1
|
Zhang J, Liu Z, Zhou Z, Huang Z, Yang Y, Wu J, Liu Y. HNP-1: From Structure to Application Thanks to Multifaceted Functions. Microorganisms 2025; 13:458. [PMID: 40005828 PMCID: PMC11858525 DOI: 10.3390/microorganisms13020458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/02/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Antimicrobial peptides (AMPs) are critical components of innate immunity in animals and plants, exhibiting thrilling prospectives as alternatives to traditional antibiotics due to their ability to combat pathogens without leading to resistance. Among these, Human Neutrophil Peptide-1 (HNP-1), primarily produced by human neutrophils, exhibits broad-spectrum antimicrobial activity against bacteria and viruses. However, the clinical application of HNP-1 has been hampered by challenges associated with mass production and inconsistent understanding of its bactericidal mechanisms. This review explores the structure and function of HNP-1, discussing its gene expression, distribution, immune functions and the regulatory elements controlling its production, alongside insights into its antimicrobial mechanisms and potential clinical applications as an antimicrobial agent. Furthermore, the review highlights the biosynthesis of HNP-1 using microbial systems as a cost-effective alternative to human extraction and recent studies revealing HNP-1's endogenous bactericidal mechanism. A comprehensive understanding of HNP-1's working mechanisms and production methods will pave the way for its effective clinical utilization in combating antibiotic-resistant infections.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Biochemistry and Molecular Biology, Center for Experimental Teaching of Basic Medical Science, School of Basic Medical Science, Wuhan University, Wuhan 430072, China; (J.Z.)
| | - Zhaoke Liu
- Department of Biochemistry and Molecular Biology, Center for Experimental Teaching of Basic Medical Science, School of Basic Medical Science, Wuhan University, Wuhan 430072, China; (J.Z.)
| | - Zhihao Zhou
- Department of Biochemistry and Molecular Biology, Center for Experimental Teaching of Basic Medical Science, School of Basic Medical Science, Wuhan University, Wuhan 430072, China; (J.Z.)
| | - Zile Huang
- Department of Biochemistry and Molecular Biology, Center for Experimental Teaching of Basic Medical Science, School of Basic Medical Science, Wuhan University, Wuhan 430072, China; (J.Z.)
| | - Yifan Yang
- Department of Biochemistry and Molecular Biology, Center for Experimental Teaching of Basic Medical Science, School of Basic Medical Science, Wuhan University, Wuhan 430072, China; (J.Z.)
| | - Junzhu Wu
- Department of Biochemistry and Molecular Biology, Center for Experimental Teaching of Basic Medical Science, School of Basic Medical Science, Wuhan University, Wuhan 430072, China; (J.Z.)
| | - Yanhong Liu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
2
|
Otto M, Zheng Y, Grablowitz P, Wiehe T. Detecting adaptive changes in gene copy number distribution accompanying the human out-of-Africa expansion. Hum Genome Var 2024; 11:37. [PMID: 39313504 PMCID: PMC11420239 DOI: 10.1038/s41439-024-00293-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 09/25/2024] Open
Abstract
Genes with multiple copies are likely to be maintained by stabilizing selection, which puts a bound to unlimited expansion of copy number. We designed a model in which copy number variation is generated by unequal recombination, which fits well with several genes surveyed in three human populations. Based on this theoretical model and computer simulations, we were interested in determining whether the gene copy number distribution in the derived European and Asian populations can be explained by a purely demographic scenario or whether shifts in the distribution are signatures of adaptation. Although the copy number distribution in most of the analyzed gene clusters can be explained by a bottleneck, such as in the out-of-Africa expansion of Homo sapiens 60-10 kyrs ago, we identified several candidate genes, such as AMY1A and PGA3, whose copy numbers are likely to differ among African, Asian, and European populations.
Collapse
Affiliation(s)
- Moritz Otto
- Institue for Genetics, University of Cologne, Cologne, Germany
| | - Yichen Zheng
- Institue for Genetics, University of Cologne, Cologne, Germany
| | - Paul Grablowitz
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Thomas Wiehe
- Institue for Genetics, University of Cologne, Cologne, Germany.
| |
Collapse
|
3
|
Canas JJ, Arregui SW, Zhang S, Knox T, Calvert C, Saxena V, Schwaderer AL, Hains DS. DEFA1A3 DNA gene-dosage regulates the kidney innate immune response during upper urinary tract infection. Life Sci Alliance 2024; 7:e202302462. [PMID: 38580392 PMCID: PMC10997819 DOI: 10.26508/lsa.202302462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/07/2024] Open
Abstract
Antimicrobial peptides (AMPs) are host defense effectors with potent neutralizing and immunomodulatory functions against invasive pathogens. The AMPs α-Defensin 1-3/DEFA1A3 participate in innate immune responses and influence patient outcomes in various diseases. DNA copy-number variations in DEFA1A3 have been associated with severity and outcomes in infectious diseases including urinary tract infections (UTIs). Specifically, children with lower DNA copy numbers were more susceptible to UTIs. The mechanism of action by which α-Defensin 1-3/DEFA1A3 copy-number variations lead to UTI susceptibility remains to be explored. In this study, we use a previously characterized transgenic knock-in of the human DEFA1A3 gene mouse to dissect α-Defensin 1-3 gene dose-dependent antimicrobial and immunomodulatory roles during uropathogenic Escherichia coli (UPEC) UTI. We elucidate the relationship between kidney neutrophil- and collecting duct intercalated cell-derived α-Defensin 1-3/DEFA1A3 expression and UTI. We further describe cooperative effects between α-Defensin 1-3 and other AMPs that potentiate the neutralizing activity against UPEC. Cumulatively, we demonstrate that DEFA1A3 directly protects against UPEC meanwhile impacting pro-inflammatory innate immune responses in a gene dosage-dependent manner.
Collapse
Affiliation(s)
- Jorge J Canas
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Samuel W Arregui
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shaobo Zhang
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Taylor Knox
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christi Calvert
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vijay Saxena
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew L Schwaderer
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Riley Hospital for Children, Indiana University Health, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David S Hains
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
- Riley Hospital for Children, Indiana University Health, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
4
|
Lee J, Chang DS, Kim J, Hwang YS. Alpha-Defensin 1: An Emerging Periodontitis Biomarker. Diagnostics (Basel) 2023; 13:2143. [PMID: 37443537 DOI: 10.3390/diagnostics13132143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/08/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Background: Research on the development of reliable diagnostic targets is being conducted to overcome the high prevalence and difficulty in managing periodontitis. However, despite the development of various periodontitis target markers, their practical application has been limited due to poor diagnostic accuracy. In this study, we present an improved periodontitis diagnostic target and explore its role in periodontitis. Methods: Gingival crevicular fluid (GCF) was collected from healthy individuals and periodontitis patients, and proteomic analysis was performed. The target marker levels for periodontitis were quantified in GCF samples by enzyme-linked immunosorbent assay (ELISA). Mouse bone marrow-derived macrophages (BMMs) were used for the osteoclast formation assay. Results: LC-MS/MS analysis of whole GCF showed that the level of alpha-defensin 1 (DEFA-1) was higher in periodontitis GCF than in healthy GCF. The comparison of periodontitis target proteins galactin-10, ODAM, and azurocidin proposed in other studies found that the difference in DEFA-1 levels was the largest between healthy and periodontitis GCF, and periodontitis was more effectively distinguished. The differentiation of RANKL-induced BMMs into osteoclasts was significantly reduced by recombinant DEFA-1 (rDEFA-1). Conclusions: These results suggest the regulatory role of DEFA-1 in the periodontitis process and the relevance of DEFA-1 as a diagnostic target for periodontitis.
Collapse
Affiliation(s)
- Jisuk Lee
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam 13135, Republic of Korea
| | - Dong Sik Chang
- Department of Otorhinolaryngology, Eulji University Hospital, Eulji University, Daejeon 35233, Republic of Korea
| | - Junsu Kim
- Seoul Hana Dental Clinic, Seongnam 13636, Republic of Korea
| | - Young Sun Hwang
- Department of Dental Hygiene, College of Health Science, Eulji University, Seongnam 13135, Republic of Korea
| |
Collapse
|
5
|
Human neutrophil peptides 1-3 protect the murine urinary tract from uropathogenic Escherichia coli challenge. Proc Natl Acad Sci U S A 2022; 119:e2206515119. [PMID: 36161923 PMCID: PMC9546544 DOI: 10.1073/pnas.2206515119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial peptides (AMPs) are critical to the protection of the urinary tract of humans and other animals from pathogenic microbial invasion. AMPs rapidly destroy pathogens by disrupting microbial membranes and/or augmenting or inhibiting the host immune system through a variety of signaling pathways. We have previously demonstrated that alpha-defensins 1-3 (DEFA1A3) are AMPs expressed in the epithelial cells of the human kidney collecting duct in response to uropathogens. We also demonstrated that DNA copy number variations in the DEFA1A3 locus are associated with UTI and pyelonephritis risk. Because DEFA1A3 is not expressed in mice, we utilized human DEFA1A3 gene transgenic mice (DEFA4/4) to further elucidate the biological relevance of this locus in the murine urinary tract. We demonstrate that the kidney transcriptional and translational expression pattern is similar in humans and the human gene transgenic mouse upon uropathogenic Escherichia coli (UPEC) stimulus in vitro and in vivo. We also demonstrate transgenic human DEFA4/4 gene mice are protected from UTI and pyelonephritis under various UPEC challenges. This study serves as the foundation to start the exploration of manipulating the DEFA1A3 locus and alpha-defensins 1-3 expression as a potential therapeutic target for UTIs and other infectious diseases.
Collapse
|
6
|
Nowak JK, Adams AT, Kalla R, Lindstrøm JC, Vatn S, Bergemalm D, Keita ÅV, Gomollón F, Jahnsen J, Vatn MH, Ricanek P, Ostrowski J, Walkowiak J, Halfvarson J, Satsangi J. Characterisation of the Circulating Transcriptomic Landscape in Inflammatory Bowel Disease Provides Evidence for Dysregulation of Multiple Transcription Factors Including NFE2, SPI1, CEBPB, and IRF2. J Crohns Colitis 2022; 16:1255-1268. [PMID: 35212366 PMCID: PMC9426667 DOI: 10.1093/ecco-jcc/jjac033] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/11/2022] [Accepted: 02/23/2022] [Indexed: 01/11/2023]
Abstract
AIM To assess the pathobiological and translational importance of whole-blood transcriptomic analysis in inflammatory bowel disease [IBD]. METHODS We analysed whole-blood expression profiles from paired-end sequencing in a discovery cohort of 590 Europeans recruited across six countries in the IBD Character initiative (newly diagnosed patients with Crohn's disease [CD; n = 156], ulcerative colitis [UC; n = 167], and controls [n = 267]), exploring differential expression [DESeq2], co-expression networks [WGCNA], and transcription factor involvement [EPEE, ChEA, DoRothEA]. Findings were validated by analysis of an independent replication cohort [99 CD, 100 UC, 95 controls]. In the discovery cohort, we also defined baseline expression correlates of future treatment escalation using cross-validated elastic-net and random forest modelling, along with a pragmatic ratio detection procedure. RESULTS Disease-specific transcriptomes were defined in IBD [8697 transcripts], CD [7152], and UC [8521], with the most highly significant changes in single genes, including CD177 (log2-fold change [LFC] = 4.63, p = 4.05 × 10-118), MCEMP1 [LFC = 2.45, p = 7.37 × 10-109], and S100A12 [LFC = 2.31, p = 2.15 × 10-93]. Significantly over-represented pathways included IL-1 [p = 1.58 × 10-11], IL-4, and IL-13 [p = 8.96 × 10-9]. Highly concordant results were obtained using multiple regulatory activity inference tools applied to the discovery and replication cohorts. These analyses demonstrated central roles in IBD for the transcription factors NFE2, SPI1 [PU.1], CEBPB, and IRF2, all regulators of cytokine signalling, based on a consistent signal across cohorts and transcription factor ranking methods. A number of simple transcriptome-based models were associated with the need for treatment escalation, including the binary CLEC5A/CDH2 expression ratio in UC (hazard ratio = 23.4, 95% confidence interval [CI] 5.3-102.0). CONCLUSIONS Transcriptomic analysis has allowed for a detailed characterisation of IBD pathobiology, with important potential translational implications.
Collapse
Affiliation(s)
- Jan K Nowak
- Corresponding authors: Dr Jan K. Nowak, Translational Gastroenterology Unit, Experimental Medicine Division, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK.
| | | | - Rahul Kalla
- MRC Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Jonas C Lindstrøm
- Health Services Research Unit, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Simen Vatn
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Daniel Bergemalm
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Åsa V Keita
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | | - Jørgen Jahnsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Morten H Vatn
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- EpiGen Institute, Akershus University Hospital, University of Oslo, Oslo, Norway
| | - Petr Ricanek
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Jerzy Ostrowski
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, Warsaw, Poland
| | - Jaroslaw Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Jack Satsangi
- Jack Satsangi, Translational Gastroenterology Unit, Experimental Medicine Division, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK.
| | | |
Collapse
|
7
|
Song RH, Gao CQ, Zhao J, Zhang JA. An Update Evolving View of Copy Number Variations in Autoimmune Diseases. Front Genet 2022; 12:794348. [PMID: 35126462 PMCID: PMC8810490 DOI: 10.3389/fgene.2021.794348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/06/2021] [Indexed: 02/01/2023] Open
Abstract
Autoimmune diseases (AIDs) usually share possible common mechanisms, i.e., a defect in the immune tolerance exists due to diverse causes from central and peripheral tolerance mechanisms. Some genetic variations including copy number variations (CNVs) are known to link to several AIDs and are of importance in the susceptibility to AIDs and the potential therapeutic responses to medicines. As an important source of genetic variants, DNA CNVs have been shown to be very common in AIDs, implying these AIDs may possess possible common mechanisms. In addition, some CNVs are differently distributed in various diseases in different ethnic populations, suggesting that AIDs may have their own different phenotypes and different genetic and/or environmental backgrounds among diverse populations. Due to the continuous advancement in genotyping technology, such as high-throughput whole-genome sequencing method, more susceptible variants have been found. Moreover, further replication studies should be conducted to confirm the results of studies with different ethnic cohorts and independent populations. In this review, we aim to summarize the most relevant data that emerged in the past few decades on the relationship of CNVs and AIDs and gain some new insights into the issue.
Collapse
|
8
|
Kanmura S, Morinaga Y, Tanaka A, Komaki Y, Iwaya H, Kumagai K, Mawatari S, Sasaki F, Tanoue S, Hashimoto S, Sameshima Y, Ono Y, Ohi H, Ido A. Increased Gene Copy Number of DEFA1A3 Is Associated With the Severity of Ulcerative Colitis. Clin Transl Gastroenterol 2021; 12:e00331. [PMID: 33825720 PMCID: PMC8032364 DOI: 10.14309/ctg.0000000000000331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION DEFA1A3 encodes human neutrophil peptides (HNPs) 1-3 and has multiple copy number variations (CNVs). HNPs are associated with innate immunity. Ulcerative colitis (UC), a chronic inflammatory gastrointestinal disorder, is a life-threatening condition, and predictive markers of UC severity are needed. This study investigated the relationship between DEFA1A3 CNV and UC severity. METHODS This study enrolled 165 patients with UC. The relationship between DEFA1A3 CNV and disease severity was analyzed based on Mayo score, patient characteristics, and treatment methods. In addition, serum and stimulated neutrophil-derived HNP concentrations were also measured in patients with high and low DEFA1A3 CNV. RESULTS DEFA1A3 CNV was significantly correlated with Mayo score and white blood cell count (R = 0.46, P < 0.0001; R = 0.29, P = 0.003, respectively), and only high copy numbers of DEFA1A3 were independent factors for severe UC (P < 0.001, odds ratio: 1.88, 95% confidence interval, 1.34-2.61). The number of severe UC patients with high DEFA1A3 CNV was significantly greater than those with low CNV. We confirmed the associations between DEFA1A3 and UC severity using a validation cohort. In addition, the HNP concentration in high-copy number patients was significantly higher after neutrophil stimulation than that in low-copy number patients. DISCUSSION This study demonstrated that there is a correlation between DEFA1A3 copy number and severity in patients with UC. In addition, neutrophils from UC patients with higher DEFA1A3 CNV had high reactivity of secretion of HNPs after stimulation. DEFA1A3 CNV may be a novel severity marker and a potential therapeutic target for UC.
Collapse
Affiliation(s)
- Shuji Kanmura
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuko Morinaga
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihito Tanaka
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuga Komaki
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiromichi Iwaya
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kotaro Kumagai
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Seiichi Mawatari
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Fumisato Sasaki
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shiroh Tanoue
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shinichi Hashimoto
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoichi Sameshima
- Department of Gastroenterology, Imamura General Hospital, Kagoshima, Japan
| | - Yohei Ono
- Department of Gastroenterology, Idzuro Imamura Hospital, Kagoshima, Japan
| | - Hidehisa Ohi
- Department of Gastroenterology, Idzuro Imamura Hospital, Kagoshima, Japan
| | - Akio Ido
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
9
|
Differential proteomics analysis of bile between gangrenous cholecystitis and chronic cholecystitis. Med Hypotheses 2018; 121:131-136. [PMID: 30396466 DOI: 10.1016/j.mehy.2018.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/21/2018] [Accepted: 07/02/2018] [Indexed: 01/30/2023]
Abstract
To establish human biliary protein expression profiles of gangrenous cholecystitis, chronic cholecystitis, and to discover differently expressed proteins for gangrenous cholecystitis by comparative proteomics, we gathered human gallbladder bile samples from gangrenous cholecystitis and chronic cholecystitis patients, respectively After removing the bile salts and lipid peptide fragments were identified by the iTRAQ-coupled LC-MS/MS technology,then identified in SwissProt with Mascot software. A total of 2251 proteins from chronic cholecystitis patients and 2180 proteins from gangrenous cholecystitis patients were identified. A total of 575 differential proteins were found between gangrenous cholecystitis and chronic cholecystitis, 159 proteins were over-expressed and 416 proteins were under-expressed in gangrenous cholecystitis. By bio-informatics analysis, in gangrenous cholecystitis, cell death, necrosis,immune response of neutrophils, apoptosis and degranulation of cells were activated; while cell survival, fatty acid metabolism, transport of molecular and proliferation of cells were inhibited, which might reflect the de-compensatory phase. Pathway analysis showed acute phase proteins were changed, indicating the role of the inflammatory response in the pathogenesis of gangrenous cholecystitis. Six acute phase proteins were found up-regulated,implying a close linkage to gangrenous gallbladder. Our study could be applicable in the biomarker discovery of gangrenous cholecystitis.
Collapse
|
10
|
Low-Copy Number Polymorphism in DEFA1/DEFA3 Is Associated with Susceptibility to Hospital-Acquired Infections in Critically Ill Patients. Mediators Inflamm 2018; 2018:2152650. [PMID: 29950924 PMCID: PMC5987315 DOI: 10.1155/2018/2152650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/25/2018] [Accepted: 04/19/2018] [Indexed: 01/19/2023] Open
Abstract
DEFA1/DEFA3, genes encoding human neutrophil peptides (HNP) 1-3, display wide-ranging copy number variations (CNVs) and is functionally associated with innate immunity and infections. To identify potential associations between DEFA1/DEFA3 CNV and hospital-acquired infections (HAIs), we enrolled 106 patients with HAIs and 109 controls in the intensive care unit (ICU) and examined their DEFA1/DEFA3 CNVs. DEFA1/DEFA3 copy number ranged from 2 to 16 per diploid genome in all 215 critically ill patients, with a median of 7 copies. In HAIs, DEFA1/DEFA3 CNV varied from 2 to 12 with a median of 6, which was significantly lower than that in controls (2 to 16 with a median of 8, p = 0.017). Patients with lower DEFA1/DEFA3 copy number (CNV < 7) were far more common in HAIs than in controls (52.8% in HAIs versus 35.8% in controls; p = 0.014; OR, 2.010; 95% CI, 1.164-3.472). The area under the receiver operating characteristic (AUROC) of DEFA1/DEFA3 CNV combined with clinical characteristics to predict the incidence of HAIs was 0.763 (95% CI 0.700-0.827), showing strong predictive ability. Therefore, lower DEFA1/DEFA3 copy number contributes to higher susceptibility to HAIs in critically ill patients, and DEFA1/DEFA3 CNV is a significant hereditary factor for predicting HAIs.
Collapse
|
11
|
Schwaderer AL, Wang H, Kim S, Kline JM, Liang D, Brophy PD, McHugh KM, Tseng GC, Saxena V, Barr-Beare E, Pierce KR, Shaikh N, Manak JR, Cohen DM, Becknell B, Spencer JD, Baker PB, Yu CY, Hains DS. Polymorphisms in α-Defensin-Encoding DEFA1A3 Associate with Urinary Tract Infection Risk in Children with Vesicoureteral Reflux. J Am Soc Nephrol 2016; 27:3175-3186. [PMID: 26940096 PMCID: PMC5042661 DOI: 10.1681/asn.2015060700] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022] Open
Abstract
The contribution of genetic variation to urinary tract infection (UTI) risk in children with vesicoureteral reflux is largely unknown. The innate immune system, which includes antimicrobial peptides, such as the α-defensins, encoded by DEFA1A3, is important in preventing UTIs but has not been investigated in the vesicoureteral reflux population. We used quantitative real-time PCR to determine DEFA1A3 DNA copy numbers in 298 individuals with confirmed UTIs and vesicoureteral reflux from the Randomized Intervention for Children with Vesicoureteral Reflux (RIVUR) Study and 295 controls, and we correlated copy numbers with outcomes. Outcomes studied included reflux grade, UTIs during the study on placebo or antibiotics, bowel and bladder dysfunction, and renal scarring. Overall, 29% of patients and 16% of controls had less than or equal to five copies of DEFA1A3 (odds ratio, 2.09; 95% confidence interval, 1.40 to 3.11; P<0.001). For each additional copy of DEFA1A3, the odds of recurrent UTI in patients receiving antibiotic prophylaxis decreased by 47% when adjusting for vesicoureteral reflux grade and bowel and bladder dysfunction. In patients receiving placebo, DEFA1A3 copy number did not associate with risk of recurrent UTI. Notably, we found that DEFA1A3 is expressed in renal epithelium and not restricted to myeloid-derived cells, such as neutrophils. In conclusion, low DEFA1A3 copy number associated with recurrent UTIs in subjects in the RIVUR Study randomized to prophylactic antibiotics, providing evidence that copy number polymorphisms in an antimicrobial peptide associate with UTI risk.
Collapse
Affiliation(s)
| | - Huanyu Wang
- The Centers for Clinical and Translational Medicine and
| | | | | | - Dong Liang
- Innate Immunity Translational Research Center, Children's Foundation Research Institute at Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Pat D Brophy
- Division of Nephrology, Department of Pediatrics, University of Iowa Children's Hospital, Iowa City, Iowa
| | - Kirk M McHugh
- Division of Anatomy, The Ohio State University, Columbus, Ohio
| | | | - Vijay Saxena
- The Centers for Clinical and Translational Medicine and
| | | | - Keith R Pierce
- Innate Immunity Translational Research Center, Children's Foundation Research Institute at Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Nader Shaikh
- Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - J Robert Manak
- Departments of Biology and Pediatrics, University of Iowa, Iowa; and
| | | | | | | | - Peter B Baker
- Department of Pathology, Nationwide Children's Hospital, Columbus, Ohio
| | - Chack-Yung Yu
- Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - David S Hains
- Innate Immunity Translational Research Center, Children's Foundation Research Institute at Le Bonheur Children's Hospital, Memphis, Tennessee; Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
12
|
Increased alpha-defensin expression is associated with risk of coronary heart disease: a feasible predictive inflammatory biomarker of coronary heart disease in hyperlipidemia patients. Lipids Health Dis 2016; 15:117. [PMID: 27430968 PMCID: PMC4949746 DOI: 10.1186/s12944-016-0285-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/30/2016] [Indexed: 02/05/2023] Open
Abstract
Background Atherosclerosis is a multifactorial disorder of the heart vessels that develops over decades, coupling inflammatory mechanisms and elevated total cholesterol levels under the influence of genetic and environmental factors. Without effective intervention, atherosclerosis consequently causes coronary heart disease (CHD), which leads to increased risk of sudden death. Polymorphonuclear neutrophils play a pivotal role in inflammation and atherogenesis. Human neutrophil peptides (HNPs) or alpha (α)-defensins are cysteine-rich cation polypeptides that are produced and released from activated polymorphonuclear neutrophil granules during septic inflammation and acute coronary vascular disorders. HNPs cause endothelial cell dysfunction during early atherogenesis. In this cross-sectional study, control, hyperlipidemia and CHD groups were representative as atherosclerosis development and CHD complications. We aimed to assess the correlation between α-defensin expression and the development of CHD, and whether it was a useful predictive indicator for CHD risk. Methods First, DNA microarray analysis was performed on peripheral blood mononuclear cells (PBMCs) from Thai control, hyperlipidemia and CHD male patients (n = 7). Gene expression profiling revealed eight up-regulated genes common between hyperlipidemia and CHD patients, but not controls. We sought to verify and compare α-defensin expression among the groups using: 1) real-time quantitative RT-PCR (qRT-PCR) to determine α-defensin mRNA expression (n = 10), and 2) enzyme-linked immunosorbent assay to determine plasma HNP 1–3 levels (n = 17). Statistically significant differences and correlations between groups were determined by the Mann–Whitney U test or the Kruskal–Wallis test, and the Rho-Spearman correlation, respectively. Results We found that α-defensin mRNA expression increased (mean 2-fold change) in the hyperlipidemia (p = 0.043) and CHD patients (p = 0.05) compared with the controls. CHD development moderately correlated with α-defensin mRNA expression (r = 0.429, p = 0.023) and with plasma HNP 1–3 levels (r = 0.486, p = 0.000). Conclusions Increased α-defensin expression is a potential inflammatory marker that may predict the risk of CHD development in Thai hyperlipidemia patients.
Collapse
|
13
|
Copy number variation of scavenger-receptor cysteine-rich domains within DMBT1 and Crohn's disease. Eur J Hum Genet 2016; 24:1294-300. [PMID: 26813944 PMCID: PMC4851238 DOI: 10.1038/ejhg.2015.280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022] Open
Abstract
Previous work has shown that the gene DMBT1, which encodes a large secreted epithelial glycoprotein known as salivary agglutinin, gp340, hensin or muclin, is an innate immune defence protein that binds bacteria. A deletion variant of DMBT1 has been previously associated with Crohn's disease, and a DMBT1−/− knockout mouse has increased levels of colitis induced by dextran sulphate. DMBT1 has a complex copy number variable structure, with two, independent, rapidly mutating copy number variable regions, called CNV1 and CNV2. Because the copy number variable regions are predicted to affect the number of bacteria-binding domains, different alleles may alter host–microbe interactions in the gut. Our aim was to investigate the role of this complex variation in susceptibility to Crohn's disease by assessing the previously reported association. We analysed the association of both copy number variable regions with presence of Crohn's disease, and its severity, on three case–control cohorts. We also reanalysed array comparative genomic hybridisation data (aCGH) from a large case–control cohort study for both copy number variable regions. We found no association with a linear increase in copy number, nor when the CNV1 is regarded as presence or absence of a deletion allele. Taken together, we show that the DMBT1 CNV does not affect susceptibility to Crohn's disease, at least in Northern Europeans.
Collapse
|
14
|
Dommisch H, Jepsen S. Diverse functions of defensins and other antimicrobial peptides in periodontal tissues. Periodontol 2000 2015; 69:96-110. [DOI: 10.1111/prd.12093] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2015] [Indexed: 02/06/2023]
|
15
|
Identification of new susceptibility loci for IgA nephropathy in Han Chinese. Nat Commun 2015; 6:7270. [PMID: 26028593 PMCID: PMC4458882 DOI: 10.1038/ncomms8270] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/23/2015] [Indexed: 12/20/2022] Open
Abstract
IgA nephropathy (IgAN) is one of the most common primary glomerulonephritis. Previously identified genome-wide association study (GWAS) loci explain only a fraction of disease risk. To identify novel susceptibility loci in Han Chinese, we conduct a four-stage GWAS comprising 8,313 cases and 19,680 controls. Here, we show novel associations at ST6GAL1 on 3q27.3 (rs7634389, odds ratio (OR)=1.13, P=7.27 × 10(-10)), ACCS on 11p11.2 (rs2074038, OR=1.14, P=3.93 × 10(-9)) and ODF1-KLF10 on 8q22.3 (rs2033562, OR=1.13, P=1.41 × 10(-9)), validate a recently reported association at ITGAX-ITGAM on 16p11.2 (rs7190997, OR=1.22, P=2.26 × 10(-19)), and identify three independent signals within the DEFA locus (rs2738058, P=1.15 × 10(-19); rs12716641, P=9.53 × 10(-9); rs9314614, P=4.25 × 10(-9), multivariate association). The risk variants on 3q27.3 and 11p11.2 show strong association with mRNA expression levels in blood cells while allele frequencies of the risk variants within ST6GAL1, ACCS and DEFA correlate with geographical variation in IgAN prevalence. Our findings expand our understanding on IgAN genetic susceptibility and provide novel biological insights into molecular mechanisms underlying IgAN.
Collapse
|
16
|
Cai A, Qi S, Su Z, Shen H, Yang Y, He L, Dai Y. Quantitative Proteomic Analysis of Peripheral Blood Mononuclear Cells in Ankylosing Spondylitis by iTRAQ. Clin Transl Sci 2015; 8:579-83. [PMID: 25788137 DOI: 10.1111/cts.12265] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
This study was designed to identify and quantify the different proteins expression levels in ankylosing spondylitis (AS) and to explore the pathogenesis of AS. We performed isobaric tags for relative and absolute quantitation (iTRAQ) coupled with multiple chromatographic fractionation and tandem mass spectrometry to detect the proteins profiling in peripheral blood mononuclear cells (PBMCs) from AS patients and healthy controls. Mascot software and the International Protein Index and the Gene Ontology (GO) database were used to conduct the bioinformatics analysis. The differentially expressed proteins were validated by enzyme-linked immunosorbent assay (ELISA). A total of 1,232 proteins were identified by iTRAQ, of which 183 showed differential expression and 18 differentially expressed proteins were acute phase reactants. Upon mapping of the differentially expressed proteins to GO database, we found four differentially expressed proteins involved in the biological process of cell killing, including up-regulated cathepsin G (CTSG), neutrophil defensin3 (DEFA3), protein tyrosine phosphatase receptor type C (PTPRC), and down-regulated peroxiredoxin-1(PRDX1),which were consistent with the verified results of ELISA. Our proteomic analyses suggested that the proteins involved in the biological process of cell killing might play an important role in the pathogenesis of AS.
Collapse
Affiliation(s)
- Anji Cai
- Department of Laboratory, Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen, Guangdong, P.R. China
| | - Suwen Qi
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Zhuowa Su
- Department of Laboratory, Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen, Guangdong, P.R. China
| | - Huaqing Shen
- Department of Laboratory, Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen, Guangdong, P.R. China
| | - Yu Yang
- Department of Laboratory, Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen, Guangdong, P.R. China
| | - Liang He
- Department of Laboratory, Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen, Guangdong, P.R. China
| | - Yong Dai
- The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, No 1017, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
17
|
Machado LR, Ottolini B. An evolutionary history of defensins: a role for copy number variation in maximizing host innate and adaptive immune responses. Front Immunol 2015; 6:115. [PMID: 25852686 PMCID: PMC4364288 DOI: 10.3389/fimmu.2015.00115] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/01/2015] [Indexed: 12/21/2022] Open
Abstract
Defensins represent an evolutionary ancient family of antimicrobial peptides that play diverse roles in human health and disease. Defensins are cationic cysteine-containing multifunctional peptides predominantly expressed by epithelial cells or neutrophils. Defensins play a key role in host innate immune responses to infection and, in addition to their classically described role as antimicrobial peptides, have also been implicated in immune modulation, fertility, development, and wound healing. Aberrant expression of defensins is important in a number of inflammatory diseases as well as modulating host immune responses to bacteria, unicellular pathogens, and viruses. In parallel with their role in immunity, in other species, defensins have evolved alternative functions, including the control of coat color in dogs. Defensin genes reside in complex genomic regions that are prone to structural variations and some defensin family members exhibit copy number variation (CNV). Structural variations have mediated, and continue to influence, the diversification and expression of defensin family members. This review highlights the work currently being done to better understand the genomic architecture of the β-defensin locus. It evaluates current evidence linking defensin CNV to autoimmune disease (i.e., Crohn’s disease and psoriasis) as well as the contribution CNV has in influencing immune responses to HIV infection.
Collapse
Affiliation(s)
- Lee R Machado
- Institute of Health and Wellbeing, School of Health, University of Northampton , Northampton , UK
| | - Barbara Ottolini
- Department of Cancer Studies, University of Leicester , Leicester , UK
| |
Collapse
|
18
|
DEFA gene variants associated with IgA nephropathy in a Chinese population. Genes Immun 2015; 16:231-7. [DOI: 10.1038/gene.2015.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 01/22/2023]
|
19
|
Xu R, Feng S, Li Z, Fu Y, Yin P, Ai Z, Liu W, Yu X, Li M. Polymorphism of DEFA in Chinese Han population with IgA nephropathy. Hum Genet 2014; 133:1299-309. [DOI: 10.1007/s00439-014-1464-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/12/2014] [Indexed: 12/16/2022]
|
20
|
Kruis T, Batra A, Siegmund B. Bacterial translocation - impact on the adipocyte compartment. Front Immunol 2014; 4:510. [PMID: 24432024 PMCID: PMC3881001 DOI: 10.3389/fimmu.2013.00510] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/24/2013] [Indexed: 12/29/2022] Open
Abstract
Over the last decade it became broadly recognized that adipokines and thus the fat tissue compartment exert a regulatory function on the immune system. Our own group described the pro-inflammatory function of the adipokine leptin within intestinal inflammation in a variety of animal models. Following-up on this initial work, the aim was to reveal stimuli and mechanisms involved in the activation of the fat tissue compartment and the subsequent release of adipokines and other mediators paralleled by the infiltration of immune cells. This review will summarize the current literature on the possible role of the mesenteric fat tissue in intestinal inflammation with a focus on Crohn’s disease (CD). CD is of particular interest in this context since the transmural intestinal inflammation has been associated with a characteristic hypertrophy of the mesenteric fat, a phenomenon called “creeping fat.” The review will address three consecutive questions: (i) What is inducing adipocyte activation, (ii) which factors are released after activation and what are the consequences for the local fat tissue compartment and infiltrating cells; (iii) do the answers generated before allow for an explanation of the role of the mesenteric fat tissue within intestinal inflammation? With this review we will provide a working model indicating a close interaction in between bacterial translocation, activation of the adipocytes, and subsequent direction of the infiltrating immune cells. In summary, the models system mesenteric fat indicates a unique way how adipocytes can directly interact with the immune system.
Collapse
Affiliation(s)
- Tassilo Kruis
- Department of Medicine I (Gastroenterology, Rheumatology, Infectious Diseases), Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Arvind Batra
- Department of Medicine I (Gastroenterology, Rheumatology, Infectious Diseases), Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Britta Siegmund
- Department of Medicine I (Gastroenterology, Rheumatology, Infectious Diseases), Charité - Universitätsmedizin Berlin , Berlin , Germany
| |
Collapse
|
21
|
Khan FF, Carpenter D, Mitchell L, Mansouri O, Black HA, Tyson J, Armour JAL. Accurate measurement of gene copy number for human alpha-defensin DEFA1A3. BMC Genomics 2013; 14:719. [PMID: 24138543 PMCID: PMC4046698 DOI: 10.1186/1471-2164-14-719] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 09/19/2013] [Indexed: 01/01/2023] Open
Abstract
Background Multi-allelic copy number variants include examples of extensive variation between individuals in the copy number of important genes, most notably genes involved in immune function. The definition of this variation, and analysis of its impact on function, has been hampered by the technical difficulty of large-scale but accurate typing of genomic copy number. The copy-variable alpha-defensin locus DEFA1A3 on human chromosome 8 commonly varies between 4 and 10 copies per diploid genome, and presents considerable challenges for accurate high-throughput typing. Results In this study, we developed two paralogue ratio tests and three allelic ratio measurements that, in combination, provide an accurate and scalable method for measurement of DEFA1A3 gene number. We combined information from different measurements in a maximum-likelihood framework which suggests that most samples can be assigned to an integer copy number with high confidence, and applied it to typing 589 unrelated European DNA samples. Typing the members of three-generation pedigrees provided further reassurance that correct integer copy numbers had been assigned. Our results have allowed us to discover that the SNP rs4300027 is strongly associated with DEFA1A3 gene copy number in European samples. Conclusions We have developed an accurate and robust method for measurement of DEFA1A3 copy number. Interrogation of rs4300027 and associated SNPs in Genome-Wide Association Study SNP data provides no evidence that alpha-defensin copy number is a strong risk factor for phenotypes such as Crohn’s disease, type I diabetes, HIV progression and multiple sclerosis. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-14-719) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John A L Armour
- School of Biology, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
22
|
Abstract
Defensins are small, multifunctional cationic peptides. They typically contain six conserved cysteines whose three intramolecular disulfides stabilize a largely β-sheet structure. This review of human α-defensins begins by describing their evolution, including their likely relationship to the Big Defensins of invertebrates, and their kinship to the β-defensin peptides of many if not all vertebrates, and the θ-defensins found in certain non-human primates. We provide a short history of the search for leukocyte-derived microbicidal molecules, emphasizing the roles played by luck (good), preconceived notions (mostly bad), and proper timing (essential). The antimicrobial, antiviral, antitoxic, and binding properties of human α-defensins are summarized. The structural features of α-defensins are described extensively and their functional contributions are assessed. The properties of HD6, an enigmatic Paneth cell α-defensin, are contrasted with those of the four myeloid α-defensins (HNP1-4) and of HD5, the other α-defensin of human Paneth cells. The review ends with a decalogue that may assist researchers or students interested in α-defensins and related aspects of neutrophil function.
Collapse
Affiliation(s)
- Robert I Lehrer
- Department of Medicine and Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1688, USA.
| | | |
Collapse
|
23
|
Ahn JK, Cha HS, Lee J, Jeon CH, Koh EM. Correlation of DEFA1 gene copy number variation with intestinal involvement in Behcet's disease. J Korean Med Sci 2012; 27:107-9. [PMID: 22219625 PMCID: PMC3247767 DOI: 10.3346/jkms.2012.27.1.107] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 11/02/2011] [Indexed: 01/15/2023] Open
Abstract
Copy number variation has been associated with various autoimmune diseases. We investigated the copy number (CN) of the DEFA1 gene encoding α-defensin-1 in samples from Korean individuals with Behcet's disease (BD) compared to healthy controls (HC). We recruited 55 BD patients and 35 HC. A duplex Taqman® real-time PCR assay was used to assess CN. Most samples (31.1%) had a CN of 5 with a mean CN of 5.4 ± 0.2. There was no significant difference in the CN of the DEFA1 gene between BD patients and HC. A high DEFA1 gene CN was significantly associated with intestinal involvement in BD patients. Variable DEFA1 gene CNs were observed in both BD patients and HC and a high DEFA1 gene CN may be associated with susceptibility to intestinal involvement in BD.
Collapse
Affiliation(s)
- Joong Kyong Ahn
- Department of Internal Medicine, Kangbuk Samsung Hospital, Seoul, Korea
| | - Hoon-Suk Cha
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jaejoon Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chan Hong Jeon
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Eun-Mi Koh
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|