
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sung Chul Park
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Ali Rezaie
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nipaporn Pichetshote
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eugenia Lin
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
8
|
Chey WD, Shah ED, DuPont HL. Mechanism of action and therapeutic benefit of rifaximin in patients with irritable bowel syndrome: a narrative review. Therap Adv Gastroenterol 2020; 13:1756284819897531. [PMID: 32047534 PMCID: PMC6984424 DOI: 10.1177/1756284819897531] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/02/2019] [Indexed: 02/04/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder with a multifactorial pathophysiology. The gut microbiota differs between patients with IBS and healthy individuals. After a bout of acute gastroenteritis, postinfection IBS may result in up to approximately 10% of those affected. Small intestinal bacterial overgrowth (SIBO) is more common in patients with IBS than in healthy individuals, and eradication of SIBO with systemic antibiotics has decreased symptoms of IBS in some patients with IBS and SIBO. The nonsystemic (i.e. low oral bioavailability) antibiotic rifaximin is indicated in the United States and Canada for the treatment of adults with IBS with diarrhea (IBS-D). The efficacy and safety of 2-week single and repeat courses of rifaximin have been demonstrated in randomized, placebo-controlled studies of adults with IBS. Rifaximin is widely thought to exert its beneficial clinical effects in IBS-D through manipulation of the gut microbiota. However, current studies indicate that rifaximin induces only modest effects on the gut microbiota of patients with IBS-D, suggesting that the efficacy of rifaximin may involve other mechanisms. Indeed, preclinical data reveal a potential role for rifaximin in the modulation of inflammatory cytokines and intestinal permeability, but these two findings have not yet been examined in the context of clinical studies. The mechanism of action of rifaximin in IBS is likely multifactorial, and further study is needed.
Collapse
Affiliation(s)
- William D. Chey
- Department of Nutrition Sciences, Division of Gastroenterology, Michigan Medicine, 3912 Taubman Center, SPC 5362, Ann Arbor, MI 48109-5362, USA
| | - Eric D. Shah
- Section of Gastroenterology and Hepatology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Herbert L. DuPont
- Division of Epidemiology, Human Genetics and Environmental Sciences and Center for Infectious Diseases, University of Texas School of Public Health, Houston, TX, USA
- Mary W. Kelsey Chair in Medical Sciences, Division of Internal Medicine, University of Texas McGovern Medical School Houston, TX, USA
- Kelsey Research Foundation, Houston, TX, USA
| |
Collapse
|
9
|
Fois CAM, Le TYL, Schindeler A, Naficy S, McClure DD, Read MN, Valtchev P, Khademhosseini A, Dehghani F. Models of the Gut for Analyzing the Impact of Food and Drugs. Adv Healthc Mater 2019; 8:e1900968. [PMID: 31592579 DOI: 10.1002/adhm.201900968] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/30/2019] [Indexed: 12/16/2022]
Abstract
Models of the human gastrointestinal tract (GIT) can be powerful tools for examining the biological interactions of food products and pharmaceuticals. This can be done under normal healthy conditions or using models of disease-many of which have no curative therapy. This report outlines the field of gastrointestinal modeling, with a particular focus on the intestine. Traditional in vivo animal models are compared to a range of in vitro models. In vitro systems are elaborated over time, recently culminating with microfluidic intestines-on-chips (IsOC) and 3D bioengineered models. Macroscale models are also reviewed for their important contribution in the microbiota studies. Lastly, it is discussed how in silico approaches may have utility in predicting and interpreting experimental data. The various advantages and limitations of the different systems are contrasted. It is posited that only through complementary use of these models will salient research questions be able to be addressed.
Collapse
Affiliation(s)
- Chiara Anna Maria Fois
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Thi Yen Loan Le
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Aaron Schindeler
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Sina Naficy
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Dale David McClure
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Mark Norman Read
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Peter Valtchev
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| | - Ali Khademhosseini
- Department of Chemical and Biomolecular Engineering Department of Bioengineering Department of Radiology California NanoSystems Institute (CNSI) University of California Los Angeles CA 90095 USA
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering Centre for Advanced Food Enginomics University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
10
|
Vojdani A, Vojdani E. Reaction of antibodies to Campylobacter jejuni and cytolethal distending toxin B with tissues and food antigens. World J Gastroenterol 2019; 25:1050-1066. [PMID: 30862994 PMCID: PMC6406185 DOI: 10.3748/wjg.v25.i9.1050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/16/2019] [Accepted: 01/26/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The bacteria Campylobacter jejuni (C. jejuni) is commonly associated with Guillane-Barré syndrome (GBS) and irritable bowel syndrome (IBS), but studies have also linked it with Miller Fisher syndrome, reactive arthritis and other disorders, some of which are autoimmune. It is possible that C. jejuni and its toxins may be cross-reactive with some human tissues and food antigens, potentially leading to autoimmune responses.
AIM To measure the immune reactivity of C. jejuni and C. jejuni cytolethal distending toxin (Cdt) antibodies with tissue and food antigens to examine their role in autoimmunities.
METHODS Using enzyme-linked immunosorbent assay (ELISA) methodology, specific antibodies made against C. jejuni and C. jejuni Cdt were applied to a variety of microwell plates coated with 45 tissues and 180 food antigens. The resulting immunoreactivities were compared to reactions with control wells coated with human serum albumin (HSA) which were used as negative controls and with wells coated with C. jejuni lysate or C. jejuni Cdt which served as positive controls.
RESULTS At 3 SD above the mean of control wells coated with HSA or 0.41 OD, the mouse monoclonal antibody made against C. jejuni showed moderate to high reactions with zonulin, somatotropin, acetylcholine receptor, β-amyloid and presenilin. This immune reaction was low with an additional 25 tissue antigens including asialoganglioside, and the same antibody did not react at all with another 15 tissue antigens. Examining the reaction between C. jejuni antibody and 180 food antigens, we found insignificant reactions with 163 foods but low to high immune reactions with 17 food antigens. Similarly, we examined the reaction of C. jejuni Cdt with the same tissues and food antigens. The strongest reactions were observed with zonulin, intrinsic factor and somatotropin. The reaction was moderate with 9 different tissue antigens including thyroid peroxidase, and reaction was low with another 10 different antigens, including neuronal antigens. The reaction of C. jejuni Cdt antibody with an additional 23 tissue antigens was insignificant. Regarding the reaction of C. jejuni Cdt antibody with different food antigens, 160 out of 180 foods showed insignificant reactions, while 20 foods showed reactions ranging from low to high.
CONCLUSION Our findings indicate that C. jejuni and its Cdt may play a role in inflammation and autoimmunities beyond the gut.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab., Inc., Los Angeles, CA 90035, United States
- Cyrex Labs, LLC., Phoenix, AZ 85034, United States
- Department of Preventive Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92354, United States
| | - Elroy Vojdani
- Regenera Medical, Los Angeles, CA 90025, United States
| |
Collapse
|
11
|
Shariati A, Fallah F, Pormohammad A, Taghipour A, Safari H, Chirani AS, Sabour S, Alizadeh-Sani M, Azimi T. The possible role of bacteria, viruses, and parasites in initiation and exacerbation of irritable bowel syndrome. J Cell Physiol 2018; 234:8550-8569. [PMID: 30480810 DOI: 10.1002/jcp.27828] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022]
Abstract
Irritable bowel syndrome (IBS) is a prolonged and disabling functional gastrointestinal disorder with the incidence rate of 18% in the world. IBS could seriously affect lifetime of patients and cause high economic burden on the community. The pathophysiology of the IBS is hardly understood, whereas several possible mechanisms, such as visceral hypersensitivity, irregular gut motility, abnormal brain-gut relations, and the role of infectious agents, are implicated in initiation and development of this syndrome. Different studies demonstrated an alteration in B-lymphocytes, mast cells (MC), T-lymphocytes, and cytokine concentrations in intestinal mucosa or systemic circulation that are likely to contribute to the formation of the IBS. Therefore, IBS could be developed in those with genetic predisposition. Infections' role in initiation and exacerbation of IBS has been investigated by quite several clinical studies; moreover, the possible role of some pathogens in development and exacerbation of this disease has been described. It appears that the main obligatory pathogens correspond with the IBS disease, Clostridium difficile, Escherichia coli, Mycobacterium avium subspecies paratuberculosis, Campylobacter concisus, Campylobacter jejuni, Chlamydia trachomatis, Helicobacter pylori, Pseudomonas aeruginosa, Salmonella spp, Shigella spp, and viruses, particularly noroviruses. A number of pathogenic parasites (Blastocystis, Dientamoeba fragilis, and Giardia lamblia) may also be involved in the progression and exacerbation of the disease. Based on the current knowledge, the current study concludes that the most common bacterial, viral, and parasitic pathogens may be involved in the development and progression of IBS.
Collapse
Affiliation(s)
- Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fateme Fallah
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Pormohammad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Taghipour
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Safari
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Salami Chirani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Sabour
- Department of Microbiology, School of Medicine, Ardebil University of Medical Science, Ardebil, Iran
| | - Mahmood Alizadeh-Sani
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Azimi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Cao YN, Feng LJ, Liu YY, Jiang K, Zhang MJ, Gu YX, Wang BM, Gao J, Wang ZL, Wang YM. Effect of Lactobacillus rhamnosus GG supernatant on serotonin transporter expression in rats with post-infectious irritable bowel syndrome. World J Gastroenterol 2018; 24:338-350. [PMID: 29391756 PMCID: PMC5776395 DOI: 10.3748/wjg.v24.i3.338] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/06/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the effect of Lactobacillus rhamnosus GG supernatant (LGG-s) on the expression of serotonin transporter (SERT) in rats with post-infectious irritable bowel syndrome (PI-IBS).
METHODS Campylobacter jejuni 81-176 (1010 CFU/mL) was used to induce intestinal infection to develop a PI-IBS model. After evaluation of the post-infectious phase by biochemical tests, DNA agarose gel electrophoresis, abdominal withdrawal reflex (AWR) test, and the intestinal motility test, four PI-IBS groups received different concentrations of LGG-s for 4 wk. The treatments were maintained for 1.0, 2.0, 3.0 or 4.0 wk during the experiment, and the colons and brains were removed for later use each week. SERT mRNA and protein levels were detected by real-time PCR and Western blot, respectively.
RESULTS The levels of SERT mRNA and protein in intestinal tissue were higher in rats treated with LGG-s than in control rats and PI-IBS rats gavaged with PBS during the whole study. Undiluted LGG-s up-regulated SERT mRNA level by 2.67 times compared with the control group by week 2, and SERT mRNA expression kept increasing later. Double-diluted LGG-s was similar to undiluted-LGG-s, resulting in high levels of SERT mRNA. Triple-diluted LGG-s up-regulated SERT mRNA expression level by 6.9-times compared with the control group, but SERT mRNA expression decreased rapidly at the end of the second week. At the first week, SERT protein levels were basically comparable in rats treated with undiluted LGG-s, double-diluted LGG-s, and triple-diluted LGG-s, which were higher than those in the control group and PBS-treated PI-IBS group. SERT protein levels in the intestine were also comparable in rats treated with undiluted LGG-s, double-diluted LGG-s, and triple-diluted LGG-s by the second and third weeks. SERT mRNA and protein levels in the brain had no statistical difference in the groups during the experiment.
CONCLUSION LGG-s can up-regulate SERT mRNA and protein levels in intestinal tissue but has no influence in brain tissue in rats with PI-IBS.
Collapse
Affiliation(s)
- Ya-Nan Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Li-Juan Feng
- Department of Functional Division, Xingtai People’s Hospital, Xingtai 054031, Hebei Province, China
| | - Yuan-Yuan Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Kui Jiang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Mao-Jun Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yi-Xin Gu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Bang-Mao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jia Gao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ze-Lan Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yu-Ming Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
13
|
|
14
|
|
15
|
Del Bel Belluz L, Guidi R, Pateras IS, Levi L, Mihaljevic B, Rouf SF, Wrande M, Candela M, Turroni S, Nastasi C, Consolandi C, Peano C, Tebaldi T, Viero G, Gorgoulis VG, Krejsgaard T, Rhen M, Frisan T. The Typhoid Toxin Promotes Host Survival and the Establishment of a Persistent Asymptomatic Infection. PLoS Pathog 2016; 12:e1005528. [PMID: 27055274 PMCID: PMC4824513 DOI: 10.1371/journal.ppat.1005528] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/04/2016] [Indexed: 02/06/2023] Open
Abstract
Bacterial genotoxins, produced by several Gram-negative bacteria, induce DNA damage in the target cells. While the responses induced in the host cells have been extensively studied in vitro, the role of these effectors during the course of infection remains poorly characterized. To address this issue, we assessed the effects of the Salmonella enterica genotoxin, known as typhoid toxin, in in vivo models of murine infection. Immunocompetent mice were infected with isogenic S. enterica, serovar Typhimurium (S. Typhimurium) strains, encoding either a functional or an inactive typhoid toxin. The presence of the genotoxic subunit was detected 10 days post-infection in the liver of infected mice. Unexpectedly, its expression promoted the survival of the host, and was associated with a significant reduction of severe enteritis in the early phases of infection. Immunohistochemical and transcriptomic analysis confirmed the toxin-mediated suppression of the intestinal inflammatory response. The presence of a functional typhoid toxin further induced an increased frequency of asymptomatic carriers. Our data indicate that the typhoid toxin DNA damaging activity increases host survival and favours long-term colonization, highlighting a complex cross-talk between infection, DNA damage response and host immune response. These findings may contribute to understand why such effectors have been evolutionary conserved and horizontally transferred among Gram-negative bacteria.
Collapse
Affiliation(s)
- Lisa Del Bel Belluz
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Riccardo Guidi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ioannis S. Pateras
- Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | - Laura Levi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Boris Mihaljevic
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Syed Fazle Rouf
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Marie Wrande
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Claudia Nastasi
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Clarissa Consolandi
- Institute of Biomedical Technologies, Italian National Research Council, Segrate, Milan, Italy
| | - Clelia Peano
- Institute of Biomedical Technologies, Italian National Research Council, Segrate, Milan, Italy
| | - Toma Tebaldi
- Centre for Integrative Biology University of Trento, Trento, Italy
| | | | - Vassilis G. Gorgoulis
- Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Institute for Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Manchester Centre for Cellular Metabolism, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Thorbjørn Krejsgaard
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Rhen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Teresa Frisan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
16
|
Colonization pattern of C. jejuni isolates of human and avian origin and differences in the induction of immune responses in chicken. Vet Immunol Immunopathol 2016; 169:1-9. [DOI: 10.1016/j.vetimm.2015.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/14/2015] [Accepted: 11/10/2015] [Indexed: 11/19/2022]
|
17
|
Jiminez JA, Uwiera TC, Douglas Inglis G, Uwiera RRE. Animal models to study acute and chronic intestinal inflammation in mammals. Gut Pathog 2015; 7:29. [PMID: 26561503 PMCID: PMC4641401 DOI: 10.1186/s13099-015-0076-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/22/2015] [Indexed: 02/06/2023] Open
Abstract
Acute and chronic inflammatory diseases of the intestine impart a significant and negative impact on the health and well-being of human and non-human mammalian animals. Understanding the underlying mechanisms of inflammatory disease is mandatory to develop effective treatment and prevention strategies. As inflammatory disease etiologies are multifactorial, the use of appropriate animal models and associated metrics of disease are essential. In this regard, animal models used alone or in combination to study acute and chronic inflammatory disease of the mammalian intestine paired with commonly used inflammation-inducing agents are reviewed. This includes both chemical and biological incitants of inflammation, and both non-mammalian (i.e. nematodes, insects, and fish) and mammalian (i.e. rodents, rabbits, pigs, ruminants, dogs, and non-human primates) models of intestinal inflammation including germ-free, gnotobiotic, as well as surgical, and genetically modified animals. Importantly, chemical and biological incitants induce inflammation via a multitude of mechanisms, and intestinal inflammation and injury can vary greatly according to the incitant and animal model used, allowing studies to ascertain both long-term and short-term effects of inflammation. Thus, researchers and clinicians should be aware of the relative strengths and limitations of the various animal models used to study acute and chronic inflammatory diseases of the mammalian intestine, and the scope and relevance of outcomes achievable based on this knowledge. The ability to induce inflammation to mimic common human diseases is an important factor of a successful animal model, however other mechanisms of disease such as the amount of infective agent to induce disease, invasion mechanisms, and the effect various physiologic changes can have on inducing damage are also important features. In many cases, the use of multiple animal models in combination with both chemical and biological incitants is necessary to answer the specific question being addressed regarding intestinal disease. Some incitants can induce acute responses in certain animal models while others can be used to induce chronic responses; this review aims to illustrate the strengths and weaknesses in each animal model and to guide the choice of an appropriate acute or chronic incitant to facilitate intestinal disease.
Collapse
Affiliation(s)
- Janelle A. Jiminez
- />Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB Canada
- />Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| | - Trina C. Uwiera
- />Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB Canada
| | - G. Douglas Inglis
- />Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB Canada
| | - Richard R. E. Uwiera
- />Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
18
|
Development and validation of a biomarker for diarrhea-predominant irritable bowel syndrome in human subjects. PLoS One 2015; 10:e0126438. [PMID: 25970536 PMCID: PMC4430499 DOI: 10.1371/journal.pone.0126438] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/02/2015] [Indexed: 02/07/2023] Open
Abstract
Diarrhea-predominant irritable bowel syndrome (IBS) is diagnosed through clinical criteria after excluding “organic” conditions, and can be precipitated by acute gastroenteritis. Cytolethal distending toxin B (CdtB) is produced by bacteria that cause acute gastroenteritis, and a post-infectious animal model demonstrates that host antibodies to CdtB cross-react with vinculin in the host gut, producing an IBS-like phenotype. Therefore, we assessed circulating anti-CdtB and anti-vinculin antibodies as biomarkers for D-IBS in human subjects. Subjects with D-IBS based on Rome criteria (n=2375) were recruited from a large-scale multicenter clinical trial for D-IBS (TARGET 3). Subjects with inflammatory bowel disease (IBD) (n=142), subjects with celiac disease (n=121), and healthy controls (n=43) were obtained for comparison. Subjects with IBD and celiac disease were recruited based on the presence of intestinal complaints and histologic confirmation of chronic inflammatory changes in the colon or small intestine. Subjects with celiac disease were also required to have an elevated tTG and biopsy. All subjects were aged between 18 and 65 years. Plasma levels of anti-CdtB and anti-vinculin antibodies were determined by ELISA, and compared between groups. Anti-CdtB titers were significantly higher in D-IBS subjects compared to IBD, healthy controls and celiac disease (P<0.001). Anti-vinculin titers were also significantly higher in IBS (P<0.001) compared to the other groups. The area-under-the-receiver operating curves (AUCs) were 0.81 and 0.62 for diagnosis of D-IBS against IBD for anti-CdtB and anti-vinculin, respectively. Both tests were less specific in differentiating IBS from celiac disease. Optimization demonstrated that for anti-CdtB (optical density≥2.80) the specificity, sensitivity and likelihood ratio were 91.6%, 43.7 and 5.2, respectively, and for anti-vinculin (OD≥1.68) were 83.8%, 32.6 and 2.0, respectively. These results confirm that anti-CdtB and anti-vinculin antibodies are elevated in D-IBS compared to non-IBS subjects. These biomarkers may be especially helpful in distinguishing D-IBS from IBD in the workup of chronic diarrhea.
Collapse
|
19
|
Louwen R, Hays JP. Is there an unrecognised role for Campylobacter infections in (chronic) inflammatory diseases? World J Clin Infect Dis 2013; 3:58-69. [DOI: 10.5495/wjcid.v3.i4.58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 10/30/2013] [Accepted: 11/16/2013] [Indexed: 02/06/2023] Open
Abstract
Campylobacter species are one of the major causes of global bacterial-related diarrheal disease worldwide. The disease is most frequently associated with the ingestion of contaminated meat, raw milk, pets, contaminated water, and the organism may be frequently cultured from the faeces of chicken and other domesticated farm animals. Of the 17 established Campylobacter species, the most important pathogens for humans are Campylobacter jejuni (C. jejuni), Campylobacter coli (C. coli) and Campylobacter fetus (C. fetus), which are all associated with diarrheal disease. Further, C. jejuni and C. coli are also associated with the neuroparalytic diseases Guillain-Barré syndrome and Miller Fischer syndrome, respectively, whereas C. fetus is linked with psoriatic arthritis. The discovery of both “molecular mimicry” and translocation-related virulence in the pathogenesis of C. jejuni-induced disease, indicates that Campylobacter-related gastrointestinal infections may not only generate localized, acute intestinal infection in the human host, but may also be involved in the establishment of chronic inflammatory diseases. Indeed, pathogenicity studies on several Campylobacter species now suggest that molecular mimicry and translocation-related virulence is not only related to C. jejuni, but may play a role in human disease caused by other Campylobacter spp. In this review, the authors provide a review based on the current literature describing the potential links between Campylobacter spp. and (chronic) inflammatory diseases, and provide their opinions on the likely role of Campylobacter in such diseases.
Collapse
|
20
|
Pokkunuri V, Pimentel M, Morales W, Jee SR, Alpern J, Weitsman S, Marsh Z, Low K, Hwang L, Khoshini R, Barlow GM, Wang H, Chang C. Role of Cytolethal Distending Toxin in Altered Stool Form and Bowel Phenotypes in a Rat Model of Post-infectious Irritable Bowel Syndrome. J Neurogastroenterol Motil 2012; 18:434-42. [PMID: 23106005 PMCID: PMC3479258 DOI: 10.5056/jnm.2012.18.4.434] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/16/2012] [Accepted: 08/21/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND/AIMS Campylobacter jejuni infection is a leading cause of acute gastroenteritis, which is a trigger for post-infectious irritable bowel syndrome (PI-IBS). Cytolethal distending toxin (CDT) is expressed by enteric pathogens that cause PI-IBS. We used a rat model of PI-IBS to investigate the role of CDT in long-term altered stool form and bowel phenotypes. METHODS Adult Sprague-Dawley rats were gavaged with wildtype C. jejuni (C+), a C. jejunicdtB knockout (CDT-) or saline vehicle (controls). Four months after gavage, stool from 3 consecutive days was assessed for stool form and percent wet weight. Rectal tissue was analyzed for intraepithelial lymphocytes, and small intestinal tissue was stained with anti-c-kit for deep muscular plexus interstitial cells of Cajal (DMP-ICC). RESULTS All 3 groups showed similar colonization and clearance parameters. Average 3-day stool dry weights were similar in all 3 groups, but day-to-day variability in stool form and stool dry weight were significantly different in the C+ group vs both controls (P < 0.01) and the CDT- roup (P < 0.01), but were not different in the CDT- vs controls. Similarly, rectal lymphocytes were significantly higher after C. jejuni (C+) infection vs both controls (P < 0.01) and CDT-exposed rats (P < 0.05). The counts in the latter 2 groups were not significantly different. Finally, c-kit staining revealed that DMP-ICC were reduced only in rats exposed to wildtype C. jejuni. CONCLUSIONS In this rat model of PI-IBS, CDT appears to play a role in the development of chronic altered bowel patterns, mild chronic rectal inflammation and reduction in DMP-ICC.
Collapse
Affiliation(s)
- Venkata Pokkunuri
- GI Motility Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Mark Pimentel
- GI Motility Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Walter Morales
- GI Motility Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sam-Ryong Jee
- GI Motility Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Joel Alpern
- GI Motility Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Stacy Weitsman
- GI Motility Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zachary Marsh
- GI Motility Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kimberly Low
- GI Motility Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Laura Hwang
- GI Motility Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Reza Khoshini
- GI Motility Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Gillian M Barlow
- GI Motility Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Hanlin Wang
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Christopher Chang
- GI Motility Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
21
|
Pielsticker C, Glünder G, Rautenschlein S. Colonization properties of Campylobacter jejuni in chickens. Eur J Microbiol Immunol (Bp) 2012; 2:61-5. [PMID: 24611122 DOI: 10.1556/eujmi.2.2012.1.9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 01/06/2012] [Accepted: 01/07/2012] [Indexed: 11/19/2022] Open
Abstract
Campylobacter is the most common bacterial food-borne pathogen worldwide. Poultry and specifically chicken and raw chicken meat is the main source for human Campylobacter infection. Whilst being colonized by Campylobacter spp. chicken in contrast to human, do scarcely develop pathological lesions. The immune mechanisms controlling Campylobacter colonization and infection in chickens are still not clear. Previous studies and our investigations indicate that the ability to colonize the chicken varies significantly not only between Campylobacter strains but also depending on the original source of the infecting isolate. The data provides circumstantial evidence that early immune mechanisms in the gut may play an important role in the fate of Campylobacter in the host.
Collapse
Affiliation(s)
- C Pielsticker
- Clinic for Poultry, University of Veterinary Medicine Hannover Hannover Germany
| | - G Glünder
- Clinic for Poultry, University of Veterinary Medicine Hannover Hannover Germany
| | - S Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover Hannover Germany
| |
Collapse
|