1
|
Chopra D, Chadha VD, Dhawan DK. Understanding the role of zingerone on biochemical and behavioral changes in rat brain inflicted with C6 glioma cells. J Biochem Mol Toxicol 2023; 37:e23477. [PMID: 37477207 DOI: 10.1002/jbt.23477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
Malignant glioma is the deadliest form of brain cancer. Zingerone (ZO), a polyphenolic compound found in ginger, offers pharmacological properties that make it a promising agent for containing the growth of glioma cells. The present study was conducted to understand the efficacy of ZO in containing the growth of C6 glioma cells. The study also assessed the prophylactic role of ZO on rat brain glioma induced by C6 cell lines by addressing its antioxidative action on biochemical, behavioral, and histoarchitectural indices. For dose optimization, the animals were pretreated with different doses of ZO for a period of 2 weeks before the inoculation of glioma cells (1 × 105 /10 µL phosphate-buffered saline) in the caudate region of rat brain and the treatment with ZO continued for 4 more weeks post implantation. In vitro studies were done to assess the radical scavenging activity of ZO and also to determine its effects on viability of C6 glioma cells at different concentrations. Glioma-bearing rats showed significant alterations in memory; exploratory and muscular activities which were appreciably improved upon simultaneous supplementation of ZO administered at a dose of 50 mg/kg body weight and were also visible even at a higher dose. Glioma-bearing rats revealed a significant increase in reactive oxygen species, protein carbonyl contents, and lipid peroxidation, but showed a significant decrease in reduced glutathione and antioxidative enzymes in the brain tissue. Interestingly, all the biochemical indices and altered brain histoarchitecture displaying cellular atypia and hyperplasia showed appreciable improvement when supplemented with ZO at a dose of 50 mg/kg body weight.
Collapse
Affiliation(s)
- Devika Chopra
- Department of Biophysics, Basic Medical Sciences Block II, Panjab University, Chandigarh, India
| | - Vijayta D Chadha
- Centre for Nuclear Medicine (U.I.E.A.S.T), Panjab University, Chandigarh, India
| | - Devinder K Dhawan
- Department of Biophysics, Basic Medical Sciences Block II, Panjab University, Chandigarh, India
| |
Collapse
|
2
|
Yadav V, Krishnan A, Zahiruddin S, Ahmad S, Vohora D. Amelioration of cyclophosphamide-induced DNA damage, oxidative stress, and hepato- and neurotoxicity by Piper longum extract in rats: The role of γH2AX and 8-OHdG. Front Pharmacol 2023; 14:1147823. [PMID: 36969834 PMCID: PMC10036401 DOI: 10.3389/fphar.2023.1147823] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Background: The identification of genoprotectants is a promising strategy for improving human health. Piper longum has drawn scientific attention because of its diverse biological effects and traditional utilization. The current investigation aims to evaluate the genome-stabilizing potential of Piper longum against cyclophosphamide-associated genotoxicity. Methods: We adopted a funnel screening with a three-tier evaluation approach, where Piper longum was investigated in an acellular medium, peripheral blood lymphocytes, and a rodent model. The genoprotective action of the Piper longum extract was initially performed with plasmid pBluescript SK(-) DNA. Furthermore, the extract and various fractions were screened against cyclophosphamide-induced genotoxicity using a cytokinesis-block micronucleus assay and a chromosomal aberration assay in human peripheral blood lymphocytes. The genome-stabilizing action of the extract and potent (hexane) fraction was further confirmed in vivo in Wistar albino rats by evaluating them using mammalian erythrocyte micronucleus tests, DNA fragmentation, oxidative stress markers, 8-hydroxy-2-deoxyguanosine (8-OHdG), γH2AX, and histopathological lesions in the liver and hippocampus. Additionally, acute and sub-acute toxicity studies were conducted following the Organization for Economic Co-operation and Development (OECD) guidelines for rats. Furthermore, the extract was quantified and characterized by high-performance thin-layer chromatography (HPTLC), ultra-high performance liquid chromatography-mass spectroscopy (UPLC-MS), and gas chromatography-mass spectrometry (GC-MS). Results: The Piper longum ethanol extract was shown to protect plasmid pBluescript SK(-) DNA against H2O2-induced strand breaks. In human lymphocytes, the extract and hexane fraction showed a reduction in micronucleus formation (p < 0.001) and chromosomal aberrations (p < 0.01) against cyclophosphamide. Furthermore, the extract and fraction treatment, when administered at 200 mg/kg for 28 days in Wistar rats, restored cyclophosphamide-induced genomic instability by reducing micronucleus formation and DNA fragmentation; restoring redox homeostasis; decreasing 8-OHdG, a hallmark of oxidative DNA damage; reducing γH2AX, a DNA double-strand break (DSB) marker; and preserving the liver and hippocampus against histopathological lesions. The extract and fraction revealed no signs of systemic toxicity at the used doses. Piperine and piperlongumine are the major alkaloids quantified along with the presence of flavonoids in the ethanol extract and the presence of fatty acids and terpenoids in the hexane fraction of Piper longum. Conclusion: Our investigation confirms the genoprotective action of Piper longum by reducing cyclophosphamide-associated cytogenotoxicity, oxidative stress, hepato- and neurotoxicity, oxidative DNA damage, and DNA double-strand breaks. The outcomes are critical for mitigating the genotoxic effects of chemotherapy recipients, requiring further attention.
Collapse
Affiliation(s)
- Vaishali Yadav
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, India
| | - Anuja Krishnan
- Department of Molecular Medicine, School of Interdisciplinary Science and Technology, Jamia Hamdard University, New Delhi, India
| | - Sultan Zahiruddin
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, India
| | - Divya Vohora
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, India
| |
Collapse
|
3
|
Biswas P, Ghorai M, Mishra T, Gopalakrishnan AV, Roy D, Mane AB, Mundhra A, Das N, Mohture VM, Patil MT, Rahman MH, Jha NK, Batiha GES, Saha SC, Shekhawat MS, Radha, Kumar M, Pandey DK, Dey A. Piper longum L.: A comprehensive review on traditional uses, phytochemistry, pharmacology, and health-promoting activities. Phytother Res 2022; 36:4425-4476. [PMID: 36256521 DOI: 10.1002/ptr.7649] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 07/29/2022] [Accepted: 09/18/2022] [Indexed: 12/13/2022]
Abstract
Piper longum (family Piperaceae), commonly known as "long-pepper" or "Pippali" grows as a perennial shrub or as an herbaceous vine. It is native to the Indo-Malaya region and widely distributed in the tropical and subtropical world including the Indian subcontinent, Sri Lanka, Middle-East, and America. The fruits are mostly used as culinary spice and preservatives and are also a potent remedy in various traditional medicinal systems against bronchitis, cough, cold, snakebite, and scorpion-sting and are also used as a contraceptive. Various bioactive-phytochemicals including alkaloids, flavonoids, esters, and steroids were identified from the plant extracts and essential oils from the roots and fruits were reported as antimicrobial, antiparasitic, anthelminthic, mosquito-larvicidal, antiinflammatory, analgesic, antioxidant, anticancer, neuro-pharmacological, antihyperglycaemic, hepato-protective, antihyperlipidaemic, antiangiogenic, immunomodulatory, antiarthritic, antiulcer, antiasthmatic, cardioprotective, and anti-snake-venom agents. Many of its pharmacological properties were attributed to its antioxidative and antiinflammatory effects and its ability to modulate a number of signalling pathways and enzymes. This review comprehensively encompasses information on habit, distribution, ethnobotany, phytochemistry, and pharmacology of P. longum in relation to its medicinal importance and health benefits to validate the traditional claims supported by specific scientific experiments. In addition, it also discusses the safety and toxicity studies, application of green synthesis and nanotechnology as well as clinical trials performed with the plant also elucidating research gaps and future perspectives of its multifaceted uses.
Collapse
Affiliation(s)
- Protha Biswas
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Tulika Mishra
- Department of Botany, DDU Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Debleena Roy
- Department of Botany, Lady Brabourne College, Kolkata, West Bengal, India
| | | | - Avinash Mundhra
- Department of Botany, Rishi Bankim Chandra College, Naihati, India
| | - Neela Das
- Department of Botany, Rishi Bankim Chandra College, Naihati, India
| | | | - Manoj Tukaram Patil
- Department of Botany, SNJB's KKHA Arts SMGL Commerce and SPHJ Science College Chandwad (Nashik) Maharashtra, Affiliated to Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, South Korea
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India.,Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, India.,Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | | | - Mahipal S Shekhawat
- Plant Biotechnology Unit, KM Government Institute for Postgraduate Studies and Research, Puducherry, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Manoj Kumar
- Department of Botany, Lady Brabourne College, Kolkata, West Bengal, India.,Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt.,Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
4
|
Efficient separation of N-Alkylamides from Piper longum L. using off-line two-dimensional coupled with gradient high-speed counter-current chromatography. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Uddin MJ, Zidorn C. Traditional Herbal Medicines Against CNS Disorders from Bangladesh. NATURAL PRODUCTS AND BIOPROSPECTING 2020; 10:377-410. [PMID: 33057963 PMCID: PMC7648845 DOI: 10.1007/s13659-020-00269-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/03/2020] [Indexed: 05/07/2023]
Abstract
The majority of the population in Bangladesh uses traditional plant-based medicines to manage various ailments, including central nervous system (CNS) disorders. This review presents ethnobotanical information and relevant scientific studies on plants used in traditional healthcare for the management of various CNS disorders in Bangladesh. The information on the medicinal plants of Bangladesh effective against CNS disorders published in scientific journals, books, and reports was compiled from different electronic databases using specific key words. The present article provides comprehensive information on a total of 224 medicinal plant species belonging to 81 families used for the treatment of CNS disorders by the various peoples of Bangladesh. In total, we reviewed more than 290 relevant papers. In this study, leaves were found as the most often used plant organ, followed by roots, fruits, whole plants, barks, seeds, stems, rhizomes, and flowers. The Fabaceae family contributes the highest number of used species, followed by Rubiaceae, Lamiaceae, Cucurbitaceae, Vitaceae, Euphorbiaceae, Malvaceae, and Zingiberaceae. The most frequently used species (in decreasing order) are Asparagus racemosus, Centella asiatica, Stephania japonica, Aegle marmelos, Coccinia grandis, Tabernaemontana divaricata, Bacopa monnieri, Abroma augusta, and Scoparia dulcis. This review may serve as a starting point for a rational search for neuroactive natural products against CNS disorders within the Flora of Bangladesh.
Collapse
Affiliation(s)
- Md. Josim Uddin
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong, 4318 Bangladesh
| | - Christian Zidorn
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
| |
Collapse
|
6
|
XIAP as a Target of New Small Organic Natural Molecules Inducing Human Cancer Cell Death. Cancers (Basel) 2019; 11:cancers11091336. [PMID: 31505859 PMCID: PMC6770071 DOI: 10.3390/cancers11091336] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022] Open
Abstract
X-linked inhibitor of apoptosis protein (XIAP) is an emerging crucial therapeutic target in cancer. We report on the discovery and characterisation of small organic molecules from Piper genus plants exhibiting XIAP antagonism, namely erioquinol, a quinol substituted in the 4-position with an alkenyl group and the alkenylphenols eriopodols A–C. Another isolated compound was originally identified as gibbilimbol B. Erioquinol was the most potent inhibitor of human cancer cell viability when compared with gibbilimbol B and eriopodol A was listed as intermediate. Gibbilimbol B and eriopodol A induced apoptosis through mitochondrial permeabilisation and caspase activation while erioquinol acted on cell fate via caspase-independent/non-apoptotic mechanisms, likely involving mitochondrial dysfunctions and aberrant generation of reactive oxygen species. In silico modelling and molecular approaches suggested that all molecules inhibit XIAP by binding to XIAP-baculoviral IAP repeat domain. This demonstrates a novel aspect of XIAP as a key determinant of tumour control, at the molecular crossroad of caspase-dependent/independent cell death pathway and indicates molecular aspects to develop tumour-effective XIAP antagonists.
Collapse
|
7
|
Khuda I, Al-Shamrani F. Stroke medicine in antiquity: The Greek and Muslim contribution. J Family Community Med 2018; 25:143-147. [PMID: 30220842 PMCID: PMC6130168 DOI: 10.4103/jfcm.jfcm_8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The collective human effort to understand the brain and its common disease, stroke, has spanned many centuries, cultures, and societies. The ancient Greek and Muslim physicians made important contributions to the understanding and management of stroke in their time. The Muslim physicians, from 800 to 1200 AD, played an outstanding role, by conserving and refining Greco-Roman philosophies, formulating their own theories and reaching conclusions, some of which match our modern stroke models. They recognized the importance of the brain as a source of stroke symptoms, proposed the vascular nature of stroke etiology, and had some thoughts about intra-ventricular hemorrhage, and the process of atherosclerosis with the help of ancient philosophies. Their management strategies have now been discarded, but some of the herbal medicines they used, may be useful in stroke management today. Therefore, more research is required into the ancient texts to evaluate the efficacy of their management strategies.
Collapse
Affiliation(s)
- Inam Khuda
- Department of Neurology, King Fahd University Hospital, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Foziah Al-Shamrani
- Department of Neurology, King Fahd University Hospital, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
8
|
Management of stroke as described by Ibn Sina (Avicenna) in the Canon of Medicine. Int J Cardiol 2013; 169:233-7. [DOI: 10.1016/j.ijcard.2013.08.115] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 08/29/2013] [Indexed: 01/16/2023]
|
9
|
Park G, Kim HG, Ju MS, Ha SK, Park Y, Kim SY, Oh MS. 6-Shogaol, an active compound of ginger, protects dopaminergic neurons in Parkinson's disease models via anti-neuroinflammation. Acta Pharmacol Sin 2013; 34:1131-9. [PMID: 23811724 PMCID: PMC4003157 DOI: 10.1038/aps.2013.57] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/12/2013] [Indexed: 12/27/2022]
Abstract
AIM 6-Shogaol [1-(4-hydroxy-methoxyphenyl)-4-decen-one], a pungent compound isolated from ginger, has shown various neurobiological and anti-inflammatory effects. The aim of this study was to examine the effects of 6-shogaol on neuroinflammatory-induced damage of dopaminergic (DA) neurons in Parkinson's disease (PD) models. METHODS Cultured rat mesencephalic cells were treated with 6-shogaol (0.001 and 0.01 μmol/L) for 1 h, then with MPP(+)(10 μmol/L) for another 23 h. The levels of TNF-α and NO in medium were analyzed spectrophotometrically. C57/BL mice were administered 6-shogaol (10 mg·kg(-1)·d(-1), po) for 3 d, and then MPTP (30 mg/kg, ip) for 5 d. Seven days after the last MPTP injection, behavioral testings were performed. The levels of tyrosine hydroxylase (TH) and macrophage antigen (MAC)-1 were determined with immunohistochemistry. The expression of iNOS and COX-2 was measured using RT PCR. RESULTS In MPP(+)-treated rat mesencephalic cultures, 6-shogaol significantly increased the number of TH-IR neurons and suppressed TNF-α and NO levels. In C57/BL mice, treatment with 6-shogaol reversed MPTP-induced changes in motor coordination and bradykinesia. Furthermore, 6-shogaol reversed MPTP-induced reductions in TH-positive cell number in the substantia nigra pars compacta (SNpc) and TH-IR fiber intensity in stratum (ST). Moreover, 6-shogaol significantly inhibited the MPTP-induced microglial activation and increases in the levels of TNF-α, NO, iNOS, and COX-2 in both SNpc and ST. CONCLUSION 6-Shogaol exerts neuroprotective effects on DA neurons in in vitro and in vivo PD models.
Collapse
Affiliation(s)
- Gunhyuk Park
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 130–701, Republic of Korea
| | - Hyo Geun Kim
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul 130–701, Republic of Korea
| | - Mi Sun Ju
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul 130–701, Republic of Korea
| | - Sang Keun Ha
- Functional Materials Research Group, Korea Food Research Institute, Gyeonggi 463–746, Republic of Korea
| | - Yongkon Park
- Functional Materials Research Group, Korea Food Research Institute, Gyeonggi 463–746, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Incheon 406–799, Republic of Korea
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 130–701, Republic of Korea
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul 130–701, Republic of Korea
| |
Collapse
|
10
|
Antonio RL, Kozasa EH, Galduróz JCF, Dawa, Dorjee Y, Kalsang T, Norbu T, Tenzin T, Rodrigues E. Formulas used by Tibetan doctors at Men-Tsee-Khang in India for the treatment of neuropsychiatric disorders and their correlation with pharmacological data. Phytother Res 2012; 27:552-63. [PMID: 22674653 DOI: 10.1002/ptr.4749] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/30/2012] [Indexed: 12/15/2022]
Abstract
The aim of the present study was to identify formulas used at Men-Tsee-Khang (Tibetan Medical and Astrological Institute), India, for the treatment of neuropsychiatric disorders and to compare the Tibetan usage of particular ingredients with pharmacological data from the scientific database. Using ethnographic methods, five doctors were selected and interviewed. A correlation was observed between central nervous system disorders and rLung, one of the three humors in Tibetan medicine, which imbalance is the source of mental disorders, and ten multi-ingredient formulas used to treat the imbalance of this particular humor were identified. These formulas utilize 61 ingredients; among them were 48 plant species. Each formula treats several symptoms related to rLung imbalance, so the plants may have therapeutic uses distinct from those of the formulas in which they are included. Myristica fragrans, nutmeg, is contained in 100% of the formulas, and its seeds exhibit stimulant and depressant actions affecting the central nervous system. Preclinical and clinical data from the scientific literature indicate that all of the formulas include ingredients with neuropsychiatric action and corroborate the therapeutic use of 75.6% of the plants. These findings indicate a level of congruence between the therapeutic uses of particular plant species in Tibetan and Western medicines.
Collapse
Affiliation(s)
- Raquel Luna Antonio
- Department of Psychobiology, Universidade Federal de São Paulo Brazil, Rua Botucatu 862, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Devan S, Janardhanam VA. Effect of Naringenin on metabolic markers, lipid profile and expression of GFAP in C6 glioma cells implanted rat's brain. Ann Neurosci 2011; 18:151-5. [PMID: 25205946 PMCID: PMC4116953 DOI: 10.5214/ans.0972.7531.1118406] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 08/10/2011] [Accepted: 08/22/2011] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Naringenin, a flavanone, has been reported to exhibit a wide range of pharmacological properties including antitumor activity. PURPOSE We wanted to test the efficacy of Naringenin on C6 glioma cells-implanted into rats was investigated. METHODS Biochemical and immunohistochemical methods were used for analyzing various markers. RESULTS Injection of C6 glioma cells into rat brain resulted in increased metabolic markers {Lactatate Dehydrogenase (LDH), 5' Nucleotidase 5'ND), creatine kinase (CK), Hexokinase (HK) and Glucose 6-phosphate dehydrogenase (G6PD)} and lipid profile (triglycerides, free fatty acids, phos-pholipids, total cholesterol and free cholesterol). Oral administration of Naringenin (50 mg /kg of BW for 30 days) significantly altered this biochemical profile. Further, the immuno fluorescence expression of Glial fibrilary acidic protein (GFAP) was also studied. CONCLUSION In C6 glioma cells-implanted rats, increased expression of GFAP was noted on treatment with Naringenin. These observations suggest that Naringenin may participate by inhibiting glial cell tumorigenesis.
Collapse
Affiliation(s)
- S. Devan
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamilnadu, INDIA
| | - V. A. Janardhanam
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamilnadu, INDIA
| |
Collapse
|