1
|
Hamza M, Wang S, Liu Y, Li K, Zhu M, Chen L. Unraveling the potential of bioengineered microbiome-based strategies to enhance cancer immunotherapy. Microbiol Res 2025; 296:128156. [PMID: 40158322 DOI: 10.1016/j.micres.2025.128156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
The human microbiome plays a pivotal role in the field of cancer immunotherapy. The microbial communities that inhabit the gastrointestinal tract, as well as the bacterial populations within tumors, have been identified as key modulators of therapeutic outcomes, affecting immune responses and reprogramming the tumor microenvironment. Advances in synthetic biology have made it possible to reprogram and engineer these microorganisms to improve antitumor activity, enhance T-cell function, and enable targeted delivery of therapies to neoplasms. This review discusses the role of the microbiome in modulating both innate and adaptive immune mechanisms-ranging from the initiation of cytokine production and antigen presentation to the regulation of immune checkpoints-and discusses how these mechanisms improve the efficacy of immune checkpoint inhibitors. We highlight significant advances with bioengineered strains like Escherichia coli Nissle 1917, Lactococcus lactis, Bifidobacterium, and Bacteroides, which have shown promising antitumor efficacy in preclinical models. These engineered microorganisms not only efficiently colonize tumor tissues but also help overcome resistance to standard therapies by reprogramming the local immune environment. Nevertheless, several challenges remain, such as the requirement for genetic stability, effective tumor colonization, and the control of potential safety issues. In the future, the ongoing development of genetic engineering tools and the optimization of bacterial delivery systems are crucial for the translation of microbiome-based therapies into the clinic. This review highlights the potential of bioengineered microbiota as an innovative, personalized approach in cancer immunotherapy, bringing hope for more effective and personalized treatment options for patients with advanced malignancies.
Collapse
Affiliation(s)
- Muhammad Hamza
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China
| | - Yike Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Kun Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Motao Zhu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lin Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Khani N, Bonyadi M, Soleimani RA, Raziabad RH, Ahmadi M, Homayouni-Rad A. Postbiotics: As a Promising Tools in the Treatment of Celiac Disease. Probiotics Antimicrob Proteins 2025; 17:1513-1522. [PMID: 39673575 DOI: 10.1007/s12602-024-10416-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2024] [Indexed: 12/16/2024]
Abstract
Celiac disease (CD) can be considered an autoimmune problem, a disease caused by gluten sensitivity in the body. Gluten is found in foods such as barley, wheat, and rye. This ailment manifests in individuals with hereditary susceptibility and under the sway of environmental stimulants, counting, in addition to gluten and intestinal microbiota dysbiosis. Currently, the only recommended treatment for this condition is to follow a gluten-free diet for life. In this review, we scrutinized the studies of recent years that focused on the use of postbiotics in vitro and in vivo in CD. The investigation of postbiotics in CD could be intriguing to observe their diverse effects on several pathways. This study highlights the definitions, characteristics, and safety issues of postbiotics and their possible biological role in the prevention and treatment of CD, as well as their application in the food and drug industry.
Collapse
Affiliation(s)
- Nader Khani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Bonyadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Roya Abedi Soleimani
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Hazrati Raziabad
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Ahmadi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Cai J, Zhang W, Zhu S, Lin T, Mao R, Wu N, Zhang P, Kang M. Gut and Intratumoral microbiota: Key to lung Cancer development and immunotherapy. Int Immunopharmacol 2025; 156:114677. [PMID: 40279944 DOI: 10.1016/j.intimp.2025.114677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/25/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
Lung cancer is a common malignant tumor worldwide with high incidence and mortality rates. Previous studies have claimed that the microbial community plays an integral role in the development and progression of lung cancer. Emerging evidence reveals that gut flora plays a key role in cancer formation and evolution by participating in mechanisms such as metabolism, regulation of inflammation and immune response. Not only the gut flora, but also the presence of intratumoral microbiota may influence lung cancer progression through multiple mechanisms. These research advances suggest that intestinal flora and intratumoral microbiota may not only serve as potential biomarkers for lung cancer, but may also be targets for therapy. However, current studies on both in lung cancer are still limited. Given this, this study aimed to systematically review the latest findings on the major bacterial species of the intestinal flora and their possible protective or harmful roles in the formation, progression, and metastasis of lung cancer. In addition, we analyzed the potential mechanisms by which the intratumoral microbiota affected lung cancer and elaborated on the potential roles of the gut flora and its metabolites, as well as the intratumoral microbiota, in modulating the efficacy of immunotherapy in lung cancer.
Collapse
Affiliation(s)
- Junlan Cai
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Weiguang Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Shujing Zhu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Tianxin Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Renyan Mao
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ningzi Wu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China; Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China.
| |
Collapse
|
4
|
Ramesh A, Srinivasan D, Subbarayan R, Chauhan A, Krishnamoorthy L, Kumar J, Krishnan M, Shrestha R. Enhancing Colorectal Cancer Treatment: The Role of Bifidobacterium in Modulating Gut Immunity and Mitigating Capecitabine-Induced Toxicity. Mol Nutr Food Res 2025; 69:e70023. [PMID: 40109200 DOI: 10.1002/mnfr.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related mortality globally and presents significant challenges in treatment and patient care. Capecitabine, a widely used prodrug of 5-fluorouracil (5-FU), offers targeted delivery with reduced systemic toxicity compared to traditional chemotherapies. However, capacitabine is associated with adverse effects, such as hand-foot syndrome, gastrointestinal issues, and mucositis. Emerging evidence suggests that probiotics, particularly Bifidobacterium, play a pivotal role in gut microbiota modulation, promoting anti-inflammatory cytokines and short-chain fatty acids, such as butyrate, which possess both intestinal protective and anti-cancer properties. In this review, we explored the potential of Bifidobacterium to improve chemotherapy outcomes by mitigating inflammation and enhancing mucosal immunity in CRC patients. Furthermore, we demonstrated in silico approaches, including molecular docking and protein-protein interaction analysis, for Bifidobacterium and Toll-like receptor 2 (TLR-2), a key mediator of intestinal immunity. Docking results revealed strong binding affinity, suggesting the activation of anti-inflammatory pathways. Notably, this interaction enhanced IL-10 production while reducing pro-inflammatory cytokines, such as IL-6 and TNF-α, fostering gut homeostasis and mitigating chronic inflammation, a key driver of CRC progression. Therefore, future research should focus on personalized probiotics and validating their synergy with chemotherapy and immunotherapy to improve CRC treatment outcomes.
Collapse
Affiliation(s)
- Aswathi Ramesh
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Dhasarathdev Srinivasan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Rajasekaran Subbarayan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Ankush Chauhan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Loganathan Krishnamoorthy
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Jeevan Kumar
- Department of Biomedical Sciences, The Apollo University, Chittoor, Andhra Pradesh, India
| | - Madhan Krishnan
- Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Rupendra Shrestha
- Department of Natural and Applied Sciences, Nexus Institute of Research and Innovation (NIRI), Lalitpur, Nepal
| |
Collapse
|
5
|
Kowalski MK, Domżał-Magrowska D, Małecka-Wojciesko E. Celiac Disease-Narrative Review on Progress in Celiac Disease. Foods 2025; 14:959. [PMID: 40231983 PMCID: PMC11941517 DOI: 10.3390/foods14060959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/28/2025] [Accepted: 03/09/2025] [Indexed: 04/16/2025] Open
Abstract
Celiac disease is defined as a systemic immunological disorder caused by gluten (gliadin and other prolamin) in genetically predisposed individuals, who present with a variety of gluten-dependent symptoms, specific antibodies, the presence of the HLA DQ2 and DQ8 histocompatibility antigen, and enteropathy. Its prevalence, depending on the studied population and methodology, is estimated at 0.75-1.6% of the general population. During the complex immune reaction it induces, most cells involved in inflammatory processes are activated, which leads to the gradual atrophy of intestinal villi and the proliferation of enterocytes within intestinal crypts. The pathogenesis of celiac disease is extremely complicated and is still the subject of research. According to the current diagnostic guidelines, the following criteria should be taken into account: clinical symptoms (intestinal and extraintestinal), the presence of antibodies against tissue transglutaminase in the IgA class, the level of total IgA, and the presence of typical histological changes in duodenal biopsies. Diet-resistant celiac disease is one of the most important clinical challenges, causing serious complications. Currently, the basic method for treating celiac disease is an elimination diet (i.e., the exclusion of products that may contain gluten from the diet), however, new therapeutic strategies are still being sought, mainly based on supplementation with exogenous endopeptidases, modification of the immune response, and the use of zonulin inhibitors and transglutaminase 2 inhibitors. Clinical trials of new drugs are ongoing. The gradually expanding knowledge about the pathogenesis of celiac disease may allow for the development of new therapeutic strategies for both patients with a mild disease course, as well as those that are diet-resistant.
Collapse
Affiliation(s)
| | | | - Ewa Małecka-Wojciesko
- Department of Digestive Tract Diseases, Norbert Barlicki University Hospital, 90-153 Lodz, Poland; (M.K.K.); (D.D.-M.)
| |
Collapse
|
6
|
Bettocchi S, Comotti A, Elli M, De Cosmi V, Berti C, Alberti I, Mazzocchi A, Rosazza C, Agostoni C, Milani GP. Probiotics and Fever Duration in Children With Upper Respiratory Tract Infections: A Randomized Clinical Trial. JAMA Netw Open 2025; 8:e250669. [PMID: 40085083 PMCID: PMC11909606 DOI: 10.1001/jamanetworkopen.2025.0669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/08/2025] [Indexed: 03/16/2025] Open
Abstract
Importance Upper respiratory tract infections (URTIs) are prevalent in children, prompting frequent health care consultations, especially among those with fever. Probiotics show potential as an adjuvant treatment for URTIs, but evidence in children is limited. Objective To evaluate the efficacy of a probiotic mixture containing Bifidobacterium breve M-16V, Bifidobacterium lactis HN019, and Lactobacillus rhamnosus HN001 in shortening fever duration among children with URTIs. Design, Setting, and Participants This randomized clinical trial was conducted between November 19, 2021, and June 20, 2023, at the pediatric emergency department of the Ca' Granda Ospedale Maggiore Policlinico in Milan, Italy. Patients between 28 days and 4 years of age with a fever (≥38.5 °C) and URTI were eligible. Exclusion criteria included recent probiotic use, chronic autoimmune diseases, immunosuppressive treatment, and requirement for hospitalization. Randomization was computer generated and assigned participants to either the intervention (probiotics) or control (placebo) group. Participants, parents or caregivers, and investigators were masked to the group assignments. The primary analysis followed the intention-to-treat approach. Interventions The probiotic group received daily single dose of 0.5 mL probiotic mixture containing Bifidobacterium breve M-16V, Bifidobacterium lactis HN019, and Lactobacillus rhamnosus HN001 for 14 days. The placebo group received daily single dose of 0.5 mL placebo for 14 days. Main Outcomes and Measures The primary outcome was fever duration, defined as the number of days between the first and the last days with fever. Results Of the 128 patients enrolled (69 males [54%]; mean [SD] age 2.5 [1.3] years), 65 (51%) were randomly assigned to receive placebo and 63 (49%) to receive probiotics. The median (IQR) fever duration was shorter in the probiotic group than the placebo group (median [IQR], 3 [2-4] days vs 5 [4-6] days; adjusted risk ratio, 0.64; 95% CI, 0.51-0.80). Few mild adverse events were reported and did not significantly differ between the probiotic and placebo groups, including constipation (6 [16%] and 6 [12%]; P = .80) and abdominal pain (3 [8%] and 2 [4%]; P = .65). Conclusions and Relevance In this randomized clinical trial, administering a probiotic mixture reduced fever duration by 2 days compared with placebo, with no meaningful safety concerns. The probiotic mixture under investigation could be an effective adjuvant for shortening fever duration in children with URTIs. Trial Registration ClinicalTrials.gov Identifier: NCT06052540.
Collapse
Affiliation(s)
- Silvia Bettocchi
- Pediatric Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Comotti
- Occupational Health Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marina Elli
- Company AAT–Advanced Analytical Technologies Srl, Fiorenzuola d’Arda, Italy
| | - Valentina De Cosmi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Cristiana Berti
- Pediatric Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ilaria Alberti
- Pediatric Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Mazzocchi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Chiara Rosazza
- Pediatric Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Carlo Agostoni
- Pediatric Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Gregorio Paolo Milani
- Pediatric Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Kowalski MK, Domżał-Magrowska D, Szcześniak P, Bulska M, Orszulak-Michalak D, Małecka-Wojciesko E. Gluten-Free Diet Adherence Evaluation in Adults with Long-Standing Celiac Disease. Foods 2024; 14:76. [PMID: 39796366 PMCID: PMC11720135 DOI: 10.3390/foods14010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Celiac disease (CD) is an autoimmune disease that results from the interaction of genetic, immune, and environmental factors. According to the 2020 European Society for Pediatric Gastroenterology Hepatology and Nutrition (ESPGHAN) guidelines, an elimination diet (i.e., excluding products that may contain gluten) is the basic method of treating celiac disease. Following a gluten-free diet is extremely problematic, and patients often make unconscious deviations from the diet. According to the current Oslo definitions for celiac disease, depending on the clinical picture and adequate tests, several forms of celiac disease have been identified: typical, atypical, asymptomatic, potential, and refractory. OBJECTIVE The aim of the study was to assess the frequency of conscious diet mistakes and unconscious deviations from a gluten-free diet in a group of patients with long-standing celiac disease and their impact on the frequency of typical and atypical symptoms. METHODS The study included 57 people diagnosed with celiac disease between 1980 and 2010. After verifying the history of the disease according to the ESPGHAN guidelines from 2020, we excluded 19 patients who had Marsh grade 1 at the time of diagnosis or those without HLA DQ2 or DQ8 haplotypes detected. After verification, the study included 38 patients, 30 women and 8 men, with a verified diagnosis of typical celiac disease. The effectiveness of the gluten-free diet was assessed in all participants. Blood was collected to determine IgA anti-tissue transglutaminase II antibodies (anti-tTG) and IgG antibodies against deamidated gliadin peptides by ELISA. All survey participants provided data concerning current gastrointestinal and systemic symptoms, bowel habits, comorbidities, dietary habits, physical activity, and socioeconomic conditions. RESULTS A total of 25 patients (65.78%) declared strict adherence to the gluten-free diet. However, in this group, seven (18.4%) patients had significantly increased levels of anti-tTG antibodies (mean 82.3 RU/mL ± 78.9 SD at N < 20 RU/mL). Among the patients who consciously made dietary mistakes, six (46.2%) demonstrated increased levels of anti-tTG antibodies. The analysis did not reveal any difference between the frequency of intestinal and extraintestinal symptoms in patients making dietary mistakes and following the gluten-free diet. CONCLUSIONS More than half of celiac patients unconsciously or consciously make dietary mistakes, which indicates an urgent need to increase their general knowledge of CD and the appropriate diet. Regardless of whether the gluten-free diet is followed, both typical and atypical symptoms of the disease have been observed among celiac patients.
Collapse
Affiliation(s)
- Marek K. Kowalski
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-153 Lodz, Poland; (M.K.K.); (D.D.-M.)
| | - Danuta Domżał-Magrowska
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-153 Lodz, Poland; (M.K.K.); (D.D.-M.)
| | - Piotr Szcześniak
- Department of Biopharmacy, Medical University of Lodz, 90-151 Lodz, Poland; (P.S.); (M.B.); (D.O.-M.)
| | - Magdalena Bulska
- Department of Biopharmacy, Medical University of Lodz, 90-151 Lodz, Poland; (P.S.); (M.B.); (D.O.-M.)
| | - Daria Orszulak-Michalak
- Department of Biopharmacy, Medical University of Lodz, 90-151 Lodz, Poland; (P.S.); (M.B.); (D.O.-M.)
| | - Ewa Małecka-Wojciesko
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-153 Lodz, Poland; (M.K.K.); (D.D.-M.)
| |
Collapse
|
8
|
Du C, Zhao Y, Shen F, Qian H. Effect of Brassica rapa L. Polysaccharide on Lewis Lung Cancer Mice by Inflammatory Regulation and Gut Microbiota Modulation. Foods 2024; 13:3704. [PMID: 39594117 PMCID: PMC11593872 DOI: 10.3390/foods13223704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related fatalities globally, related to inflammatory and gut microbiota imbalance. Brassica rapa L. polysaccharide (BP) is a functional compound, which is utilized by the gut microbiota to regulate immunity and metabolism. However, the effect of BP on lung cancer and whether it affects the "gut-lung" axis remains unclear. This study explored the intervention of BP in Lewis lung cancer (LLC) mice and its effect on the gut microbiota. The results revealed that BP reduced tumor weight and downregulated the expression of Ki67 protein. Additionally, BP reduced the content of inflammatory factors and growth factors, promoting tumor cell apoptosis and inhibiting the growth of LLC. The intervention of BP suppressed intestinal inflammation, preserved intestinal barrier integrity, and augmented the level of beneficial microbiota, such as Blautia and Bifidobacterium. Furthermore, BP significantly increased the production of short-chain fatty acids (SCFAs), particularly butyrate and propionate. A correlation analysis showed significant correlations among the gut microbiota, SCFAs, inflammatory factors, and tight junction proteins. A functional analysis indicated that BP promoted amino acid metabolism and fatty acid metabolism. These findings suggested that BP had the potential to act as prebiotics to prevent disease and improve lung cancer progression by regulating the gut microbiota.
Collapse
Affiliation(s)
- Changhui Du
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Yong Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China;
| | - Fanglin Shen
- School of Environmental Engineering, Wuxi University, Wuxi 214105, China;
| | - He Qian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| |
Collapse
|
9
|
dos Santos Pereira E, de Oliveira Raphaelli C, Massaut KB, Ribeiro JA, Soares Vitola HR, Pieniz S, Fiorentini ÂM. Probiotics: Therapeutic Strategy on the Prevention and Treatment of
Inflammatory Diseases: Obesity, Type 2 Diabetes Mellitus and Celiac
Disease. CURRENT NUTRITION & FOOD SCIENCE 2024; 20:1112-1125. [DOI: 10.2174/0115734013252358231016181809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/29/2023] [Accepted: 08/24/2023] [Indexed: 01/03/2025]
Abstract
Background:
Recent evidence demonstrates the fundamental role of the gut microbiota
in inflammatory diseases, and several mechanisms of action of probiotics in improvement of inflammatory
parameters.
Objective:
The objective of this review was to relate the consumption of probiotic bacteria and its
effects on inflammatory diseases, including obesity, type II diabetes and celiac disease.
Methods:
A search was carried out in English, between the years 2011 and 2022, for research articles
and clinical trials with humans and in vivo studies. Research showed improvement in cardiovascular
risk markers, and improvement in insulin sensitivity, lipid profile and plasma atherogenic
index, in obesity with the use of probiotics. In type II diabetes, decreased levels of fasting glucose,
glycated hemoglobin, insulin and glycemic index, and increased levels of peptide 1, superoxide
dismutase and glutathione peroxidase were observed.
Results:
In addition to cellular protection of the islets of Langerhans and positive alteration of TNF-
α and IL-1β markers. Improvement in the condition of patients with celiac disease was observed,
since the neutralization of the imbalance in serotonin levels was observed, reducing the expression
of genes of interest and also, a decrease in cytokines.
Conclusion:
Therefore, the use of probiotics should be encouraged.
Collapse
Affiliation(s)
| | | | - Khadija Bezerra Massaut
- Department of Food Science and Technology, Universidade Federal de Pelotas, Pelotas, Rs, Brazil
| | - Jardel Araújo Ribeiro
- Department of Food Science and Technology, Universidade Federal de Pelotas, Pelotas, Rs, Brazil
| | | | - Simone Pieniz
- Department of Food Science and Technology, Universidade Federal de Pelotas, Pelotas, Rs, Brazil
| | - Ângela Maria Fiorentini
- Department of Food Science and Technology, Universidade Federal de Pelotas, Pelotas, Rs, Brazil
| |
Collapse
|
10
|
Bocchio F, Mancabelli L, Milani C, Lugli GA, Tarracchini C, Longhi G, Conto FD, Turroni F, Ventura M. Compendium of Bifidobacterium-based probiotics: characteristics and therapeutic impact on human diseases. MICROBIOME RESEARCH REPORTS 2024; 4:2. [PMID: 40207278 PMCID: PMC11977362 DOI: 10.20517/mrr.2024.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 04/11/2025]
Abstract
The human microbiota, a complex community of microorganisms residing in and on the human body, plays a crucial role in maintaining health and preventing disease. Bifidobacterium species have shown remarkable therapeutic potential across a range of health conditions, thus being considered optimal probiotic bacteria. This review provides insights into the concept of probiotics and explores the impact of bifidobacteria on human health, focusing on the gastrointestinal, respiratory, skeletal, muscular, and nervous systems. It also integrates information on the available genetic bases underlying the beneficial effects of each bifidobacterial probiotic species on different aspects of human physiology. Notably, Bifidobacterium-based probiotics have proven effective in managing gastrointestinal conditions such as constipation, antibiotic-associated diarrhea, irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and Helicobacter pylori infections. These benefits are achieved by modulating the intestinal microbiota, boosting immune responses, and strengthening the gut barrier. Moreover, Bifidobacterium species have been reported to reduce respiratory infections and asthma severity. Additionally, these probiotic bacteria offer benefits for skeletal and muscular health, as evidenced by Bifidobacterium adolescentis and Bifidobacterium breve, which have shown anti-inflammatory effects and symptom relief in arthritis models, suggesting potential in treating conditions like rheumatoid arthritis. Furthermore, probiotic therapies based on bifidobacterial species have shown promising effects in alleviating anxiety and depression, reducing stress, and enhancing cognitive function. Overall, this review integrates the extensive scientific literature now available that supports the health-promoting applications of probiotic Bifidobacterium species and underscores the need for further research to confirm their clinical efficacy across different body systems.
Collapse
Affiliation(s)
- Fabiana Bocchio
- Department of Medicine and Surgery, University of Parma, Parma 43124, Italy
- Authors contributed equally
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Parma 43124, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Authors contributed equally
| | - Christian Milani
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Gabriele Andrea Lugli
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Flora De Conto
- Department of Medicine and Surgery, University of Parma, Parma 43124, Italy
| | - Francesca Turroni
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Marco Ventura
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| |
Collapse
|
11
|
Catassi G, Lener E, Grattagliano MM, Motuz S, Zavarella MA, Bibbò S, Cammarota G, Gasbarrini A, Ianiro G, Catassi C. The role of microbiome in the development of gluten-related disorders. Best Pract Res Clin Gastroenterol 2024; 72:101951. [PMID: 39645285 DOI: 10.1016/j.bpg.2024.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/07/2024] [Accepted: 09/03/2024] [Indexed: 12/09/2024]
Abstract
Gluten-related disorders (GRD) include celiac disease (CD), non celiac gluten sensitivity (NCGS) and wheat allergy (WA), conditions that are associated with the ingestion of gluten-containing food. Gut microbiota composition and function may be involved in the pathogenesis of GRD. In untreated CD the microbiota is characterized by a reduction in beneficial microbes like Lactobacillus and Bifidobacterium and an increase in pathogenic ones such as Bacteroides and E. coli. Dysbiosis is a hallmark of CD, persists across various disease stages and is only partially corrected by a gluten-free diet. NCGS patients show a different microbial profile, with a notable decrease in microbial richness, and an increase of Ruminococcaceae and decrease of Bacteroidetes and Fusobacteria. The increase of certain bacterial groups such as Clostridium and Anaerobacter, in contrast with the decline of Bacteroides and Clostridium XVIII, marks a distinctive microbial signature associated with allergic responses to food. Mechanisms linking the gut microbiota to the development of GRD include effects on the gut barrier function, microbiota-mediated immune response to gluten, and an impact of microbial metabolites on gluten digestion and tolerance. Although the gluten-free diet is the primary therapy of GRDs, treatment with probiotics may contribute to improve the natural history of these disorders, for instance by minimizing the damaging effects of gluten contamination and accelerating the catch-up growth at the beginning of the dietary treatment of CD. Additional high-quality trials are still needed to identify and standardize the use of probiotics/prebiotics in GRDs.
Collapse
Affiliation(s)
- Giulia Catassi
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome - Umberto I Hospital, Rome, Italy
| | - Elena Lener
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Maria Maddalena Grattagliano
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Sofya Motuz
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Maria Antonietta Zavarella
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Stefano Bibbò
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Carlo Catassi
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, USA.
| |
Collapse
|
12
|
Bose D. Introduction to Nutrition and Autoimmune Diseases. ADVANCES IN MEDICAL DIAGNOSIS, TREATMENT, AND CARE 2024:415-431. [DOI: 10.4018/979-8-3693-5528-2.ch015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Celiac disease is an autoimmune hereditary disorder that occurs in genetically predisposed people where the ingestion of gluten leads to damage in their small intestine. When people with celiac disease consume gluten, their body mounts an immune response that attacks the villi of small intestine, which are small finger like projections that promote nutrient absorption. A damaged villi is incapable of absorbing food properly. If left untreated, celiac disease can lead to additional serious health problems. Gluten free diet is the only option to keep the symptoms low. Recently, probiotics have acquired significant attention because of their potential benefits in a wide range of biomedical applications. Thus, administering probiotics as a plausible therapeutic measure for improving the gut health and overall quality of life of patients suffering with this disease is of notable concern. The chapter aims to examine such probiotic applications for patients suffering from celiac disease through comprehensive literature analysis with emphasis on dietary supplements and requirements.
Collapse
|
13
|
Zabłocka A, Jakubczyk D, Leszczyńska K, Pacyga-Prus K, Macała J, Górska S. Studies of the Impact of the Bifidobacterium Species on Inducible Nitric Oxide Synthase Expression and Nitric Oxide Production in Murine Macrophages of the BMDM Cell Line. Probiotics Antimicrob Proteins 2024; 16:1012-1025. [PMID: 37227688 PMCID: PMC11126500 DOI: 10.1007/s12602-023-10093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 05/26/2023]
Abstract
Bifidobacterium species are one of the most important probiotic microorganisms which are present in both, infants and adults. Nowadays, growing data describing their healthy properties arise, indicating they could act at the cellular and molecular level. However, still little is known about the specific mechanisms promoting their beneficial effects. Nitric oxide (NO), produced by inducible nitric oxide synthase (iNOS), is involved in the protective mechanisms in the gastrointestinal tract, where it can be provided by epithelial cells, macrophages, or bacteria. The present study explored whether induction of iNOS-dependent NO synthesis in macrophages stems from the cellular action of Bifidobacterium species. The ability of ten Bifidobacterium strains belonging to 3 different species (Bifidobacterium longum, Bifidobacterium adolescentis, and Bifidobacterium animalis) to activate MAP kinases, NF-κB factor, and iNOS expression in a murine bone-marrow-derived macrophages cell line was determined by Western blotting. Changes in NO production were determined by the Griess reaction. It was performed that the Bifidobacterium strains were able to induce NF-қB-dependent iNOS expression and NO production; however, the efficacy depends on the strain. The highest stimulatory activity was observed for Bifidobacterium animalis subsp. animals CCDM 366, whereas the lowest was noted for strains Bifidobacterium adolescentis CCDM 371 and Bifidobacterium longum subsp. longum CCDM 372. Both TLR2 and TLR4 receptors are involved in Bifidobacterium-induced macrophage activation and NO production. We showed that the impact of Bifidobacterium on the regulation of iNOS expression is determined by MAPK kinase activity. Using pharmaceutical inhibitors of ERK 1/2 and JNK, we confirmed that Bifidobacterium strains can activate these kinases to control iNOS mRNA expression. Concluding, the induction of iNOS and NO production may be involved in the protective mechanism of action observed for Bifidobacterium in the intestine, and the efficacy is strain-dependent.
Collapse
Affiliation(s)
- Agnieszka Zabłocka
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| | - Dominika Jakubczyk
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Katarzyna Leszczyńska
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Katarzyna Pacyga-Prus
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Józefa Macała
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Sabina Górska
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
14
|
Alba C, Carrera M, Álvarez-Calatayud G, Arroyo R, Fernández L, Rodríguez JM. Evaluation of Safety and Beneficial Health Effects of the Human-Milk Strain Bifidobacterium breve DSM32583: An Infant Pilot Trial. Nutrients 2024; 16:1134. [PMID: 38674825 PMCID: PMC11053739 DOI: 10.3390/nu16081134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Human milk promotes the growth of bifidobacteria in the infant gut. Adding bifidobacterial species to infant formula may contribute to increasing their presence in the gut of formula-fed infants. Therefore, the safety and anti-infectious effects of Bifidobacterium breve DSM32583, a breast milk isolate, were assessed in a pilot trial involving 3-month-old infants. The infants were randomly assigned to either the probiotic (PG) or the control (CG) groups. All the infants consumed the same formula, although it was supplemented with the strain (1 × 107 cfu/g of formula) in the PG. Overall, 160 infants (80 per group) finished the intervention. Infants in CG gained more weight compared to PG (p < 0.05), but the weights for age Z-scores at 6 months were within the normal distribution for this age group. The rates of infections affecting the gastrointestinal and respiratory tracts and antibiotic therapy were significantly lower in the PG. The bifidobacterial population and the level of short-chain fatty acids were higher (p < 0.05) in the fecal samples of PG infants. No adverse events related to formula consumption were observed. In conclusion, the administration of an infant formula with B. breve DSM32583 was safe and exerted potential beneficial effects on gut health.
Collapse
Affiliation(s)
- Claudio Alba
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (R.A.)
| | - Marta Carrera
- Centro de Atención Primaria Silvano, Comunidad de Madrid, 28043 Madrid, Spain;
| | | | - Rebeca Arroyo
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (R.A.)
| | - Leónides Fernández
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Juan M. Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (R.A.)
| |
Collapse
|
15
|
Abbasi A, Bazzaz S, A. Ibrahim S, Hekmatdoost A, Hosseini H, Sabahi S, Sheykhsaran E, Rahbar Saadat Y, Asghari Ozma M, Lahouty M. A Critical Review on the Gluten-Induced Enteropathy/Celiac Disease: Gluten-Targeted Dietary and Non-Dietary Therapeutic Approaches. FOOD REVIEWS INTERNATIONAL 2024; 40:883-923. [DOI: 10.1080/87559129.2023.2202405] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Amin Abbasi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Bazzaz
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, Food and Nutritional Sciences Program, College of Agriculture and Environmental Sciences, North Carolina A & T State University, Greensboro, North Carolina, USA
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Sabahi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Sheykhsaran
- Department of Medical Bacteriology and Virology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahdi Asghari Ozma
- Department of Medical Bacteriology and Virology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Lahouty
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
16
|
Zhang Y, Wu H, Fu L. A review of gluten detoxification in wheat for food applications: approaches, mechanisms, and implications. Crit Rev Food Sci Nutr 2024; 65:2100-2116. [PMID: 38470104 DOI: 10.1080/10408398.2024.2326618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
With the improved knowledge of gluten-related disorders, especially celiac disease (CD), the market of gluten-free food is growing. However, the current gluten-free diet still presents challenges in terms of nutrition, acceptability, and cost due to the absence of gluten. It is important to note that gluten-related allergies or sensitivities have different underlying causes. And individuals with mild non-celiac gluten disorder symptoms may not necessarily require the same gluten-free treatments. Scientists are actively seeking alternative solutions for these consumers. This review delves into the various strategies employed by researchers for detoxifying gluten or modifying its main protein, gliadin, including genetic treatment, transamidation and deamidation, hydrolysis, and microbial treatments. The mechanisms, constraints of these techniques, their current utilization in food items, as well as their implications for gluten-related disorders, are discussed in detail. Although there is still a gap in the application of these methods as alternative solutions in the real market, the summary provided by our review could be beneficial for peers in enriching their basic ideas and developing more applicable solutions for wheat gluten detoxification.
Collapse
Affiliation(s)
- Yue Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Haoyi Wu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Linglin Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| |
Collapse
|
17
|
Kadia BM, Allen SJ. Effect of Pre-, Pro-, and Synbiotics on Biomarkers of Systemic Inflammation in Children: A Scoping Review. Nutrients 2024; 16:336. [PMID: 38337621 PMCID: PMC10856957 DOI: 10.3390/nu16030336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Systemic inflammation plays a central role in many diseases and is, therefore, an important therapeutic target. In a scoping review, we assessed the evidence base for the anti-inflammatory effects of pre-, pro-, and synbiotics in children. Of the 1254 clinical trials published in English in Ovid Medline and Cochrane Library PubMed from January 2003 to September 2022, 29 were included in the review. In six studies of healthy children (n = 1552), one reported that fructo-oligosaccharides added to infant formula significantly reduced pro-inflammatory biomarkers, and one study of a single-strain probiotic reported both anti- and pro-inflammatory effects. No effects were seen in the remaining two single-strain studies, one multi-strain probiotic, and one synbiotic study. In 23 studies of children with diseases (n = 1550), prebiotics were tested in 3, single-strain in 16, multi-strain probiotics in 6, and synbiotics in 2 studies. Significantly reduced inflammatory biomarkers were reported in 7/10 studies of atopic/allergic conditions, 3/5 studies of autoimmune diseases, 1/2 studies of preterm infants, 1 study of overweight/obesity, 2/2 studies of severe illness, and 2/3 studies of other diseases. However, only one or two of several biomarkers were often improved; increased pro-inflammatory biomarkers occurred in five of these studies, and a probiotic increased inflammatory biomarkers in a study of newborns with congenital heart disease. The evidence base for the effects of pre-, pro-, and synbiotics on systemic inflammation in children is weak. Further research is needed to determine if anti-inflammatory effects depend on the specific pre-, pro-, and synbiotic preparations, health status, and biomarkers studied.
Collapse
Affiliation(s)
| | - Stephen John Allen
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
| |
Collapse
|
18
|
Fagbemi LO, Soldaini C, Costabile A, Kolida S, Ciacci C, Jeanes Y. Probiotic Interventions in Coeliac Disease: A Systematic Review with a Focus on Cardiovascular Risk. GASTROINTESTINAL DISORDERS 2024; 6:114-130. [DOI: 10.3390/gidisord6010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
People with coeliac disease (CD) have a higher risk of developing cardiovascular disease (CVD), potentially due to inflammation. Probiotics can influence CVD risk through several mechanisms including modifying inflammation. We performed a systematic review of probiotic interventions in people with CD. In total, 4 databases were systematically searched for studies published up to March 2023. All outcomes, inclusive of any cardiovascular risk factors, were collated and reported. We screened 8084 articles and 11 publications reporting on 7 RCTs and 2 non-RCTs met the inclusion criteria for qualitative analysis. In total, 1 RCT and both non-RCTs were considered to have a high risk of bias. There was large heterogeneity between the studies and adherence to a gluten-free diet was only measured in two studies. No specific outcomes related to cardiovascular risk were reported. Two studies reported a significant reduction on serum TNF-α in children over time after probiotic supplementation. One study reported no significant change in intestinal permeability over a 3-week intervention. Currently there is insufficient evidence to advocate a positive impact of probiotics on inflammation in CD, due, in part, to the limited data on adherence to the gluten-free diet and active disease.
Collapse
Affiliation(s)
- Lorretta Olu Fagbemi
- Centre for Integrated Research in Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - Carlo Soldaini
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, 84084 Fisciano, SA, Italy
| | - Adele Costabile
- Centre for Integrated Research in Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | | | - Carolina Ciacci
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, 84084 Fisciano, SA, Italy
| | - Yvonne Jeanes
- Centre for Integrated Research in Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| |
Collapse
|
19
|
Crepaldi M, Palo M, Maniero D, Bertin L, Savarino EV, Anderson RP, Zingone F. Emerging Pharmaceutical Therapies to Address the Inadequacy of a Gluten-Free Diet for Celiac Disease. Pharmaceuticals (Basel) 2023; 17:4. [PMID: 38275990 PMCID: PMC10821495 DOI: 10.3390/ph17010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Celiac disease (CeD) is a chronic autoimmune disorder triggered by the ingestion of gluten, affecting around 1% of the global population. It is a multifactorial disease involving both genetics and environmental factors. Nowadays, the only available treatment for CeD is a life-long gluten-free diet (GFD), which can cause a significant burden for patients, since symptoms and mucosal injury can persist despite apparent compliance with a GFD. This could also lead to psychological consequences and affect the quality of life of these patients. Thankfully, recent advances in understanding the pathogenesis of CeD and the availability of various targets have made it feasible to explore pharmaceutical treatments specific to CeD. Recently, the FDA has highlighted the unmet needs of adult patients on a GFD who experience ongoing symptoms attributed to CeD and also show persistent duodenal villous atrophy. This review will outline the limitations of a GFD, describe the targets of potential novel treatment of CeD and provide an overview of the primary clinical trials involving oral and injectable agents for a non-dietary treatment of CeD.
Collapse
Affiliation(s)
- Martina Crepaldi
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (M.C.); (M.P.); (D.M.); (L.B.); (E.V.S.)
- Gastroenterology Unit, Azienda Ospedale—Università Padova, 35128 Padua, Italy
| | - Michela Palo
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (M.C.); (M.P.); (D.M.); (L.B.); (E.V.S.)
| | - Daria Maniero
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (M.C.); (M.P.); (D.M.); (L.B.); (E.V.S.)
| | - Luisa Bertin
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (M.C.); (M.P.); (D.M.); (L.B.); (E.V.S.)
- Gastroenterology Unit, Azienda Ospedale—Università Padova, 35128 Padua, Italy
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (M.C.); (M.P.); (D.M.); (L.B.); (E.V.S.)
- Gastroenterology Unit, Azienda Ospedale—Università Padova, 35128 Padua, Italy
| | - Robert P. Anderson
- Gastroenterology Department, Mackay Base Hospital, Mackay, QLD 4740, Australia
| | - Fabiana Zingone
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (M.C.); (M.P.); (D.M.); (L.B.); (E.V.S.)
- Gastroenterology Unit, Azienda Ospedale—Università Padova, 35128 Padua, Italy
| |
Collapse
|
20
|
Luo D, Shi CY, Wei NS, Yang BY, Qin K, Liu G, Dong BQ, Qin YX, Qin XL, Chen SY, Guo XJ, Gan L, Xu RL, Li H, Li J. The potential mechanism of the progression from latent to active tuberculosis based on the intestinal microbiota alterations. Tuberculosis (Edinb) 2023; 143:102413. [PMID: 37832478 DOI: 10.1016/j.tube.2023.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/10/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
INTRODUCTION Tuberculosis (TB) poses a serious challenge to global health systems. The altered intestinal microbiota is associated with the pathogenesis of TB, but the exact links remain unclear. METHODS 16 S rDNA sequencing was performed to comprehensively detect the changes in the intestinal microbiota of feces from active TB (ATB), latent TB infection (LTBI) and healthy controls (HC). RESULTS The rarefaction curves demonstrated the sequencing results' validity. The alpha diversity was lowest in ATB, while highest in HC. Boxplot of beta diversity showed significant differences in every two groups. LDA Effect Size (LEfSe) Analysis revealed differences in probiotic bacteria like Romboutsia, Bifidobacterium and Lactobacillus in LTBI, and pro-inflammatory bacteria like R. gnavus, Streptococcus and Erysipelatoclostridium in ATB, corresponding to the cluster analysis. PICRUST2 analysis revealed the pentose phosphate pathway was active in ATB and LTBI (more active in ATB). The differences between the groups are statistically significant at the P<0.05 level. CONCLUSION Our study indicated that from LTBI to ATB, some intestinal microbiota inhibit the synthesis of interferon (INF)-γ and interleukin (IL)-17, promoting the survival and spread of Mycobacterium tuberculosis (M. tb). In addition, the metabolites secreted by intestinal microbiota and dysbiosis in intestine also have an effect on the development of LTBI to ATB.
Collapse
Affiliation(s)
- Dan Luo
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China; Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, China
| | - Chong-Yu Shi
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Nian-Sa Wei
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bo-Yi Yang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kai Qin
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gang Liu
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Bai-Qing Dong
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Yi-Xiang Qin
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiao-Ling Qin
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Shi-Yi Chen
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiao-Jing Guo
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Li Gan
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Ruo-Lan Xu
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Hai Li
- Department of Biostatistics, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China.
| | - Jing Li
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China.
| |
Collapse
|
21
|
Moawad MHE, Alkhawaldeh IM, Naswhan AJ. Efficacy of probiotics supplementation in amelioration of celiac disease symptoms and enhancement of immune system. World J Clin Cases 2023; 11:7741-7744. [DOI: 10.12998/wjcc.v11.i32.7741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Patients with celiac disease (CD) have a mucosal layer that is unable to regulate the gut microbiota, leaving the host vulnerable to dangerous infections and antigens. When compared to healthy people, this dysbiosis is marked by a decrease in intra- and intergeneric biodiversity, which demonstrates an imbalance between helpful bacteria and possibly harmful or proinflammatory species. The early gut microbiota is influenced by the genotype of newborns with the HLA-DQ2 haplotypes, and this may modify how gluten is handled in the intestinal lumen, polarize innate or adaptive immune responses, and result in glutensensitive enteropathy. The outcome of gluten digestion can vary depending on the composition of the intestinal gut bacteria and the partial conversion of gluten into peptides larger than ten amino acids in the small intestines, which can be immunogenic. In the small intestine, 114 different bacterial strains belonging to 32 different species have 27 of them exhibiting peptidolytic activity. Thus, the individual risk of developing a gluten-related illness is further influenced by microbial composition and gluten degrading capacity. The conclusion that lactobacilli and Bifidobacterium spp. may be used as a probiotic supplement in CD patients is based on their shared possession of the most extensive peptidolytic and proteolytic activity thought to be engaged in the breakdown of gluten among all potential bacterial genera present in the gut microbiota. In children with CD autoimmunity, daily oral dose of Lactobacillus. plantarum HEAL9 and Lactobacillus. paracasei 8700:2 was found to modify the peripheral immune response. Bifidobacterium. breve strains have demonstrated a beneficial effect on reducing pro-inflammatory cytokine TNF- production in CD children on gluten-free diets.
Collapse
|
22
|
Belei O, Jugănaru I, Basaca DG, Munteanu AI, Mărginean O. The Role of Intestinal Microbiota in Celiac Disease and Further Therapeutic Perspectives. Life (Basel) 2023; 13:2039. [PMID: 37895421 PMCID: PMC10608277 DOI: 10.3390/life13102039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Celiac disease (CD) is an immune-mediated enteropathy caused by exposure to gluten and related prolamins in genetically susceptible individuals. It is a complex genetic disorder with multiple contributing genes. Linkage studies have identified several genomic regions that probably contain CD susceptibility genes. The most important genetic factors are HLA-DQ2 and DQ8. Several known environmental triggers promote the onset of CD at any age after gluten introduction in individuals with a genetic background, such as viral infections and intestinal dysbiosis. Recent publications have described the interference of the intestinal microbiome in gluten metabolism, modulation of local immune reactions, and in maintaining normal gut permeability. These results have promoted further lines of research on the benefit of probiotic administration to prevent disease onset or alleviate clinical symptoms along with a gluten-free diet (GFD). The relationship between gut microbiome changes and the onset of CD is incompletely understood, still being the subject of current research. This narrative review analyzes the interplay between environmental factors, intestinal microbiome alterations, and the course of CD. Furthermore, this review sets out to discuss if modulation of intestinal microflora with pre- and probiotics along with a GFD could represent a reliable therapeutic target for celiac patients.
Collapse
Affiliation(s)
- Oana Belei
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (D.-G.B.); (A.I.M.); (O.M.)
- First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Iulius Jugănaru
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (D.-G.B.); (A.I.M.); (O.M.)
- First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Diana-Georgiana Basaca
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (D.-G.B.); (A.I.M.); (O.M.)
- First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Andrei Ioan Munteanu
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (D.-G.B.); (A.I.M.); (O.M.)
- First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Otilia Mărginean
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (D.-G.B.); (A.I.M.); (O.M.)
- First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| |
Collapse
|
23
|
Lionetti E, Dominijanni V, Iasevoli M, Cimadamore E, Acquaviva I, Gatti S, Monachesi C, Catassi G, Pino A, Faragalli A, Randazzo CL, Gesuita R, Malamisura B, Catassi C. Effects of the supplementation with a multispecies probiotic on clinical and laboratory recovery of children with newly diagnosed celiac disease: A randomized, placebo-controlled trial. Dig Liver Dis 2023; 55:1328-1337. [PMID: 37164895 DOI: 10.1016/j.dld.2023.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023]
Abstract
OBJECTIVE To evaluate the efficacy of a multispecies probiotic on clinical and laboratory recovery of children with celiac disease (CeD) at diagnosis. METHODS Children with newly diagnosed CeD entered a randomized double-blind placebo-controlled trial. A gluten-free diet (GFD) plus a multispecies probiotic or placebo were administered for 12 weeks. Growth, laboratory, and clinical parameters were recorded at enrollment, after 3 and 6 months of follow-up. RESULTS Overall, 96 children completed the study: 49 in group A (placebo) and 47 in group B (probiotic). A significant increase of BMI-Z score was found in both groups after 3 and 6 months of treatment (p < 0.001), however the increase of BMI-Z score was significantly higher and faster in Group B than in Group A. Other clinical and laboratory parameters improved in both groups after 3 and 6 months (p<0.001), but no difference was found between the groups and a comparable time trend was observed in both groups. CONCLUSIONS Treatment with a multispecies probiotic induced a higher and faster increase of BMI in children with newly diagnosed CeD. The mechanism of this positive effect remains to be elucidated.
Collapse
Affiliation(s)
- Elena Lionetti
- Division of Pediatrics and Center for Celiac Research, DISCO Department, Marche Polytechnic University, Ancona, Italy
| | - Vera Dominijanni
- Division of Pediatrics and Center for Celiac Research, DISCO Department, Marche Polytechnic University, Ancona, Italy
| | - Mario Iasevoli
- Pediatric Unit and Center for Celiac Disease - University Hospital of Salerno, Campus of Cava de' Tirreni, Italy
| | - Elisa Cimadamore
- Division of Pediatrics and Center for Celiac Research, DISCO Department, Marche Polytechnic University, Ancona, Italy
| | - Ilaria Acquaviva
- Division of Pediatrics and Center for Celiac Research, DISCO Department, Marche Polytechnic University, Ancona, Italy
| | - Simona Gatti
- Division of Pediatrics and Center for Celiac Research, DISCO Department, Marche Polytechnic University, Ancona, Italy
| | - Chiara Monachesi
- Division of Pediatrics and Center for Celiac Research, DISCO Department, Marche Polytechnic University, Ancona, Italy
| | - Giulia Catassi
- Pediatric Gastroenterology and Liver Unit, Department of Maternal and Child Health, Sapienza-University of Rome, Rome, Italy
| | - Alessandra Pino
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy; ProBioEtna S.r.l., Spin off of the University of Catania, Catania, Italy
| | - Andrea Faragalli
- Center of Epidemiology, Biostatistics and Medical Information Technology, Marche Polytechnic University, Ancona, Italy; Department of Biomedical Science and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Cinzia Lucia Randazzo
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy; ProBioEtna S.r.l., Spin off of the University of Catania, Catania, Italy
| | - Rosaria Gesuita
- Center of Epidemiology, Biostatistics and Medical Information Technology, Marche Polytechnic University, Ancona, Italy; Department of Biomedical Science and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Basilio Malamisura
- Pediatric Unit and Center for Celiac Disease - University Hospital of Salerno, Campus of Cava de' Tirreni, Italy
| | - Carlo Catassi
- Division of Pediatrics and Center for Celiac Research, DISCO Department, Marche Polytechnic University, Ancona, Italy.
| |
Collapse
|
24
|
Mozafarybazargany M, Khonsari M, Sokoty L, Ejtahed HS, Qorbani M. The effects of probiotics on gastrointestinal symptoms and microbiota in patients with celiac disease: a systematic review and meta-analysis on clinical trials. Clin Exp Med 2023; 23:2773-2788. [PMID: 36609792 DOI: 10.1007/s10238-022-00987-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/30/2022] [Indexed: 01/08/2023]
Abstract
Gluten-free diet (GFD) is the most effective method to manage celiac disease (CD). Many patients do not reach the complete symptom alleviation, even by strict GFD. Recent studies have reported inconsistent results regarding the beneficial benefits of taking probiotics. Therefore, we aimed to evaluate the effects of probiotics on gastrointestinal (GI) symptoms and the possible underlying causes in CD and celiac disease autoimmunity (CDA) patients. Databases, including PubMed, Scopus, Embase, Web of Science and Google Scholar, were searched for clinical trials published until July 2022 about assessing the effects of probiotics or synbiotics on CD or CDA patients. We collected data on GI symptoms, CD markers, inflammatory and immune responses, adverse events, and gut microbiota. A random effect meta-analysis was used to estimate the pooled standardized mean difference (SMD) and confidence interval (CI). We screened 7234 articles, of which 14 were included in the qualitative analysis and 5 in the quantitative analysis. Probiotics might alleviate GI symptoms, especially in the highly symptomatic patients, and improve immune response in CD and CDA patients. Results of the meta-analysis showed that probiotics increased the abundance of Bifidobacterium (SMD: 0.72, 95%CI (0.13, 1.30) and Lactobacillus (SMD: 0.49, 95%CI (0.18, 0.80) as compared with placebo. Probiotics did not increase the adverse events compared to the placebo. Probiotics might alleviate GI symptoms and immune response and improve dysbiosis in CD and CDA patients. However, high-quality clinical trials are needed to increase the level of evidence. Also, the most suitable combination of probiotics is yet to find.
Collapse
Affiliation(s)
| | - Mohammadian Khonsari
- Social Determinants of Health Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Leily Sokoty
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mostafa Qorbani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Saviano A, Petruzziello C, Brigida M, Morabito Loprete MR, Savioli G, Migneco A, Ojetti V. Gut Microbiota Alteration and Its Modulation with Probiotics in Celiac Disease. Biomedicines 2023; 11:2638. [PMID: 37893012 PMCID: PMC10603901 DOI: 10.3390/biomedicines11102638] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 10/29/2023] Open
Abstract
Celiac disease (CD) is a chronic inflammation of the small intestine triggered by gluten ingestion in genetically predisposed people. Recent literature studies highlight the possible role of the gut microbiota in the pathogenesis of this disease. The gut microbiota is a complex community of microorganisms that can interact with the innate and adaptative immune systems. A condition of dysbiosis, which refers to an alteration in the composition and function of the human gut microbiota, can lead to a dysregulated immune response. This condition may contribute to triggering gluten intolerance, favoring the development and/or progression of CD in genetically susceptible patients. Interestingly, studies on children and adults with CD showed a different microbiome profile in fecal samples, with a different degree of "activity" for the disease. From this point of view, our review aimed to collect and discuss modern evidence about the alteration of the gut microbiota and its modulation with probiotics, with possible future indications in the management of patients affected by CD.
Collapse
Affiliation(s)
- Angela Saviano
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (A.S.); (A.M.)
| | - Carmine Petruzziello
- Department of Emergency Medicine, Ospedale San Carlo di Nancy, GVM Care and Research, 00165 Rome, Italy
| | - Mattia Brigida
- Gastroenterology Unit, Policlinico Universitario Tor Vergata, 00133 Rome, Italy
| | - Maria Rita Morabito Loprete
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (A.S.); (A.M.)
| | - Gabriele Savioli
- Department of Emergency Medicine, Fondazione Policlinico San Matteo University Hospital, 27100 Pavia, Italy;
| | - Alessio Migneco
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (A.S.); (A.M.)
| | - Veronica Ojetti
- Department of Emergency Medicine-Fondazione Policlinico Universitario A. Gemelli, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
26
|
Li T, Feng Y, Wang C, Shi T, Abudurexiti A, Zhang M, Gao F. Assessment of causal associations among gut microbiota, metabolites, and celiac disease: a bidirectional Mendelian randomization study. Front Microbiol 2023; 14:1087622. [PMID: 37250054 PMCID: PMC10213403 DOI: 10.3389/fmicb.2023.1087622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND A growing number of studies have implicated that gut microbial abundance and metabolite concentration alterations are associated with celiac disease (CD). However, the causal relationship underlying these associations is unclear. Here, we used Mendelian randomization (MR) to reveal the causal effect of gut microbiota and metabolites on CD. METHODS Genome-wide association study (GWAS) summary-level data for gut microbiota, metabolites, and CD were extracted from published GWASs. Causal bacterial taxa and metabolites for CD were determined by two-sample MR analyses. The robustness of the results was assessed with sensitivity analyses. Finally, reverse causality was investigated with a reverse MR analysis. RESULTS Genetically, increased genus Bifidobacterium was potentially associated with higher CD risk (odds ratio [OR] = 1.447, 95% confidence interval [CI]: 1.054-1.988, p = 0.022) while phylum Lentisphaerae (OR = 0.798, 95% CI: 0.648-0.983, p = 0.034) and genus Coprobacter (OR = 0.683, 95% CI: 0.531-0.880, p = 0.003) were related to lower CD risk. Moreover, there were suggestive associations between CD and the following seven metabolites: 1-oleoylglycerophosphoethanolamine, 1-palmitoylglycerophosphoethanolamine, 1,6-anhydroglucose, phenylacetylglutamine, tryptophan betaine, 10-undecenoate, and tyrosine. Sensitivity analyses deemed the results reliable without pleiotropy. CONCLUSION We investigated the causal relationships between gut microbiota, metabolites, and CD with two-sample MR. Our findings suggest several novel potential therapeutic targets for CD treatment. Further understanding of the underlying mechanism may provide insights into CD pathogenesis.
Collapse
Affiliation(s)
- Ting Li
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Yan Feng
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Chun Wang
- Department of Pathology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Tian Shi
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Adilai Abudurexiti
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Mengxia Zhang
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Feng Gao
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, Xinjiang, China
| |
Collapse
|
27
|
Probiotics for the Management of Pediatric Gastrointestinal Disorders: Position Paper of the ESPGHAN Special Interest Group on Gut Microbiota and Modifications. J Pediatr Gastroenterol Nutr 2023; 76:232-247. [PMID: 36219218 DOI: 10.1097/mpg.0000000000003633] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Probiotics, defined as live microorganisms that, when administered in adequate amounts, confer a health benefit on the host, are widely used despite uncertainty regarding their efficacy and discordant recommendations about their use. The European Society for Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) Special Interest Group on Gut Microbiota and Modifications provides updated recommendations for the use of probiotics for the management of selected pediatric gastrointestinal disorders. METHODS All systematic reviews and/or meta-analyses, as well as subsequently published randomized controlled trials (RCTs) (until December 2021), that compared the use of probiotics in all delivery vehicles and formulations, at any dose, with no probiotic (ie, placebo or no treatment), were eligible for inclusion. The recommendations were formulated only if at least 2 RCTs on a similar well-defined probiotic strain were available. The modified Delphi process was used to establish consensus on the recommendations. RESULTS Recommendations for the use of specific probiotic strains were made for the management of acute gastroenteritis, prevention of antibiotic-associated diarrhea, nosocomial diarrhea and necrotizing enterocolitis, management of Helicobacter pylori infection, and management of functional abdominal pain disorders and infant colic. CONCLUSIONS Despite evidence to support the use of specific probiotics in some clinical situations, further studies confirming the effect(s) and defining the type, dose, and timing of probiotics are still often required. The use of probiotics with no documented health benefits should be discouraged.
Collapse
|
28
|
Defeudis G, Massari MC, Terrana G, Coppola L, Napoli N, Migliaccio S. Gluten-Free Diet and Metabolic Syndrome: Could Be a Not Benevolent Encounter? Nutrients 2023; 15:nu15030627. [PMID: 36771334 PMCID: PMC9921299 DOI: 10.3390/nu15030627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023] Open
Abstract
Celiac disease is a rising disorder and is becoming frequently diagnosed in recent years. To date, the only available treatment is the gluten-free diet (GFD). The role of gluten on components of metabolic syndrome and on related inflammatory response is still unclear due to controversial results. In recent years, scientific focus on this topic has been growing up, in particular regarding the role of the GFD on glycometabolic parameters and diabetes. In addition, studies on the remaining components showed discordant results, which was likely due to heterogeneous and large celiac disease populations and to the lack of prospective studies. Furthermore, knowledge about the role of the GFD on inflammatory cytokines and the relationship among vitamin D and celiac disease, metabolic syndrome (MS) and GFD is needed. In this narrative review, we provided evidence regarding the role of the GFD on glycometabolic parameters, cholesterol, triglycerides, waist circumference, blood pressure and inflammatory cascade, also evaluating the role of vitamin D, trying to summarize whether this nutritional pattern may be a value-added for subjects with dysmetabolic conditions. Finally, due to the limited findings and very low-certainty evidence, predominantly based on observational studies, the real effects of a GFD on different components of MS, however, are unclear; nevertheless, an improvement in HDL levels has been reported, although data on glycemic levels are discordant.
Collapse
Affiliation(s)
- Giuseppe Defeudis
- Department of Movement, Human and Health Sciences, University Foro Italico of Rome, 00135 Rome, Italy
- Correspondence: or (G.D.); (S.M.)
| | - Maria Chiara Massari
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Giovanni Terrana
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Lucia Coppola
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Nicola Napoli
- Unit of Endocrinology and Diabetes, Department of Medicine, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Silvia Migliaccio
- Department of Movement, Human and Health Sciences, University Foro Italico of Rome, 00135 Rome, Italy
- Correspondence: or (G.D.); (S.M.)
| |
Collapse
|
29
|
Bozzi Cionci N, Reggio M, Baffoni L, Di Gioia D. Probiotic Administration for the Prevention and Treatment of Gastrointestinal, Metabolic and Neurological Disorders. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2023:219-250. [DOI: 10.1007/978-3-031-19564-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
30
|
Chaykin A, Odintsova` E, Nedorubov A. Celiac Disease: Disease Models in Understanding Pathogenesis and Search for Therapy. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.11024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Celiac disease is a complex polygenic systemic disorder caused by dietary gluten exposure that selectively occurs in genetically susceptible people. The potential celiac disease is defined by the presence of celiac disease-specific antibodies and compatible human leukocyte antigen but without histological abnormalities in duodenal biopsies. At present, the only treatment is lifelong adherence to a gluten-free diet. Despite its effectiveness, the diet is difficult to maintain due to its cost, availability of gluten-free foods, and hidden gluten. The need to develop non-dietary treatment methods is widely recognized, but this is prevented by the absence of a pathophysiologically relevant preclinical model. Nonetheless, in vitro and in vivo models have made it possible to investigate the mechanisms of the disease and develop new treatment approaches: The use of foods with neutralized gluten, microbiota correction, cocktails of specific endoproteinase, polymer gluten binders, specific inhibitors of transglutaminases and inflammatory cytokines, and a vaccine based on allergen-specific therapy.
Collapse
|
31
|
Berryman MA, Milletich PL, Petrone JR, Roesch LF, Ilonen J, Triplett EW, Ludvigsson J. Autoimmune-associated genetics impact probiotic colonization of the infant gut. J Autoimmun 2022; 133:102943. [PMID: 36356550 DOI: 10.1016/j.jaut.2022.102943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/16/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022]
Abstract
To exemplify autoimmune-associated genetic influence on the colonization of bacteria frequently used in probiotics, microbial composition of stool from 1326 one-year-old infants was analyzed in a prospective general-population cohort, All Babies In Southeast Sweden (ABIS). We show that an individual's HLA haplotype composition has a significant impact on which common Bifidobacterium strains thrive in colonizing the gut. The effect HLA has on the gut microbiome can be more clearly observed when considered in terms of allelic dosage. HLA DR1-DQ5 showed the most significant and most prominent effect on increased Bifidobacterium relative abundance. Therefore, HLA DR1-DQ5 is proposed to act as a protective haplotype in many individuals. Protection-associated HLA haplotypes are more likely to influence the promotion of specific bifidobacteria. In addition, strain-level differences are correlated with colonization proficiency in the gut depending on HLA haplotype makeup. These results demonstrate that HLA genetics should be considered when designing effective probiotics, particularly for those at high genetic risk for autoimmune diseases.
Collapse
Affiliation(s)
- Meghan A Berryman
- Triplett Laboratory, Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Patricia L Milletich
- Triplett Laboratory, Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Joseph R Petrone
- Triplett Laboratory, Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Luiz Fw Roesch
- Roesch Laboratory, Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Eric W Triplett
- Triplett Laboratory, Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA.
| | - Johnny Ludvigsson
- Crown Princess Victoria's Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
32
|
Dargenio VN, Castellaneta S, Panico S, Papagni ME, Dargenio C, Schettini F, Francavilla R, Cristofori F. Probiotics and gastrointestinal diseases. Minerva Pediatr (Torino) 2022; 74:703-723. [PMID: 36315413 DOI: 10.23736/s2724-5276.22.07031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
During the past decades, scientists have discovered the intimate role of the gut microbiome in human health, and since then, several papers have been published to investigate if the use of biotics (probiotics, prebiotics, synbiotics, and postbiotics) may have a beneficial impact on human health both in treatment and prevention. We now ask ourselves whether we have reached the finish line or just a new starting point, as the evidence supporting the use of biotics in several conditions still needs a lot of work. Many questions remain unanswered today because the evidence differs depending on the indication, used strain, and amount and duration of administration. Herein we will summarize the evidence on probiotics in some gastrointestinal diseases such as infantile colic, functional abdominal pain disorders, celiac disease, acute gastroenteritis, inflammatory bowel disease, and Helicobacter pylori infection.
Collapse
Affiliation(s)
- Vanessa N Dargenio
- Section of Pediatrics, Interdisciplinary Department of Medicine, Giovanni XXIII Children's Hospital, University of Bari Aldo Moro, Bari, Italy
| | - Stefania Castellaneta
- Section of Pediatrics, Interdisciplinary Department of Medicine, Giovanni XXIII Children's Hospital, University of Bari Aldo Moro, Bari, Italy
| | - Serena Panico
- Section of Pediatrics, Interdisciplinary Department of Medicine, Giovanni XXIII Children's Hospital, University of Bari Aldo Moro, Bari, Italy
| | - Maria E Papagni
- Section of Pediatrics, Interdisciplinary Department of Medicine, Giovanni XXIII Children's Hospital, University of Bari Aldo Moro, Bari, Italy
| | - Costantino Dargenio
- Section of Pediatrics, Interdisciplinary Department of Medicine, Giovanni XXIII Children's Hospital, University of Bari Aldo Moro, Bari, Italy
| | - Federico Schettini
- Neonatology and Neonatal Intensive Care Unit, University of Bari Aldo Moro, Bari, Italy
| | - Ruggiero Francavilla
- Section of Pediatrics, Interdisciplinary Department of Medicine, Giovanni XXIII Children's Hospital, University of Bari Aldo Moro, Bari, Italy -
| | - Fernanda Cristofori
- Section of Pediatrics, Interdisciplinary Department of Medicine, Giovanni XXIII Children's Hospital, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
33
|
Novel Drug Therapeutics in Celiac Disease: A Pipeline Review. Drugs 2022; 82:1515-1526. [PMID: 36251239 DOI: 10.1007/s40265-022-01784-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 11/03/2022]
Abstract
Celiac disease (CeD) is a chronic, autoimmune systemic disorder triggered by the ingestion of gluten, a protein found in foods such as wheat, rye, and barley. The only effective treatment for CeD is complete removal of gluten from the diet. A strict gluten-free diet (GFD) results in symptomatic, serologic, and histologic remission in most patients. However, GFD may fail to induce clinical or histologic improvement and some patients may alternatively have difficulty strictly adhering to the GFD for other reasons. Despite this, there are currently no FDA-approved drugs for the treatment of CeD. The complex pathogenic process of CeD is becoming increasingly studied and better understood, enabling the identification of various targets for future therapies. Mechanisms under evaluation include probiotics, digestion of peptides, gluten sensitization, tight junction modulation, deamidation, and immune targets. Multiple investigational drugs are in the pipeline, and several drug candidates have entered late-phase clinical trials. Indeed, current and future studies are needed to target specific etiological mechanisms and provide an alternative to GFD alone. This review provides a broad overview of the various investigative treatment approaches for CeD, summarizing the latest progress in the pipeline.
Collapse
|
34
|
Zoghi S, Abbasi A, Heravi FS, Somi MH, Nikniaz Z, Moaddab SY, Ebrahimzadeh Leylabadlo H. The gut microbiota and celiac disease: Pathophysiology, current perspective and new therapeutic approaches. Crit Rev Food Sci Nutr 2022; 64:2176-2196. [PMID: 36154539 DOI: 10.1080/10408398.2022.2121262] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Celiac disease (CD) as a chronic gluten-sensitive intestinal condition, mainly affects genetically susceptible hosts. The primary determinants of CD have been identified as environmental and genetic variables. The development of CD is significantly influenced by environmental factors, including the gut microbiome. Therefore, gut microbiome re-programming-based therapies using probiotics, prebiotics, postbiotics, gluten-free diet, and fecal microbiota transplantation have shown promising results in the modification of the gut microbiome. Due to the importance and paucity of information regarding the CD pathophysiology, in this review, we have covered the association between CD development and gut microbiota, the effects of infectious agents, particularly the recent Covid-19 infection in CD patients, and the efficacy of potential therapeutic approaches in the CD have been discussed. Hence, scientific literature indicates that the diverse biological functions of the gut microbiota against immunomodulatory responses have made microbiome-based therapy an alternative therapeutic paradigm to ameliorate the symptoms of CD and quality of life. However, the exact potential of microbiota-based techniques that aims to quantitatively and qualitatively alter the gut microbiota to be used in the treatment and ameliorate the symptoms of CD will be determined with further research in the future.
Collapse
Affiliation(s)
- Sevda Zoghi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Nikniaz
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Yaghoub Moaddab
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
35
|
Klonarakis M, Andrews CN, Raman M, Panaccione R, Ma C. Review article: therapeutic targets for the pharmacologic management of coeliac disease-the future beyond a gluten-free diet. Aliment Pharmacol Ther 2022; 55:1277-1296. [PMID: 35229332 DOI: 10.1111/apt.16846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/03/2021] [Accepted: 02/13/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Coeliac disease (CeD) is an immune-mediated small bowel enteropathy resulting from dietary gluten exposure. Presently, the only effective treatment is adoption of a gluten-free diet (GFD), although strict adherence is challenging to maintain, and inadvertent gluten exposures are inevitable for most patients. Hence, there is substantial interest in drug development in CeD and multiple novel therapies are under investigation. AIMS To review existing and upcoming clinical trial programmes for pharmacologic agents for CeD. METHODS A narrative review was performed, informed by a search of MEDLINE, Embase, the Cochrane CENTRAL Library and clinicaltrials.gov. RESULTS We summarise the pathophysiology of CeD and the specific steps that are potentially amenable to pharmacologic treatment. We evaluate the evidence supporting existing and future drug targets, including trials of peptidases, gluten sequestrants, tight junction regulators, anti-transglutaminase 2 therapies, immune tolerizing agents, advanced biologics and small molecules, and microbiome-targeted strategies. We highlight unique considerations for conducting CeD trials, including identifying appropriate study populations, assessing results in the context of a gluten challenge, and interpreting CeD-specific clinical and histologic outcomes. Understanding these factors is crucial for accurately appraising the evidence. Finally, we outline what the future of CeD therapy may hold with the introduction of pharmacotherapies. CONCLUSIONS There is a need for pharmacologic options for CeD, either used adjunctively with a GFD for accidental or intentional gluten exposures or for refractory disease. Multiple promising agents are in development, and these trials are likely to lead to approvals for the first generation of pharmacologic agents for CeD within the next 5 years.
Collapse
Affiliation(s)
| | - Christopher N Andrews
- Division of Gastroenterology & Hepatology, University of Calgary, Calgary, Alberta, Canada
| | - Maitreyi Raman
- Division of Gastroenterology & Hepatology, University of Calgary, Calgary, Alberta, Canada.,Alberta's Collaboration of Excellence for Nutrition in Digestive Diseases, Calgary, Alberta, Canada
| | - Remo Panaccione
- Division of Gastroenterology & Hepatology, University of Calgary, Calgary, Alberta, Canada
| | - Christopher Ma
- Division of Gastroenterology & Hepatology, University of Calgary, Calgary, Alberta, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
36
|
Han X, Zhou X, Pei Z, Stanton C, Ross RP, Zhao J, Zhang H, Yang B, Chen W. Characterization of CRISPR-Cas systems in Bifidobacterium breve. Microb Genom 2022; 8. [PMID: 35451949 PMCID: PMC9453068 DOI: 10.1099/mgen.0.000812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein (Cas) system is an important adaptive immune system for bacteria to resist foreign DNA infection, which has been widely used in genotyping and gene editing. To provide a theoretical basis for the application of the CRISPR-Cas system in Bifidobacterium breve, the occurrence and diversity of CRISPR-Cas systems were analysed in 150 B. breve strains. Specifically, 47 % (71/150) of B. breve genomes possessed the CRISPR-Cas system, and type I-C CRISPR-Cas system was the most widely distributed among those strains. The spacer sequences present in B. breve can be used as a genotyping marker. Additionally, the phage assembly-related proteins were important targets of the type I-C CRISPR-Cas system in B. breve, and the protospacer adjacent motif sequences were further characterized in B. breve type I-C system as 5'-TTC-3'. All these results might provide a molecular basis for the development of endogenous genome editing tools in B. breve.
Collapse
Affiliation(s)
- Xiao Han
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Xingya Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Zhangming Pei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Catherine Stanton
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, PR China.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Co., Cork, Ireland
| | - R Paul Ross
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, PR China.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, PR China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, PR China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, PR China.,International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, PR China
| |
Collapse
|
37
|
Ali B, Khan AR. Efficacy of Probiotics in Management of Celiac Disease. Cureus 2022; 14:e22031. [PMID: 35340497 PMCID: PMC8912170 DOI: 10.7759/cureus.22031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 11/05/2022] Open
|
38
|
Xu Q, Ni JJ, Han BX, Yan SS, Wei XT, Feng GJ, Zhang H, Zhang L, Li B, Pei YF. Causal Relationship Between Gut Microbiota and Autoimmune Diseases: A Two-Sample Mendelian Randomization Study. Front Immunol 2022; 12:746998. [PMID: 35140703 PMCID: PMC8819003 DOI: 10.3389/fimmu.2021.746998] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background Growing evidence has shown that alterations in gut microbiota composition are associated with multiple autoimmune diseases (ADs). However, it is unclear whether these associations reflect a causal relationship. Objective To reveal the causal association between gut microbiota and AD, we conducted a two-sample Mendelian randomization (MR) analysis. Materials and Methods We assessed genome-wide association study (GWAS) summary statistics for gut microbiota and six common ADs, namely, systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis, type 1 diabetes (T1D), and celiac disease (CeD), from published GWASs. Two-sample MR analyses were first performed to identify causal bacterial taxa for ADs in discovery samples. Significant bacterial taxa were further replicated in independent replication outcome samples. A series of sensitivity analyses was performed to validate the robustness of the results. Finally, a reverse MR analysis was performed to evaluate the possibility of reverse causation. Results Combining the results from the discovery and replication stages, we identified one causal bacterial genus, Bifidobacterium. A higher relative abundance of the Bifidobacterium genus was associated with a higher risk of T1D [odds ratio (OR): 1.605; 95% CI, 1.339-1.922; PFDR = 4.19 × 10-7] and CeD (OR: 1.401; 95% CI, 1.139-1.722; PFDR = 2.03 × 10-3), respectively. Further sensitivity analyses validated the robustness of the above associations. The results of reverse MR analysis showed no evidence of reverse causality from T1D and CeD to the Bifidobacterium genus. Conclusion This study implied a causal relationship between the Bifidobacterium genus and T1D and CeD, thus providing novel insights into the gut microbiota-mediated development mechanism of ADs.
Collapse
Affiliation(s)
- Qian Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Jing-Jing Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Bai-Xue Han
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Shan-Shan Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Xin-Tong Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Gui-Juan Feng
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Hong Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Bin Li
- Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Affiliated Wujiang Hospital of Nantong University, Suzhou, China
| | - Yu-Fang Pei
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
39
|
Chen J, Chen X, Ho CL. Recent Development of Probiotic Bifidobacteria for Treating Human Diseases. Front Bioeng Biotechnol 2022; 9:770248. [PMID: 35004640 PMCID: PMC8727868 DOI: 10.3389/fbioe.2021.770248] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Bifidobacterium is a non-spore-forming, Gram-positive, anaerobic probiotic actinobacterium and commonly found in the gut of infants and the uterine region of pregnant mothers. Like all probiotics, Bifidobacteria confer health benefits on the host when administered in adequate amounts, showing multifaceted probiotic effects. Examples include B. bifidum, B. breve, and B. longum, common Bifidobacterium strains employed to prevent and treat gastrointestinal disorders, including intestinal infections and cancers. Herein, we review the latest development in probiotic Bifidobacteria research, including studies on the therapeutic impact of Bifidobacterial species on human health and recent efforts in engineering Bifidobacterium. This review article would provide readers with a wholesome understanding of Bifidobacteria and its potentials to improve human health.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Xinyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Chun Loong Ho
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| |
Collapse
|
40
|
Singh A, Kaur H, Midha V, Sood A. Microorganisms in the Pathogenesis and Management of Celiac Disease (CeD). ROLE OF MICROORGANISMS IN PATHOGENESIS AND MANAGEMENT OF AUTOIMMUNE DISEASES 2022:287-307. [DOI: 10.1007/978-981-19-4800-8_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
41
|
Pyle S. Human Gut Microbiota and the Influence of Probiotics, Prebiotics, and Micronutrients. COMPREHENSIVE GUT MICROBIOTA 2022:271-288. [DOI: 10.1016/b978-0-12-819265-8.00076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
42
|
Xie J, Yuan Y, Tan H, Bai Y, Zheng Q, Mao L, Wu Y, Wang L, Da W, Ye Q, Zhang S, Wang J, Yin W, Bian Y, Ma W, Zhang L, Zhang R, Yu H, Guo Y. The combination of living Bifidobacterium, Lactobacillus, and Streptococcus improves social ranking and relieves anxiety-like behaviors in competitive mice in a social dominance tube test. Brain Behav 2022; 12:e2453. [PMID: 34878231 PMCID: PMC8785616 DOI: 10.1002/brb3.2453] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/03/2021] [Accepted: 11/06/2021] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Social rank has a profound influence on the behavior and health of humans and animals. METHODS To explore the effect of a combination of living Bifidobacterium, Lactobacillus and Streptococcus (CLB) on anxiety- and depression-like behaviors and social rank, mice were subjected to a social dominance tube test (SDTT). The behaviors, rank, gut microbiota, and expression of inflammatory cytokines and brain-derived neurotrophic factor (BDNF) in the hippocampus were measured. RESULTS The results indicated that CLB improved the SDTT ranking score of the losers and alleviated anxiety-like behaviors of the winners. CLB decreased the level of Desulfovibrio and augmented the level of Mollicutes in the feces, increased BDNF content, and reduced the level of tumor necrosis factor-α in the hippocampus. CONCLUSION These findings indicated that CLB may be used for the treatment of anxiety and improvement of the rank score via regulation of gut microbiota and anti-inflammatory effects.
Collapse
Affiliation(s)
- Jianping Xie
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China.,School of Pharmaceutical Science, Department of Zoology & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, P. R. China.,Library, Yunnan Minzu University, Kunming, Yunnan, P. R. China
| | - Yun Yuan
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Heng Tan
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Yufan Bai
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Qingyue Zheng
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Lin Mao
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Yushan Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Ling Wang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Wenhui Da
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Qingyan Ye
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Suting Zhang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Jing Wang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Wenyao Yin
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Yujing Bian
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Wenjie Ma
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Lanchun Zhang
- School of Pharmaceutical Science, Department of Zoology & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Rongping Zhang
- School of Pharmaceutical Science, Department of Zoology & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, P. R. China.,School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resources, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, P. R. China
| | - Haofei Yu
- School of Pharmaceutical Science, Department of Zoology & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Ying Guo
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, P. R. China
| |
Collapse
|
43
|
Piccioni A, Cicchinelli S, Valletta F, De Luca G, Longhitano Y, Candelli M, Ojetti V, Sardeo F, Navarra S, Covino M, Franceschi F. Gut Microbiota and Autoimmune Diseases: A Charming Real World Together with Probiotics. Curr Med Chem 2022; 29:3147-3159. [PMID: 34551690 DOI: 10.2174/0929867328666210922161913] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/28/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The role of gut microbiota in human disease is fascinating for hundreds of researchers worldwide. Many works have highlighted that gut microbiota modulates the immune system and that its disruption can trigger autoimmune and inflammatory immune-mediated diseases. Probiotics are able to positively modify microbiota composition. OBJECTIVE The aim of this review is to report the most important findings regarding the effects of probiotics administration in the most common autoimmune disease and inflammatory immune-mediated diseases. METHODS Literature research was performed in PubMed, Google Scholar, and Medline, as well as in specific journal websites using the keywords: "autoimmunity", "microbiota", and "probiotics". The article selection has been made independently by three authors, and controversies have been solved by a fourth researcher. Only English-language articles were included and preference was given to clinical trials, meta-analysis, and case series. After the review process, 68 articles have been considered. RESULTS Relying on this evidence, many studies have investigated the potential of probiotics in restoring gut eubiosis, thus affecting pathogenesis, clinical manifestations, and course of these pathologies. Even in the light of few and sometimes contradictory studies, physicians should start to consider these preliminary findings when approaching patients suffering from autoimmune disease. After an accurate case-by-case evaluation of potential candidates, probiotics might be introduced besides the standard therapeutic plan as supportive measures.
Collapse
Affiliation(s)
- Andrea Piccioni
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Sara Cicchinelli
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Federico Valletta
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giulio De Luca
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Yaroslava Longhitano
- Department of Internal Medicine, University of Genoa - Dietetics and Clinical Nutrition Unit, IRCCS Polyclinic Hospital San Martino, 16132 Genoa, Italy
| | - Marcello Candelli
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Veronica Ojetti
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesco Sardeo
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Simone Navarra
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marcello Covino
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesco Franceschi
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
44
|
Krupa-Kozak U, Drabińska N. Gut Microbiota and A Gluten-Free Diet. COMPREHENSIVE GUT MICROBIOTA 2022:243-255. [DOI: 10.1016/b978-0-12-819265-8.00036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
45
|
Shirazinia R, Golabchifar AA, Fazeli MR. Efficacy of probiotics for managing infantile colic due to their anti-inflammatory properties: a meta-analysis and systematic review. Clin Exp Pediatr 2021; 64:642-651. [PMID: 33848417 PMCID: PMC8650819 DOI: 10.3345/cep.2020.01676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/06/2021] [Accepted: 03/29/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Infantile colic (IC) is excessive crying in otherwise healthy children. Despite vast research efforts, its etiology remains unknown. PURPOSE Most treatments for IC carry various side effects. The collection of evidence may inform researchers of new strategies for the management and treatment of IC as well as new clues for understanding its pathogenesis. This review and meta-analysis aimed to evaluate the efficacy and possible mechanisms of probiotics for mananaging IC. METHODS Ten papers met the study inclusion and exclusion criteria, and the meta-analysis was conducted using Review Manager (RevMan) software and a random-effects model. RESULTS This meta-analysis revealed that probiotics are effective for treating infantile colic, while the review showed that this efficacy may be due to their anti-inflammatory effects. CONCLUSION Probiotics may be an important treatment option for managing infantile colic due to their anti-inflammatory properties.
Collapse
Affiliation(s)
- Reza Shirazinia
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Akbar Golabchifar
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Reza Fazeli
- Pharmaceutical Quality Assurance Research Center, The institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Conte M, Porpora M, Nigro F, Nigro R, Budelli AL, Barone MV, Nanayakkara M. Pro-Pre and Postbiotic in Celiac Disease. APPLIED SCIENCES 2021; 11:8185. [DOI: 10.3390/app11178185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Celiac Disease (CD) is an autoimmune disease characterized by inflammation of the intestinal mucosa due to an immune response to wheat gliadins. It presents in subjects with genetic susceptibility (HLA-DQ2/DQ8 positivity and non-HLA genes) and under the influence of environmental triggers, such as viral infections and intestinal microbiota dysbiosis. The only treatment currently available in CD is a gluten-free diet for life. Despite this, the intestinal dysbiosis that is recorded in celiac subjects persists, even with adherence to dietary therapy. In this review, we have analyzed the literature over the past several decades, which have focused on the use of pro-, pre- and post-biotics in vitro and in vivo in CD. The study of probiotics and their products in CD could be interesting for observing their various effects on several different pathways, including anti-inflammatory properties.
Collapse
Affiliation(s)
- Mariangela Conte
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Monia Porpora
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Federica Nigro
- School of Engineering, Niccoló Cusano University, 00166 Rome, Italy
- I.T.P. Innovation and Technology Provider S.r.l., Via Bisignano a Chiaia 68, 80121 Naples, Italy
| | - Roberto Nigro
- DICMAPI, University of Naples Federico II, 80125 Naples, Italy
| | - Andrea Luigi Budelli
- School of Engineering, Niccoló Cusano University, 00166 Rome, Italy
- DICMAPI, University of Naples Federico II, 80125 Naples, Italy
| | - M. Vittoria Barone
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Merlin Nanayakkara
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
47
|
Jedwab CF, Roston BCDMB, Toge ABFDS, Echeverria IF, Tavares GOG, Alvares MA, Rullo VEV, de Oliveira MRM. The role of probiotics in the immune response and intestinal microbiota of children with celiac disease: a systematic review. REVISTA PAULISTA DE PEDIATRIA : ORGAO OFICIAL DA SOCIEDADE DE PEDIATRIA DE SAO PAULO 2021; 40:e2020447. [PMID: 34495279 PMCID: PMC8432160 DOI: 10.1590/1984-0462/2022/40/2020447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/02/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To evaluate changes in peripheral immunological response (decrease in blood proinflammatory cytokines) and fecal microbiota (especially Bacteroidetes and Firmicutes) after administration of probiotics in children with celiac disease on a gluten-free diet. DATA SOURCE The databases MEDLINE, LILACS, Springer and SciELO were used for this review, with the descriptors "celiac disease AND probiotics". At the end of the search, 168 articles were retrieved, four of which were included in the final qualitative synthesis, having as inclusion criteria randomized clinical trials and pediatric population (1-19 years) and, as exclusion criteria, interventions other than probiotics, studies with patients with other diseases associated with celiac disease, or patients who did not meet the diagnostic criteria. All elected studies were published until September 2020, without language restriction, with patients receiving strains of Bifidobacterium breve or B. longum and on a gluten-free diet. DATA SYNTHESIS The studies show that the administration of probiotics along with a gluten-free diet, can approximate the fecal microbiota of celiac patients to typical conditions of healthy individuals, by restoring the abundance of some microbial communities that characterize the typical physiological condition. In addition, the administration of probiotics can reduce serum proinflammatory cytokines (mainly TNF-alpha). CONCLUSIONS Despite the positive correlation between probiotics and fecal microbiota/serological markers in pediatric patients with celiac disease, we emphasize the need for future multicentric studies that should include a larger number of patients and a longer follow up period.
Collapse
|
48
|
Elsouri K, Arboleda V, Heiser S, Kesselman MM, Demory Beckler M. Microbiome in Rheumatoid Arthritis and Celiac Disease: A Friend or Foe. Cureus 2021; 13:e15543. [PMID: 34277168 PMCID: PMC8269990 DOI: 10.7759/cureus.15543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022] Open
Abstract
Rheumatoid arthritis (RA) and celiac disease (CD) are both autoimmune diseases with increasing global prevalence. These two diseases have been connected based on similar HLA mutations, serological markers, rheumatological, and gastrointestinal manifestations. In this review, we discuss the role of the oral and gut microbiome in the development and progression of RA and CD. Here, we highlight similar microbial dysbiosis and how these alterations in composition can lead to worsening disease severity in both CD and RA. Additionally, we analyze the role of probiotics in regulating the microbiome and improving symptoms associated with RA and CD.
Collapse
Affiliation(s)
- Kawther Elsouri
- Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Vania Arboleda
- Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Samantha Heiser
- Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Marc M Kesselman
- Rheumatology, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| | - Michelle Demory Beckler
- Microbiology and Immunology, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| |
Collapse
|
49
|
Leonard MM, Valitutti F, Karathia H, Pujolassos M, Kenyon V, Fanelli B, Troisi J, Subramanian P, Camhi S, Colucci A, Serena G, Cucchiara S, Trovato CM, Malamisura B, Francavilla R, Elli L, Hasan NA, Zomorrodi AR, Colwell R, Fasano A. Microbiome signatures of progression toward celiac disease onset in at-risk children in a longitudinal prospective cohort study. Proc Natl Acad Sci U S A 2021; 118:e2020322118. [PMID: 34253606 PMCID: PMC8307711 DOI: 10.1073/pnas.2020322118] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Other than exposure to gluten and genetic compatibility, the gut microbiome has been suggested to be involved in celiac disease (CD) pathogenesis by mediating interactions between gluten/environmental factors and the host immune system. However, to establish disease progression markers, it is essential to assess alterations in the gut microbiota before disease onset. Here, a prospective metagenomic analysis of the gut microbiota of infants at risk of CD was done to track shifts in the microbiota before CD development. We performed cross-sectional and longitudinal analyses of gut microbiota, functional pathways, and metabolites, starting from 18 mo before CD onset, in 10 infants who developed CD and 10 matched nonaffected infants. Cross-sectional analysis at CD onset identified altered abundance of six microbial strains and several metabolites between cases and controls but no change in microbial species or pathway abundance. Conversely, results of longitudinal analysis revealed several microbial species/strains/pathways/metabolites occurring in increased abundance and detected before CD onset. These had previously been linked to autoimmune and inflammatory conditions (e.g., Dialister invisus, Parabacteroides sp., Lachnospiraceae, tryptophan metabolism, and metabolites serine and threonine). Others occurred in decreased abundance before CD onset and are known to have anti-inflammatory effects (e.g., Streptococcus thermophilus, Faecalibacterium prausnitzii, and Clostridium clostridioforme). Additionally, we uncovered previously unreported microbes/pathways/metabolites (e.g., Porphyromonas sp., high mannose-type N-glycan biosynthesis, and serine) that point to CD-specific biomarkers. Our study establishes a road map for prospective longitudinal study designs to better understand the role of gut microbiota in disease pathogenesis and therapeutic targets to reestablish tolerance and/or prevent autoimmunity.
Collapse
Affiliation(s)
- Maureen M Leonard
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA 02114
- Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA 02129
- Celiac Research Program, Harvard Medical School, Boston, MA 02114
| | - Francesco Valitutti
- European Biomedical Research Institute of Salerno, 84125 Salerno, Italy
- Pediatric Unit, Maternal and Child Health Department, Azienda Ospedaliera Universitaria San Giovanni di Dio e Ruggi d'Aragona, 84125 Salerno, Italy
| | | | | | - Victoria Kenyon
- Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA 02129
- Celiac Research Program, Harvard Medical School, Boston, MA 02114
| | | | - Jacopo Troisi
- European Biomedical Research Institute of Salerno, 84125 Salerno, Italy
- Theoreo srl, University of Salerno, 20851 Salerno, Italy
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84090 Salerno, Italy
| | | | - Stephanie Camhi
- Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA 02129
- Celiac Research Program, Harvard Medical School, Boston, MA 02114
| | - Angelo Colucci
- Theoreo srl, University of Salerno, 20851 Salerno, Italy
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84090 Salerno, Italy
| | - Gloria Serena
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA 02114
- Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA 02129
- Celiac Research Program, Harvard Medical School, Boston, MA 02114
| | | | | | - Basilio Malamisura
- Pediatric Unit, Maternal and Child Health Department, Azienda Ospedaliera Universitaria San Giovanni di Dio e Ruggi d'Aragona, 00185 Salerno, Italy
| | | | - Luca Elli
- Center for Prevention and Diagnosis of Celiac Disease, Fondazione Department and University Hospital (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, 70126 Milan, Italy
| | | | - Ali R Zomorrodi
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA 02114
- Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA 02129
- Celiac Research Program, Harvard Medical School, Boston, MA 02114
| | - Rita Colwell
- CosmosID Inc., Rockville, MD 84100;
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20122
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA 02114;
- Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA 02129
- Celiac Research Program, Harvard Medical School, Boston, MA 02114
- European Biomedical Research Institute of Salerno, 84125 Salerno, Italy
| |
Collapse
|
50
|
Ashaolu TJ, Fernández-Tomé S. Gut mucosal and adipose tissues as health targets of the immunomodulatory mechanisms of probiotics. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|