1
|
Genchi VA, Palma G, Sorice GP, D'Oria R, Caccioppoli C, Marrano N, Biondi G, Caruso I, Cignarelli A, Natalicchio A, Laviola L, Giorgino F, Perrini S. Pharmacological modulation of adaptive thermogenesis: new clues for obesity management? J Endocrinol Invest 2023; 46:2213-2236. [PMID: 37378828 PMCID: PMC10558388 DOI: 10.1007/s40618-023-02125-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Adaptive thermogenesis represents the main mechanism through which the body generates heat in response to external stimuli, a phenomenon that includes shivering and non-shivering thermogenesis. The non-shivering thermogenesis is mainly exploited by adipose tissue characterized by a brown aspect, which specializes in energy dissipation. A decreased amount of brown adipose tissue has been observed in ageing and chronic illnesses such as obesity, a worldwide health problem characterized by dysfunctional adipose tissue expansion and associated cardiometabolic complications. In the last decades, the discovery of a trans-differentiation mechanism ("browning") within white adipose tissue depots, leading to the generation of brown-like cells, allowed to explore new natural and synthetic compounds able to favour this process and thus enhance thermogenesis with the aim of counteracting obesity. Based on recent findings, brown adipose tissue-activating agents could represent another option in addition to appetite inhibitors and inhibitors of nutrient absorption for obesity treatment. PURPOSE This review investigates the main molecules involved in the physiological (e.g. incretin hormones) and pharmacological (e.g. β3-adrenergic receptors agonists, thyroid receptor agonists, farnesoid X receptor agonists, glucagon-like peptide-1, and glucagon receptor agonists) modulation of adaptive thermogenesis and the signalling mechanisms involved.
Collapse
Affiliation(s)
- V A Genchi
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - G Palma
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - G P Sorice
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - R D'Oria
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - C Caccioppoli
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - N Marrano
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - G Biondi
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - I Caruso
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - A Cignarelli
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - A Natalicchio
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - L Laviola
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - F Giorgino
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy.
| | - S Perrini
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| |
Collapse
|
2
|
Lu L, Jiang YX, Liu XX, Jin JM, Gu WJ, Luan X, Guan YY, Zhang LJ. FXR agonist GW4064 enhances anti-PD-L1 immunotherapy in colorectal cancer. Oncoimmunology 2023; 12:2217024. [PMID: 37261088 PMCID: PMC10228418 DOI: 10.1080/2162402x.2023.2217024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
Colorectal cancer (CRC) is one of the top three malignant tumors in terms of morbidity, and the limited efficacy of existing therapies urges the discovery of potential treatment strategies. Immunotherapy gradually becomes a promising cancer treatment method in recent decades; however, less than 10% of CRC patients could really benefit from immunotherapy. It is pressing to explore the potential combination therapy to improve the immunotherapy efficacy in CRC patients. It is reported that Farnesoid X receptor (FXR) is deficiency in CRC and associated with immunity. Herein, we found that GW4064, a FXR agonist, could induce apoptosis, block cell cycle, and mediate immunogenic cell death (ICD) of CRC cells in vitro. Disappointingly, GW4064 could not suppress the growth of CRC tumors in vivo. Further studies revealed that GW4064 upregulated PD-L1 expression in CRC cells via activating FXR and MAPK signaling pathways. Gratifyingly, the combination of PD-L1 antibody with GW4064 exhibited excellent anti-tumor effects in CT26 xenograft models and increased CD8+ T cells infiltration, with 33% tumor bearing mice cured. This paper illustrates the potential mechanisms of GW4064 to upregulate PD-L1 expression in CRC cells and provides important data to support the combination therapy of PD-L1 immune checkpoint blockade with FXR agonist for CRC patients.
Collapse
Affiliation(s)
- Lu Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yi-Xin Jiang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Xia Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin-Mei Jin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Jie Gu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying-Yun Guan
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Li-Jun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Yu D, Lu Z, Wang R, Xiang Y, Li H, Lu J, Zhang L, Chen H, Li W, Luan X, Chen L. FXR agonists for colorectal and liver cancers, as a stand-alone or in combination therapy. Biochem Pharmacol 2023; 212:115570. [PMID: 37119860 DOI: 10.1016/j.bcp.2023.115570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023]
Abstract
Farnesoid X receptor (FXR, NR1H4) is generally considered as a tumor suppressor of colorectal and liver cancers. The interaction between FXR, bile acids (BAs) and gut microbiota is closely associated with an increased risk of colorectal and liver cancers. Increasing evidence shows that FXR agonists may be potential therapeutic agents for colorectal and liver cancers. However, FXR agonists alone do not produce the desired results due to the complicated pathogenesis and single therapeutic mechanism, which suggests that effective treatments will require a multimodal approach. Based on the principle of improvingefficacy andreducingside effects, combination therapy is currently receiving considerable attention. In this review, colorectal and liver cancers are grouped together to discuss the effects of FXR agonists alone or in combination for combating the two cancers. We hope that this review will provide a theoretical basis for the clinical application of novel FXR agonists or combination with FXR agonists against colorectal and liver cancers.
Collapse
Affiliation(s)
- Danmei Yu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhou Lu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ruyu Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yusen Xiang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongtao Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
4
|
Ejam SS, Saleh RO, Catalan Opulencia MJ, Najm MA, Makhmudova A, Jalil AT, Abdelbasset WK, Al-Gazally ME, Hammid AT, Mustafa YF, Sergeevna SE, Karampoor S, Mirzaei R. Pathogenic role of 25-hydroxycholesterol in cancer development and progression. Future Oncol 2022; 18:4415-4442. [PMID: 36651359 DOI: 10.2217/fon-2022-0819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/06/2022] [Indexed: 01/19/2023] Open
Abstract
Cholesterol is an essential lipid that serves several important functions, including maintaining the homeostasis of cells, acting as a precursor to bile acid and steroid hormones and preserving the stability of membrane lipid rafts. 25-hydroxycholesterol (25-HC) is a cholesterol derivative that may be formed from cholesterol. 25-HC is a crucial component in various biological activities, including cholesterol metabolism. In recent years, growing evidence has shown that 25-HC performs a critical function in the etiology of cancer, infectious diseases and autoimmune disorders. This review will summarize the latest findings regarding 25-HC, including its biogenesis, immunomodulatory properties and role in innate/adaptive immunity, inflammation and the development of various types of cancer.
Collapse
Affiliation(s)
| | - Raed Obaid Saleh
- Department of Pharmacy, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Mazin Aa Najm
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Aziza Makhmudova
- Department of Social Sciences & Humanities, Samarkand State Medical Institute, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, 100047, Uzbekistan
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Walid Kamal Abdelbasset
- Department of Health & Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | | | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Sergushina Elena Sergeevna
- National Research Ogarev Mordovia State University, 68 Bolshevitskaya Street, Republic of Mordovia, Saransk, 430005, Russia
| | - Sajad Karampoor
- Gastrointestinal & Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom & Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
5
|
Jeon SH, Jang E, Park G, Lee Y, Jang YP, Lee KT, Inn KS, Lee JK, Lee JH. Beneficial Activities of Alisma orientale Extract in a Western Diet-Induced Murine Non-Alcoholic Steatohepatitis and Related Fibrosis Model via Regulation of the Hepatic Adiponectin and Farnesoid X Receptor Pathways. Nutrients 2022; 14:nu14030695. [PMID: 35277054 PMCID: PMC8839158 DOI: 10.3390/nu14030695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/19/2022] Open
Abstract
The hepatic adiponectin and farnesoid X receptor (FXR) signaling pathways play multiple roles in modulating lipid and glucose metabolism, reducing hepatic inflammation and fibrosis, and altering various metabolic targets for the management of non-alcoholic fatty liver disease (NAFLD). Alisma orientale (AO, Ze xie in Chinese and Taeksa in Korean) is an herbal plant whose tubers are enriched with triterpenoids, which have been reported to exhibit various bioactive properties associated with NAFLD. Here, the present study provides a preclinical evaluation of the biological functions and related signaling pathways of AO extract for the treatment of NAFLD in a Western diet (WD)-induced mouse model. The findings showed that AO extract significantly reversed serum markers (liver function, lipid profile, and glucose) and improved histological features in the liver sections of mice fed WD for 52 weeks. In addition, it also reduced hepatic expression of fibrogenic markers in liver tissue and decreased the extent of collagen-positive areas, as well as inhibited F4/80 macrophage aggregation and inflammatory cytokine secretion. The activation of adiponectin and FXR expression in hepatic tissue may be a major mechanistic signaling cascade supporting the promising role of AO in NAFLD pharmacotherapy. Collectively, our results demonstrated that AO extract improves non-alcoholic steatohepatitis (NASH) resolution, particularly with respect to NASH-related fibrosis, along with the regulation of liver enzymes, postprandial hyperglycemia, hyperlipidemia, and weight loss, probably through the modulation of the hepatic adiponectin and FXR pathways.
Collapse
Affiliation(s)
- Seung Ho Jeon
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (S.H.J.); (Y.L.)
| | - Eungyeong Jang
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
- Department of Internal Medicine, Kyung Hee University Korean Medicine Hospital, 23, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Geonha Park
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (G.P.); (Y.P.J.); (K.-T.L.)
| | - Yeongae Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (S.H.J.); (Y.L.)
| | - Young Pyo Jang
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (G.P.); (Y.P.J.); (K.-T.L.)
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Kyung-Tae Lee
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (G.P.); (Y.P.J.); (K.-T.L.)
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Kyung-Soo Inn
- Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea;
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (S.H.J.); (Y.L.)
- Correspondence: (J.K.L.); (J.-H.L.); Tel.: +82-2-961-9629 (J.K.L.); +82-2-958-9118 (J.-H.L.); Fax: +82-2-961-9580 (J.K.L.); +82-2-958-9258 (J.-H.L.)
| | - Jang-Hoon Lee
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
- Correspondence: (J.K.L.); (J.-H.L.); Tel.: +82-2-961-9629 (J.K.L.); +82-2-958-9118 (J.-H.L.); Fax: +82-2-961-9580 (J.K.L.); +82-2-958-9258 (J.-H.L.)
| |
Collapse
|
6
|
Jungwirth E, Panzitt K, Marschall H, Thallinger GG, Wagner M. Meta-analysis and Consolidation of Farnesoid X Receptor Chromatin Immunoprecipitation Sequencing Data Across Different Species and Conditions. Hepatol Commun 2021; 5:1721-1736. [PMID: 34558825 PMCID: PMC8485886 DOI: 10.1002/hep4.1749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/25/2021] [Indexed: 12/24/2022] Open
Abstract
Farnesoid X receptor (FXR) is a nuclear receptor that controls gene regulation of different metabolic pathways and represents an upcoming drug target for various liver diseases. Several data sets on genome-wide FXR binding in different species and conditions exist. We have previously reported that these data sets are heterogeneous and do not cover the full spectrum of potential FXR binding sites. Here, we report the first meta-analysis of all publicly available FXR chromatin immunoprecipitation sequencing (ChIP-seq) data sets from mouse, rat, and human across different conditions using a newly generated analysis pipeline. All publicly available single data sets were biocurated in a standardized manner and compared on every relevant level from raw reads to affected functional pathways. Individual murine data sets were then virtually merged into a single unique "FXR binding atlas" spanning all potential binding sites across various conditions. Comparison of the single biocurated data sets showed that the overlap of FXR binding sites between different species is modest and ranges from 48% (mouse-human) to 55% (mouse-rat). Moreover, in vivo data among different species are more similar than human in vivo data compared to human in vitro data. The consolidated murine global FXR binding atlas virtually increases sequencing depth and allows recovering more and novel potential binding sites and signaling pathways that were missed in the individual data sets. The FXR binding atlas is publicly searchable (https://fxratlas.tugraz.at). Conclusion: Published single FXR ChIP-seq data sets and large-scale integrated omics data sets do not cover the full spectrum of FXR binding. Combining different individual data sets and creating an "FXR super-binding atlas" enhances understanding of FXR signaling capacities across different conditions. This is important when considering the potential wide spectrum for drugs targeting FXR in liver diseases.
Collapse
Affiliation(s)
- Emilian Jungwirth
- Research Unit for Translational Nuclear Receptor ResearchDivision of Gastroenterology and HepatologyMedical University GrazGrazAustria
- Institute of Biomedical InformaticsGraz University of TechnologyGrazAustria
- OMICS Center GrazGrazAustria
- BioTechMed‐GrazGrazAustria
| | - Katrin Panzitt
- Research Unit for Translational Nuclear Receptor ResearchDivision of Gastroenterology and HepatologyMedical University GrazGrazAustria
| | - Hanns‐Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg LaboratorySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Gerhard G. Thallinger
- Institute of Biomedical InformaticsGraz University of TechnologyGrazAustria
- OMICS Center GrazGrazAustria
- BioTechMed‐GrazGrazAustria
| | - Martin Wagner
- Research Unit for Translational Nuclear Receptor ResearchDivision of Gastroenterology and HepatologyMedical University GrazGrazAustria
- OMICS Center GrazGrazAustria
- BioTechMed‐GrazGrazAustria
| |
Collapse
|
7
|
Guo J, Zheng J, Mu M, Chen Z, Xu Z, Zhao C, Yang K, Qin X, Sun X, Yu J. GW4064 enhances the chemosensitivity of colorectal cancer to oxaliplatin by inducing pyroptosis. Biochem Biophys Res Commun 2021; 548:60-66. [PMID: 33631675 DOI: 10.1016/j.bbrc.2021.02.043] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022]
Abstract
Repeated and long-term oxaliplatin therapy leads to drug resistance and severe adverse events, which limit its clinical use. These difficulties highlight the importance of identifying potent and specific drug combinations to enhance the antitumor effects of oxaliplatin. The farnesoid X receptor (FXR) deficiency in colorectal cancer (CRC) suggests that restoring FXR function might be a promising strategy for CRC treatment. A drug combination study showed that the GW4064 acted synergistically with oxaliplatin in colon cancer cells. The combination of oxaliplatin plus GW4064 inhibited cell growth and colony formation, induced apoptosis and pyroptosis in vitro, and slowed tumor growth in vivo. Mechanistically, GW4064 enhanced the chemosensitivity of cells to oxaliplatin by inducing BAX/caspase-3/GSDME-mediated pyroptosis. Furthermore, the combination of oxaliplatin and GW4064 synergistically inhibited STAT3 signaling by restoring SHP expression. Our study revealed that GW4064 could enhance the antitumor effects of oxaliplatin against CRC, which provides a novel therapeutic strategy based on a combinational approach for CRC treatment.
Collapse
Affiliation(s)
- Jing Guo
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Jianbao Zheng
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Mingchao Mu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Zilu Chen
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Zhengshui Xu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Chenye Zhao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Kui Yang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Xiao Qin
- Department of Emergency, Ankang People's Hospital, 725000, Ankang, Shaanxi, China
| | - Xuejun Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China.
| | - Junhui Yu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Lee J, Hong EM, Jung JH, Park SW, Lee SP, Koh DH, Jang HJ, Kae SH. Atorvastatin Induces FXR and CYP7A1 Activation as a Result of the Sequential Action of PPARγ/PGC-1α/HNF-4α in Hep3B Cells. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2021; 77:123-131. [PMID: 33686046 DOI: 10.4166/kjg.2020.156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 11/03/2022]
Abstract
Backgrounds/Aims PPARγ, farnesoid X receptor (FXR) and CYP7A1 are associated with solubility of bile. This study was performed to understand a mechanism and interactions of statin-induced PPARγ, PGC-1α and HNF-4α related to the statin-induced activation of FXR and CYP7A1, and verify whether the mevalonate pathway is involved in the mechanism. Methods MTT assays were performed using cultured human Hep3B cells to determine the effect of atorvastatin on the cell proliferation. Expression levels of indicated proteins were measured using Western blotting assays by inhibiting the protein expression or not. Results Atorvastatin increased expression of PPARγ, PGC-1α, HNF-4α, FXR, and CYP7A1 in Hep3B cells. PPARγ ligand of troglitazone upregulated the expression of PGC-1α, HNF-4α, FXR, and CYP7A1 in Hep3B cells. Silencing of PPARγ, PGC1α, and HNF4α using respective siRNA demonstrated that atorvastatin-induced FXR and CYP7A1 activation required sequential action of PPARγ /PGC-1α/HNF-4α. The silencing of PPARγ completely inhibited atorvastatin-induced PGC-1α expression, and the PGC1α silencing partially inhibited atorvastatin-induced PPARγ expression. The inhibition of HNF4α did not affect atorvastatin-induced PPARγ expression, but partially inhibited atorvastatin-induced PGC-1α expression. Besides, mevalonate completely reversed the effect of atorvastatin on PPARγ, PGC-1α, HNF-4α, FXR, and CYP7A1. Conclusions Atorvastatin induces FXR and CYP7A1 activation as a result of sequential action of PPARγ/PGC-1α/HNF-4α in human hepatocytes. We propose that atorvastatin enhances solubility of cholesterol in bile by simultaneously activating of FXR and CYP7A1.
Collapse
Affiliation(s)
- Jin Lee
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Dongtan Sacred Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Eun Mi Hong
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Dongtan Sacred Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Jang Han Jung
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Dongtan Sacred Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Se Woo Park
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Dongtan Sacred Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Sang Pyo Lee
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Dongtan Sacred Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Dong Hee Koh
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Dongtan Sacred Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Hyun Joo Jang
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Dongtan Sacred Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Sea Hyub Kae
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Dongtan Sacred Hospital, Hallym University College of Medicine, Hwaseong, Korea
| |
Collapse
|
9
|
Miyazaki T, Shirakami Y, Mizutani T, Maruta A, Ideta T, Kubota M, Sakai H, Ibuka T, Genovese S, Fiorito S, Taddeo VA, Epifano F, Tanaka T, Shimizu M. Novel FXR agonist nelumal A suppresses colitis and inflammation-related colorectal carcinogenesis. Sci Rep 2021; 11:492. [PMID: 33436792 PMCID: PMC7804240 DOI: 10.1038/s41598-020-79916-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
FXR is a member of the nuclear receptor superfamily and bile acids are endogenous ligands of FXR. FXR activation has recently been reported to inhibit intestinal inflammation and tumour development. This study aimed to investigate whether the novel FXR agonist nelumal A, the active compound of the plant Ligularia nelumbifolia, can prevent colitis and colorectal carcinogenesis. In a mouse colitis model, dextran sodium sulfate-induced colonic mucosal ulcer and the inflammation grade in the colon significantly reduced in mice fed diets containing nelumal A. In an azoxymethane/dextran sodium sulfate-induced mouse inflammation-related colorectal carcinogenesis model, the mice showed decreased incidence of colonic mucosal ulcers and adenocarcinomas in nelumal A-treated group. Administration of nelumal A also induced tight junctions, antioxidant enzymes, and FXR target gene expression in the intestine, while it decreased the gene expression of bile acid synthesis in the liver. These findings suggest that nelumal A effectively attenuates colonic inflammation and suppresses colitis-related carcinogenesis, presumably through reduction of bile acid synthesis and oxidative damage. This agent may be potentially useful for treatment of inflammatory bowel diseases as well as their related colorectal cancer chemoprevention.
Collapse
Affiliation(s)
- Tsuneyuki Miyazaki
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Yohei Shirakami
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Taku Mizutani
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Akinori Maruta
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takayasu Ideta
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Masaya Kubota
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hiroyasu Sakai
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takashi Ibuka
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Salvatore Genovese
- Department of Pharmacy, D'Annunzio University of Chieti-Pescara, 66100, Chieti Scalo, Italy
| | - Serena Fiorito
- Department of Pharmacy, D'Annunzio University of Chieti-Pescara, 66100, Chieti Scalo, Italy
| | - Vito Alessandro Taddeo
- Department of Pharmacy, D'Annunzio University of Chieti-Pescara, 66100, Chieti Scalo, Italy
| | - Francesco Epifano
- Department of Pharmacy, D'Annunzio University of Chieti-Pescara, 66100, Chieti Scalo, Italy
| | - Takuji Tanaka
- Department of Pathological Diagnosis, Gifu Municipal Hospital, Gifu, 500-8513, Japan
| | - Masahito Shimizu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
10
|
Jena PK, Sheng L, Nguyen M, Di Lucente J, Hu Y, Li Y, Maezawa I, Jin LW, Wan YJY. Dysregulated bile acid receptor-mediated signaling and IL-17A induction are implicated in diet-associated hepatic health and cognitive function. Biomark Res 2020; 8:59. [PMID: 33292701 PMCID: PMC7648397 DOI: 10.1186/s40364-020-00239-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chronic consumption of high sugar and high fat diet associated with liver inflammation and cognitive decline. This paper tests a hypothesis that the development and resolution of diet-induced nonalcoholic fatty liver disease (NAFLD) has an impact on neuroplasticity and cognition. METHODS C57BL/6 wild-type mice were fed with either a healthy control diet (CD) or a fructose, palmitate, and cholesterol (FPC)-enriched diet since weaning. When mice were 3-months old, FPC diet-fed mice were randomly assigned to receive either FPC-enriched diet with or without 6% inulin supplementation. At 8 months of age, all three groups of mice were euthanized followed by analysis of inflammatory signaling in the liver and brain, gut microbiota, and cecal metabolites. RESULTS Our data showed that FPC diet intake induced hepatic steatosis and inflammation in the liver and brain along with elevated RORγ and IL-17A signaling. Accompanied by microglia activation and reduced hippocampal long-term potentiation, FPC diet intake also reduced postsynaptic density-95 and brain derived neurotrophic factor, whereas inulin supplementation prevented diet-reduced neuroplasticity and the development of NAFLD. In the gut, FPC diet increased Coriobacteriaceae and Erysipelotrichaceae, which are implicated in cholesterol metabolism, and the genus Allobaculum, and inulin supplementation reduced them. Furthermore, FPC diet reduced FXR and TGR5 signaling, and inulin supplementation reversed these changes. Untargeted cecal metabolomics profiling uncovered 273 metabolites, and 104 had significant changes due to FPC diet intake or inulin supplementation. Among the top 10 most affected metabolites, FPC-fed mice had marked increase of zymosterol, a cholesterol biosynthesis metabolite, and reduced 2,8-dihydroxyquinoline, which has known benefits in reducing glucose intolerance; these changes were reversible by inulin supplementation. Additionally, the abundance of Barnesiella, Coprobacter, Clostridium XIVa, and Butyrivibrio were negatively correlated with FPC diet intake and the concentration of cecal zymosterol but positively associated with inulin supplementation, suggesting their benefits. CONCLUSION Taken together, the presented data suggest that diet alters the gut microbiota and their metabolites, including bile acids. This will subsequently affect IL-17A signaling, resulting in systemic impacts on both hepatic metabolism and cognitive function.
Collapse
Affiliation(s)
- Prasant Kumar Jena
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
- Department of Pediatrics, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Lili Sheng
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Michelle Nguyen
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Jacopo Di Lucente
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Ying Hu
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Yongchun Li
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Infectious Diseases, Nanhai Hospital, Southern Medical University, Foshan, 528200, China
| | - Izumi Maezawa
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Lee-Way Jin
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA.
| |
Collapse
|
11
|
Takada I, Makishima M. Peroxisome proliferator-activated receptor agonists and antagonists: a patent review (2014-present). Expert Opin Ther Pat 2019; 30:1-13. [PMID: 31825687 DOI: 10.1080/13543776.2020.1703952] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Peroxisome proliferator-activated receptors (PPARs), PPARα, PPARδ, and PPARγ, play an important role in the regulation of various physiological processes, specifically lipid and energy metabolism and immunity. PPARα agonists (fibrates) and PPARγ agonists (thiazolidinediones) are used for the treatment of hypertriglyceridemia and type 2 diabetes, respectively. PPARδ activation enhances mitochondrial and energy metabolism but PPARδ-acting drugs are not yet available. Many synthetic ligands for PPARs have been developed to expand their therapeutic applications.Areas covered: The authors searched recent patent activity regarding PPAR ligands. Novel PPARα agonists, PPARδ agonists, PPARγ agonists, PPARα/γ dual agonists, and PPARγ antagonists have been claimed for the treatment of metabolic disease and inflammatory disease. Methods for the combination of PPAR ligands with other drugs and expanded application of PPAR agonists for bone and neurological disease have been also claimed.Expert opinion: Novel PPAR ligands and the combination of PPAR ligands with other drugs have been claimed for the treatment of mitochondrial disease, inflammatory/autoimmune disease, neurological disease, and cancer in addition to metabolic diseases including dyslipidemia and type 2 diabetes. Selective therapeutic actions of PPAR ligands should be exploited to avoid adverse effects. More basic studies are needed to elucidate the molecular mechanisms of selective actions.
Collapse
Affiliation(s)
- Ichiro Takada
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Kattah L, Gómez A, Gutiérrez S, Puerto K, Moreno-Pallares ED, Jaramillo A, Mendivil CO. Hypercholesterolemia Due to Lipoprotein X: Case Report and Thematic Review. Clin Med Insights Endocrinol Diabetes 2019; 12:1179551419878687. [PMID: 31632171 PMCID: PMC6769215 DOI: 10.1177/1179551419878687] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022] Open
Abstract
The liver is a key organ in lipid and lipoprotein metabolism, hence hepatic diseases often manifest as lipid disturbances. Cholestatic liver diseases are frequently associated with an important increase in total cholesterol at the expense of lipoprotein X (LpX), an abnormal lipoprotein isolated and characterized in the 1960s to 1970s in patients with obstructive jaundice. Lipoprotein X is rich in phospholipids, albumin, and free cholesterol, has a density similar to low-density lipoprotein (LDL), and a size similar to very low-density lipoprotein (VLDL), which has hampered its detection through routine laboratory tests. Unlike LDL, LpX has no apoB-100, so it is not removed from circulation via the LDL receptor, and it is not clear whether or not it can be atherogenic. Although LpX was initially described in patients with cholestasis, it has also been found in patients with genetic deficiency of lecithin-cholesterol acyltransferase (LCAT), in patients who receive lipid-rich parenteral nutrition and most recently in patients with graft versus host disease of the liver. In the presence of LpX, plasma total cholesterol can rise up to 1000 mg/dL, which may lead to the development of skin xanthomas and hyperviscosity syndrome. Treatment of LpX-dependent hypercholesterolemia with conventional hypolipidemic drugs is frequently ineffective, and definitive treatment relies on correction of the underlying cause of cholestasis. Here, we present the case of a patient with LpX-dependent hypercholesterolemia in the context of primary biliary cholangitis.
Collapse
Affiliation(s)
- Laura Kattah
- Endocrinology Section, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Andrés Gómez
- Division of Gastroenterology, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | | | | | | | - Andrés Jaramillo
- Endocrinology Section, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Carlos O Mendivil
- Endocrinology Section, Fundación Santa Fe de Bogotá, Bogotá, Colombia
- School of Medicine, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
13
|
NAFLD in children: new genes, new diagnostic modalities and new drugs. Nat Rev Gastroenterol Hepatol 2019; 16:517-530. [PMID: 31278377 DOI: 10.1038/s41575-019-0169-z] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/04/2019] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has rapidly become the most common form of chronic liver disease in children and adolescents. Over the past 5 years, developments have revolutionized our understanding of the genetic factors, natural history, diagnostic modalities and therapeutic targets for this disease. New polymorphisms, such as those in PNPLA3, TM6SF2, MBOAT7 and GCKR, have been identified and used to predict the development and severity of NAFLD in both adults and children, and their interaction with environmental factors has been elucidated. Studies have demonstrated the true burden of paediatric NAFLD and its progression to end-stage liver disease in adulthood. In particular, nonalcoholic steatohepatitis can progress to advanced fibrosis and cirrhosis, emphasizing the importance of early diagnosis. Non-invasive imaging tests, such as transient elastography, will probably replace liver biopsy for the diagnosis of nonalcoholic steatohepatitis and the assessment of fibrosis severity in the near future. The therapeutic landscape is also expanding rapidly with the development of drugs that can modify liver steatosis, inflammation and fibrosis, indicating that pharmacotherapy for NAFLD will become available in the future. In this Review, we summarize current knowledge and new advances related to the pathogenesis and management of paediatric NAFLD.
Collapse
|
14
|
Kovač U, Skubic C, Bohinc L, Rozman D, Režen T. Oxysterols and Gastrointestinal Cancers Around the Clock. Front Endocrinol (Lausanne) 2019; 10:483. [PMID: 31379749 PMCID: PMC6653998 DOI: 10.3389/fendo.2019.00483] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022] Open
Abstract
This review focuses on the role of oxidized sterols in three major gastrointestinal cancers (hepatocellular carcinoma, pancreatic, and colon cancer) and how the circadian clock affects the carcinogenesis by regulating the lipid metabolism and beyond. While each field of research (cancer, oxysterols, and circadian clock) is well-studied within their specialty, little is known about the intertwining mechanisms and how these influence the disease etiology in each cancer type. Oxysterols are involved in pathology of these cancers, but final conclusions about their protective or damaging effects are elusive, since the effect depends on the type of oxysterol, concentration, and the cell type. Oxysterol concentrations, the expression of key regulators liver X receptors (LXR), farnesoid X receptor (FXR), and oxysterol-binding proteins (OSBP) family are modulated in tumors and plasma of cancer patients, exposing these proteins and selected oxysterols as new potential biomarkers and drug targets. Evidence about how cholesterol/oxysterol pathways are intertwined with circadian clock is building. Identified key contact points are different forms of retinoic acid receptor related orphan receptors (ROR) and LXRs. RORs and LXRs are both regulated by sterols/oxysterols and the circadian clock and in return also regulate the same pathways, representing a complex interplay between sterol metabolism and the clock. With this in mind, in addition to classical therapies to modulate cholesterol in gastrointestinal cancers, such as the statin therapy, the time is ripe also for therapies where time and duration of the drug application is taken as an important factor for successful therapies. The final goal is the personalized approach with chronotherapy for disease management and treatment in order to increase the positive drug effects.
Collapse
|
15
|
Fellin R, Manzato E. Lipoprotein-X fifty years after its original discovery. Nutr Metab Cardiovasc Dis 2019; 29:4-8. [PMID: 30503707 DOI: 10.1016/j.numecd.2018.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/30/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022]
Abstract
AIMS To review the formation, catabolism, and the possible atherogenic properties of Lp-X. DATA SYNTHESIS The conversion of cholesterol to bile acids is regulated by several mechanisms including cholesterol 7 alpha hydroxylase, fibroblast growth factor 19, and farnesoid X receptors. During cholestasis these mechanisms are altered and there is an accumulation of bile acids and cholesterol in plasma. The hypercholesterolemia observed in cholestasis is due to the presence of an anomalous lipoprotein called lipoprotein-X (Lp-X). Lp-X is a lipoprotein rich in phospholipid and free cholesterol present in plasma of patients with cholestasis and, with some variations, in patients with lecithin-cholesterol-acyl-transferase deficiency (LCAT), and after lipid infusion. Lp-X is formed from a bile lipoprotein moving to the blood vessels where it incorporates small quantities of triglycerides, apo-C and esterified cholesterol and becomes a "mature" Lp-X. The activity of the phosphatidilcholine canalicular transporter Mdr2 P-glycoprotein (homologous to the human ABCB4) is essential for LpX appearance, since its suppression abolishes Lp-X formation. However, the concentration of Lp-X in plasma is determined also by the degree of the cholestasis, the residual liver function, and the LCAT deficiency. The Lp-X catabolism seems to be mediated by the reticuloendothelial system and possibly the kidney. CONCLUSIONS Lp-X might be considered a defense mechanism against the toxic effect of free cholesterol in cholestasis. The frequency of cardiovascular events in patients affected by primary biliary cholangitis, in whom the Lp-X is present in high concentration, are not increased. Further studies could now clarify the remaining open questions on the role of Lp-X in the dyslipidemia of cholestasis.
Collapse
Affiliation(s)
- R Fellin
- Department of Internal Medicine, University of Ferrara, Italy
| | - E Manzato
- Department of Medicine, University of Padua, Italy.
| |
Collapse
|
16
|
Giancristofaro A, Barbosa AJM, Ammazzalorso A, Amoia P, De Filippis B, Fantacuzzi M, Giampietro L, Maccallini C, Amoroso R. Discovery of new FXR agonists based on 6-ECDCA binding properties by virtual screening and molecular docking. MEDCHEMCOMM 2018; 9:1630-1638. [PMID: 30393515 PMCID: PMC6194413 DOI: 10.1039/c8md00272j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/28/2018] [Indexed: 01/03/2023]
Abstract
FXR is a member of the nuclear receptor superfamily, which regulates the expression of various genes involved in bile acid, lipid and glucose metabolism. Targeting FXR with small molecules has been exploited to treat lipid-related disorders and diseases such as cholestasis, gallstones and hepatic disorders. In this work, we expand the existing pool of known FXR agonists using a fast hit-to-lead structure-based pharmacophore and docking screening protocol. A set of 25 molecules was selected after screening a large database of commercial chemicals, and experimental tests were carried out to demonstrate their ability to activate FXR. Three novel FXR agonists are reported, namely, one full agonist, more efficient than the endogenous ligand chenodeoxycholic acid, and two partial agonists.
Collapse
Affiliation(s)
- Antonella Giancristofaro
- Department of Pharmacy , University of Chieti "G. d'Annunzio" , via dei vestini 31 , 66100 Chieti , Italy .
| | - Arménio J M Barbosa
- Chemistry Department , Faculdade de Ciências e Tecnologia , Universidade Nova de Lisboa , 2829-516 Caparica , Portugal
| | - Alessandra Ammazzalorso
- Department of Pharmacy , University of Chieti "G. d'Annunzio" , via dei vestini 31 , 66100 Chieti , Italy .
| | - Pasquale Amoia
- Department of Pharmacy , University of Chieti "G. d'Annunzio" , via dei vestini 31 , 66100 Chieti , Italy .
| | - Barbara De Filippis
- Department of Pharmacy , University of Chieti "G. d'Annunzio" , via dei vestini 31 , 66100 Chieti , Italy .
| | - Marialuigia Fantacuzzi
- Department of Pharmacy , University of Chieti "G. d'Annunzio" , via dei vestini 31 , 66100 Chieti , Italy .
| | - Letizia Giampietro
- Department of Pharmacy , University of Chieti "G. d'Annunzio" , via dei vestini 31 , 66100 Chieti , Italy .
| | - Cristina Maccallini
- Department of Pharmacy , University of Chieti "G. d'Annunzio" , via dei vestini 31 , 66100 Chieti , Italy .
| | - Rosa Amoroso
- Department of Pharmacy , University of Chieti "G. d'Annunzio" , via dei vestini 31 , 66100 Chieti , Italy .
| |
Collapse
|
17
|
Simrén M, Tack J. New treatments and therapeutic targets for IBS and other functional bowel disorders. Nat Rev Gastroenterol Hepatol 2018; 15:589-605. [PMID: 29930260 DOI: 10.1038/s41575-018-0034-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functional bowel disorders (FBDs) are a spectrum of disorders characterized by combinations of symptoms attributable to the lower gastrointestinal tract. Most current first-line therapies for IBS and other FBDs target the predominant symptom and mainly affect one symptom in the symptom complex. Additional broadly effective treatment alternatives targeting the entire symptom complex are needed. New drugs for FBDs (such as lubiprostone, linaclotide, plecanatide, prucalopride, eluxadoline and rifaximin) target key mechanisms in the pathophysiology of these disorders and improve both the abnormal bowel habit and other key symptoms, such as abdominal pain and bloating. The current development of new treatment alternatives is focusing on different aspects of the complex pathophysiology of IBS and other FBDs: gut microenvironment (via diet and modulation of gut microbiota), enterohepatic circulation of bile acids, gastrointestinal secretion, motility and sensation, gut-brain interactions, gut barrier function and the immune system within the gastrointestinal tract. Studies also suggest that personalized treatment of IBS and other FBDs is possible using various diagnostic markers.
Collapse
Affiliation(s)
- Magnus Simrén
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Center for Functional Gastrointestinal and Motility Disorders, University of North Carolina, Chapel Hill, NC, USA.
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Xu X, Shi X, Chen Y, Zhou T, Wang J, Xu X, Chen L, Hu L, Shen X. HS218 as an FXR antagonist suppresses gluconeogenesis by inhibiting FXR binding to PGC-1α promoter. Metabolism 2018; 85:126-138. [PMID: 29577938 DOI: 10.1016/j.metabol.2018.03.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/05/2018] [Accepted: 03/17/2018] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Farnesoid X receptor (FXR) as a member of nuclear receptor is tightly associated with glucose metabolism. Accumulated evidence has addressed the potential of FXR antagonist in the treatment of type 2 diabetes mellitus (T2DM), although the related mechanisms remain unclear. Here, we determined a specific FXR antagonist HS218 (N-benzyl-N-(3-(tert-butyl)-4-hydroxyphenyl)-2,4-dichlorobenzamide), which exhibited high activities in suppressing gluconeogenesis and ameliorating glucose homeostasis in db/db and HFD/STZ-induced T2DM mice. We would like to investigate the mechanisms underlying FXR antagonism in the regulation of gluconeogenesis by using HS218 as a probe. METHODS HS218 was evaluated by glucose output assay. Binding affinity of HS218 to the ligand binding domain of FXR (FXR-LBD) was detected by Surface Plasmon Resonance (SPR) technology-based Biacore and fluorescence quenching assays. Mammalian one-hybrid and transactivation assays were carried out to detect the antagonistic effect of HS218 on FXR. Real-time PCR assay was performed to measure the expressions of FXR-target and gluconeogenic genes. Anti-diabetic efficiencies of HS218 were determined in db/db and HFD/STZ-induced T2DM mice. Assays by promoter 5'-deletion analysis and Chromatin immunoprecipitation (ChIP) were performed to detect the binding of FXR to peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) promoter. Western blot assay was used to determine the protein level in either cells or the liver tissues of mice. RESULTS We determined that HS218 as a new FXR specific antagonist could FXR-dependently suppress gluconeogenesis in mouse primary hepatocytes, and effectively improve glucose homeostasis in db/db and HFD/STZ-induced T2DM mice. HS218 decreased gluconeogenesis by inhibiting the FXR-induced increase in the promoter activity of the key gluconeogenic gene PGC-1α, leading to the repression of PGC-1α and its target gene peroxisome proliferator-activated receptor α (PPARα). CONCLUSIONS To our knowledge, our work might be the first report on the mechanism underlying FXR antagonist in the regulation of gluconeogenesis, and all results have also highlighted the potential of HS218 in the treatment of T2DM.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Xiaofan Shi
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Yidi Chen
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Tingting Zhou
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Jiaying Wang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Xing Xu
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Lili Chen
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Lihong Hu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Xu Shen
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| |
Collapse
|
19
|
Update on FXR Biology: Promising Therapeutic Target? Int J Mol Sci 2018; 19:ijms19072069. [PMID: 30013008 PMCID: PMC6073382 DOI: 10.3390/ijms19072069] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022] Open
Abstract
Farnesoid X receptor (FXR), a metabolic nuclear receptor, plays critical roles in the maintenance of systemic energy homeostasis and the integrity of many organs, including liver and intestine. It regulates bile acid, lipid, and glucose metabolism, and contributes to inter-organ communication, in particular the enterohepatic signaling pathway, through bile acids and fibroblast growth factor-15/19 (FGF-15/19). The metabolic effects of FXR are also involved in gut microbiota. In addition, FXR has various functions in the kidney, adipose tissue, pancreas, cardiovascular system, and tumorigenesis. Consequently, the deregulation of FXR may lead to abnormalities of specific organs and metabolic dysfunction, allowing the protein as an attractive therapeutic target for the management of liver and/or metabolic diseases. Indeed, many FXR agonists have been being developed and are under pre-clinical and clinical investigations. Although obeticholic acid (OCA) is one of the promising candidates, significant safety issues have remained. The effects of FXR modulation might be multifaceted according to tissue specificity, disease type, and/or energy status, suggesting the careful use of FXR agonists. This review summarizes the current knowledge of systemic FXR biology in various organs and the gut–liver axis, particularly regarding the recent advancement in these fields, and also provides pharmacological aspects of FXR modulation for rational therapeutic strategies and novel drug development.
Collapse
|
20
|
Kronenberger T, Windshügel B, Wrenger C, Honorio KM, Maltarollo VG. On the relationship of anthranilic derivatives structure and the FXR (Farnesoid X receptor) agonist activity. J Biomol Struct Dyn 2018; 36:4378-4391. [DOI: 10.1080/07391102.2017.1417161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Thales Kronenberger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Fraunhofer Institute for Molecular Biology und Applied Ecology IME, Hamburg, Germany
| | - Björn Windshügel
- Fraunhofer Institute for Molecular Biology und Applied Ecology IME, Hamburg, Germany
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Kathia M. Honorio
- Center for Natural Sciences and Humanities, ABC Federal University, Santo André, São Paulo, Brazil
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Vinicius G. Maltarollo
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
21
|
Selwa E, Elisée E, Zavala A, Iorga BI. Blinded evaluation of farnesoid X receptor (FXR) ligands binding using molecular docking and free energy calculations. J Comput Aided Mol Des 2017; 32:273-286. [DOI: 10.1007/s10822-017-0054-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/29/2017] [Indexed: 12/14/2022]
|