1
|
Feng S, Liu H, Yun C, Zhu W, Pan Y. Application of EGFR-TKIs in brain tumors, a breakthrough in future? J Transl Med 2025; 23:449. [PMID: 40241139 PMCID: PMC12004797 DOI: 10.1186/s12967-025-06448-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Brain tumors, both primary and secondary, represent a significant clinical challenge due to their high mortality and limited treatment options. Primary brain tumors, such as gliomas and meningiomas, and brain metastases from cancers such as non-small cell lung cancer and breast cancer require innovative therapeutic strategies. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR -TKIs) have emerged as a promising treatment option, particularly for tumors harboring EGFR mutations. This review examines the use of EGFR-TKIs in brain tumors, highlighting both laboratory and clinical research findings. In primary brain tumors and brain metastases, EGFR-TKIs have shown potential in controlling tumor growth and improving patient outcomes. Advanced applications, such as nano-formulated EGFR-TKIs and combination therapies with other pathway inhibitors, are being investigated to improve efficacy and overcome resistance. Challenges such as treatment-related events, resistance mechanisms and blood-brain barrier penetration remain significant hurdles. Addressing tumor heterogeneity through personalized medicine approaches is critical to optimizing EGFR-TKI therapies. This review highlights the need for continued research to refine these therapies and improve survival for patients with brain tumors.
Collapse
Affiliation(s)
- Shiying Feng
- Central Clinical Medical School, Baotou Medical College, Baotou, Inner Mongolia, 014040, China
- Department of Oncology, Inner Mongolia Baotou City Central Hospital, Baotou, Inner Mongolia, 014040, China
| | - Huiqin Liu
- Department of Gynecology & Obstetrics, Inner Mongolia Baotou City Central Hospital, Baotou, Inner Mongolia, 014040, China
| | - Cuilan Yun
- Department of Gynecology & Obstetrics, Inner Mongolia Baotou City Central Hospital, Baotou, Inner Mongolia, 014040, China
| | - Wei Zhu
- Department of Oncology, Inner Mongolia Baotou City Central Hospital, Baotou, Inner Mongolia, 014040, China.
| | - Yuanming Pan
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
2
|
Pfeil AJ, Hale JD, Zhang TS, Wakayama K, Miyazaki I, Odintsov I, Somwar R. Preclinical evaluation of targeted therapies for central nervous system metastases. Dis Model Mech 2024; 17:dmm050836. [PMID: 39344915 PMCID: PMC11463968 DOI: 10.1242/dmm.050836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
The central nervous system (CNS) represents a site of sanctuary for many metastatic tumors when systemic therapies that control the primary tumor cannot effectively penetrate intracranial lesions. Non-small cell lung cancers (NSCLCs) are the most likely of all neoplasms to metastasize to the brain, with up to 60% of patients developing CNS metastases during the disease process. Targeted therapies such as tyrosine kinase inhibitors (TKIs) have helped reduce lung cancer mortality but vary considerably in their capacity to control CNS metastases. The ability of these therapies to effectively target lesions in the CNS depends on several of their pharmacokinetic properties, including blood-brain barrier permeability, affinity for efflux transporters, and binding affinity for both plasma and brain tissue. Despite the existence of numerous preclinical models with which to characterize these properties, many targeted therapies have not been rigorously tested for CNS penetration during the discovery process, whereas some made it through preclinical testing despite poor brain penetration kinetics. Several TKIs have now been engineered with the characteristics of CNS-penetrant drugs, with clinical trials proving these efforts fruitful. This Review outlines the extent and variability of preclinical evidence for the efficacy of NSCLC-targeted therapies, which have been approved by the US Food and Drug Administration (FDA) or are in development, for treating CNS metastases, and how these data correlate with clinical outcomes.
Collapse
Affiliation(s)
- Alexander J. Pfeil
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
| | - Joshua D. Hale
- University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
| | - Tiger S. Zhang
- University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
| | - Kentaro Wakayama
- Taiho Pharmaceutical Co. Ltd. 3, Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Isao Miyazaki
- Taiho Pharmaceutical Co. Ltd. 3, Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Igor Odintsov
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 021105, USA
| | - Romel Somwar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
3
|
Hoosemans L, Vooijs M, Hoeben A. Opportunities and Challenges of Small Molecule Inhibitors in Glioblastoma Treatment: Lessons Learned from Clinical Trials. Cancers (Basel) 2024; 16:3021. [PMID: 39272879 PMCID: PMC11393907 DOI: 10.3390/cancers16173021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Glioblastoma (GBM) is the most prevalent central nervous system tumour (CNS). Patients with GBM have a dismal prognosis of 15 months, despite an intensive treatment schedule consisting of surgery, chemoradiation and concurrent chemotherapy. In the last decades, many trials have been performed investigating small molecule inhibitors, which target specific genes involved in tumorigenesis. So far, these trials have been unsuccessful, and standard of care for GBM patients has remained the same since 2005. This review gives an overview of trials investigating small molecule inhibitors on their own, combined with chemotherapy or other small molecule inhibitors. We discuss possible resistance mechanisms in GBM, focussing on intra- and intertumoral heterogeneity, bypass mechanisms and the influence of the tumour microenvironment. Moreover, we emphasise how combining inhibitors can help overcome these resistance mechanisms. We also address strategies for improving trial outcomes through modifications to their design. In summary, this review aims to elucidate different resistance mechanisms against small molecule inhibitors, highlighting their significance in the search for novel therapeutic combinations to improve the overall survival of GBM patients.
Collapse
Affiliation(s)
- Linde Hoosemans
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Marc Vooijs
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Ann Hoeben
- Department of Medical Oncology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
4
|
Tang M, Wu Y, Bai X, Lu Y. KRAS G12C Inhibitors in Non-Small Cell Lung Cancer: A Review. Onco Targets Ther 2024; 17:683-695. [PMID: 39206059 PMCID: PMC11352592 DOI: 10.2147/ott.s473368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Rat sarcoma virus (RAS) GTPase is one of the most important drivers of non-small cell lung cancer (NSCLC). RAS has three different isoforms (Harvey rat sarcoma viral oncogene homolog [HRAS], Kirsten rat sarcoma viral oncogene homolog [KRAS] and Neuroblastoma ras viral oncogene homolog [NRAS]), of which KRAS is most commonly mutated in NSCLC. The mutated KRAS protein was historically thought to be "undruggable" until the development of KRASG12C inhibitors. In this review, from the aspect of brain metastasis, we aim to provide an overview of the advances in therapies that target KRASG12C, the limitations of the current treatments, and future prospects in patients with KRAS p.G12C mutant NSCLC.
Collapse
Affiliation(s)
- Min Tang
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yijun Wu
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xiufeng Bai
- Laboratory of Human Disease and Immunotherapies, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Institute of Inflammation and Immunology (I), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
5
|
Ren L, Moreno D, Baer BR, Barbour P, Bettendorf T, Bouhana K, Brown K, Brown SA, Fell JB, Hartley DP, Hicken EJ, Laird ER, Lee P, McCown J, Otten JN, Prigaro B, Wallace R, Kahn D. Identification of the Clinical Candidate PF-07284890 ( ARRY-461), a Highly Potent and Brain Penetrant BRAF Inhibitor for the Treatment of Cancer. J Med Chem 2024; 67:13019-13032. [PMID: 39077892 DOI: 10.1021/acs.jmedchem.4c00998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Mutant BRAFV600E is one of the most common oncogenic drivers in metastatic melanoma. While first generation BRAFV600E inhibitors are capable of controlling tumors systemically, they are unable to adequately treat tumors that have metastasized to the brain due to insufficient penetration across the blood-brain barrier (BBB). Through a combination of structure-based drug design (SBDD) and the optimization of physiochemical properties to enhance BBB penetration, we herein report the discovery of the brain-penetrant BRAFV600E inhibitor PF-07284890 (ARRY-461). In mice studies, ARRY-461 proved to be highly brain-penetrant and was able to drive regressions of A375 BRAFV600E tumors implanted both subcutaneously and intracranially. Based on compelling preclinical safety and efficacy studies, ARRY-461 was progressed into a Phase 1 A/B clinical trial (NCT04543188).
Collapse
Affiliation(s)
- Li Ren
- Enliven Therapeutics, Boulder, Colorado 80301, United States
| | - David Moreno
- Enliven Therapeutics, Boulder, Colorado 80301, United States
| | - Brian R Baer
- Pfizer Boulder R&D, Boulder, Colorado 80301, United States
| | | | | | - Karyn Bouhana
- Cogent Biosciences, Boulder, Colorado 80301, United States
| | - Karin Brown
- Pfizer Boulder R&D, Boulder, Colorado 80301, United States
| | - Suzy A Brown
- Pfizer Boulder R&D, Boulder, Colorado 80301, United States
| | - Jay B Fell
- Cogent Biosciences, Boulder, Colorado 80301, United States
| | | | - Erik J Hicken
- Pfizer Boulder R&D, Boulder, Colorado 80301, United States
| | - Ellen R Laird
- Pfizer Boulder R&D, Boulder, Colorado 80301, United States
| | - Patrice Lee
- Pfizer Boulder R&D, Boulder, Colorado 80301, United States
| | - Joseph McCown
- Pfizer Boulder R&D, Boulder, Colorado 80301, United States
| | | | | | - Ross Wallace
- Loxo Oncology, Louisville, Colorado 80027, United States
| | - Dean Kahn
- Pfizer Boulder R&D, Boulder, Colorado 80301, United States
| |
Collapse
|
6
|
Rayati M, Mansouri V, Ahmadbeigi N. Gene therapy in glioblastoma multiforme: Can it be a role changer? Heliyon 2024; 10:e27087. [PMID: 38439834 PMCID: PMC10909773 DOI: 10.1016/j.heliyon.2024.e27087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most lethal cancers with a poor prognosis. Over the past century since its initial discovery and medical description, the development of effective treatments for this condition has seen limited progress. Despite numerous efforts, only a handful of drugs have gained approval for its treatment. However, these treatments have not yielded substantial improvements in both overall survival and progression-free survival rates. One reason for this is its unique features such as heterogeneity and difficulty of drug delivery because of two formidable barriers, namely the blood-brain barrier and the tumor-blood barrier. Over the past few years, significant developments in therapeutic approaches have given rise to promising novel and advanced therapies. Target-specific therapies, such as monoclonal antibodies (mAbs) and small molecules, stand as two important examples; however, they have not yielded a significant improvement in survival among GBM patients. Gene therapy, a relatively nascent advanced approach, holds promise as a potential treatment for cancer, particularly GBM. It possesses the potential to address the limitations of previous treatments and even newer advanced therapies like mAbs, owing to its distinct properties. This review aims to elucidate the current status and advancements in gene therapy for GBM treatment, while also presenting its future prospects.
Collapse
Affiliation(s)
- Mohammad Rayati
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Colclough N, Alluri RV, Tucker JW, Gozalpour E, Li D, Du H, Li W, Harlfinger S, O'Neill DJ, Sproat GG, Chen K, Yan Y, McGinnity DF. Utilizing a Dual Human Transporter MDCKII-MDR1-BCRP Cell Line to Assess Efflux at the Blood Brain Barrier. Drug Metab Dispos 2024; 52:95-105. [PMID: 38071533 DOI: 10.1124/dmd.123.001476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 12/22/2023] Open
Abstract
To facilitate the design of drugs readily able to cross the blood brain barrier (BBB), a Madin-Darby canine kidney (MDCK) cell line was established that over expresses both P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP), the main human efflux transporters of the BBB. Proteomics analyses indicate BCRP is expressed at a higher level than Pgp in this cell line. This cell line shows good activity for both transporters [BCRP substrate dantrolene efflux ratio (ER) 16.3 ± 0.9, Pgp substrate quinidine ER 27.5 ± 1.2], and use of selective transporter inhibitors enables an assessment of the relative contributions to overall ERs. The MDCKII-MDR1-BCRP ER negatively correlates with rat unbound brain/unbound plasma ratio, Kpuu Highly brain penetrant compounds with rat Kpuu ≥ 0.3 show ERs ≤ 2 in the MDCKII-MDR1-BCRP assay while compounds predominantly excluded from the brain, Kpuu ≤ 0.05, demonstrate ERs ≥ 20. A subset of compounds with MDCKII-MDR1-BCRP ER < 2 and rat Kpuu < 0.3 were shown to be substrates of rat Pgp using a rat transfected cell line, MDCKII-rMdr1a. These compounds also showed ERs > 2 in the human National Institutes of Health (NIH) MDCKI-MDR1 (high Pgp expression) cell line, which suggests that they are weak human Pgp substrates. Characterization of 37 drugs targeting the central nervous system in the MDCKII-MDR1-BCRP efflux assay show 36 have ERs < 2. In drug discovery, use of the MDCKII-MDR1-BCRP in parallel with the NIH MDCKI-MDR1 cell line is useful for identification of compounds with high brain penetration. SIGNIFICANCE STATEMENT: A single cell line that includes both the major human efflux transporters of the blood brain barrier (MDCKII-MDR1-BCRP) has been established facilitating the rapid identification of efflux substrates and enabling the design of brain penetrant molecules. Efflux ratios using this cell line demonstrate a clear relationship with brain penetration as defined by rat brain Kpuu.
Collapse
Affiliation(s)
- Nicola Colclough
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Ravindra V Alluri
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - James W Tucker
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Elnaz Gozalpour
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Danxi Li
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Hongwen Du
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Wei Li
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Stephanie Harlfinger
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Daniel J O'Neill
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Graham G Sproat
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Kan Chen
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Yumei Yan
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Dermot F McGinnity
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| |
Collapse
|
8
|
Rahban M, Joushi S, Bashiri H, Saso L, Sheibani V. Characterization of prevalent tyrosine kinase inhibitors and their challenges in glioblastoma treatment. Front Chem 2024; 11:1325214. [PMID: 38264122 PMCID: PMC10804459 DOI: 10.3389/fchem.2023.1325214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive malignant primary tumor in the central nervous system. Despite extensive efforts in radiotherapy, chemotherapy, and neurosurgery, there remains an inadequate level of improvement in treatment outcomes. The development of large-scale genomic and proteomic analysis suggests that GBMs are characterized by transcriptional heterogeneity, which is responsible for therapy resistance. Hence, knowledge about the genetic and epigenetic heterogeneity of GBM is crucial for developing effective treatments for this aggressive form of brain cancer. Tyrosine kinases (TKs) can act as signal transducers, regulate important cellular processes like differentiation, proliferation, apoptosis and metabolism. Therefore, TK inhibitors (TKIs) have been developed to specifically target these kinases. TKIs are categorized into allosteric and non-allosteric inhibitors. Irreversible inhibitors form covalent bonds, which can lead to longer-lasting effects. However, this can also increase the risk of off-target effects and toxicity. The development of TKIs as therapeutics through computer-aided drug design (CADD) and bioinformatic techniques enhance the potential to improve patients' survival rates. Therefore, the continued exploration of TKIs as drug targets is expected to lead to even more effective and specific therapeutics in the future.
Collapse
Affiliation(s)
- Mahdie Rahban
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamideh Bashiri
- Physiology Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, Rome, Italy
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
9
|
Biali M, Auvity S, Cisternino S, Smirnova M, Hacker M, Zeitlinger M, Mairinger S, Tournier N, Bauer M, Langer O. Dissimilar Effect of P-Glycoprotein and Breast Cancer Resistance Protein Inhibition on the Distribution of Erlotinib to the Retina and Brain in Humans and Mice. Mol Pharm 2023; 20:5877-5887. [PMID: 37883694 PMCID: PMC10630959 DOI: 10.1021/acs.molpharmaceut.3c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023]
Abstract
P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are two ATP-binding cassette efflux transporters that are coexpressed at the human blood-brain barrier (BBB) and blood-retina barrier (BRB). While pharmacological inhibition of P-gp and/or BCRP results in increased brain distribution of dual P-gp/BCRP substrate drugs, such as the tyrosine kinase inhibitor erlotinib, the effect of P-gp and/or BCRP inhibition on the retinal distribution of such drugs has hardly been investigated. In this study, we used positron emission tomography (PET) imaging to assess the effect of transporter inhibition on the distribution of [11C]erlotinib to the human retina and brain. Twenty two healthy volunteers underwent two PET scans after intravenous (i.v.) injection of a microdose (<5 μg) of [11C]erlotinib, a baseline scan, and a second scan either with concurrent i.v. infusion of tariquidar to inhibit P-gp (n = 5) or after oral intake of single ascending doses of erlotinib (300 mg, 650 mg, or 1000 mg, n = 17) to saturate erlotinib transport. In addition, transport of [3H]erlotinib to the retina and brain was assessed in mice by in situ carotid perfusion under various drug transporter inhibition settings. In comparison to the baseline PET scan, coadministration of tariquidar or erlotinib led to a significant decrease of [11C]erlotinib total volume of distribution (VT) in the human retina by -25 ± 8% (p ≤ 0.05) and -41 ± 16% (p ≤ 0.001), respectively. In contrast, erlotinib intake led to a significant increase in [11C]erlotinib VT in the human brain (+20 ± 16%, p ≤ 0.001), while administration of tariquidar did not result in any significant changes. In situ carotid perfusion experiments showed that both P-gp and BCRP significantly limit the distribution of erlotinib to the mouse retina and brain but revealed a similar discordant effect at the mouse BRB and BBB following co-perfusion with tariquidar and erlotinib as in humans. Co-perfusion with prototypical inhibitors of solute carrier transporters did not reveal a significant contribution of organic cation transporters (e.g., OCTs and OCTNs) and organic anion-transporting polypeptides (e.g., OATP2B1) to the retinal and cerebral distribution of erlotinib. In conclusion, we observed a dissimilar effect after P-gp and/or BCRP inhibition on the retinal and cerebral distribution of [11C]erlotinib. The exact mechanism for this discrepancy remains unclear but may be related to the function of an unidentified erlotinib uptake carrier sensitive to tariquidar inhibition at the BRB. Our study highlights the great potential of PET to study drug distribution to the human retina and to assess the functional impact of membrane transporters on ocular drug distribution.
Collapse
Affiliation(s)
- Myriam
El Biali
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
| | - Sylvain Auvity
- Inserm
UMRS1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
- Service
Pharmacie, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire-Necker-Enfants Malades, F-75015 Paris, France
| | - Salvatore Cisternino
- Inserm
UMRS1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
- Service
Pharmacie, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire-Necker-Enfants Malades, F-75015 Paris, France
| | - Maria Smirnova
- Inserm
UMRS1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
| | - Marcus Hacker
- Division
of Nuclear Medicine, Department of Biomedical Imaging and Image-guided
Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Zeitlinger
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
| | - Severin Mairinger
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
- Division
of Nuclear Medicine, Department of Biomedical Imaging and Image-guided
Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Nicolas Tournier
- Laboratoire
d’Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS,
Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, 91401 Orsay, France
| | - Martin Bauer
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
| | - Oliver Langer
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
- Division
of Nuclear Medicine, Department of Biomedical Imaging and Image-guided
Therapy, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
10
|
Ge M, Zhu Y, Wei M, Piao H, He M. Improving the efficacy of anti-EGFR drugs in GBM: Where we are going? Biochim Biophys Acta Rev Cancer 2023; 1878:188996. [PMID: 37805108 DOI: 10.1016/j.bbcan.2023.188996] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
The therapies targeting mutations of driver genes in cancer have advanced into clinical trials for a variety of tumors. In glioblastoma (GBM), epidermal growth factor receptor (EGFR) is the most commonly mutated oncogene, and targeting EGFR has been widely investigated as a promising direction. However, the results of EGFR pathway inhibitors have not been satisfactory. Limited blood-brain barrier (BBB) permeability, drug resistance, and pathway compensation mechanisms contribute to the failure of anti-EGFR therapies. This review summarizes recent research advances in EGFR-targeted therapy for GBM and provides insight into the reasons for the unsatisfactory results of EGFR-targeted therapy. By combining the results of preclinical studies with those of clinical trials, we discuss that improved drug penetration across the BBB, the use of multi-target combinations, and the development of peptidomimetic drugs under the premise of precision medicine may be promising strategies to overcome drug resistance in GBM.
Collapse
Affiliation(s)
- Manxi Ge
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China
| | - Yan Zhu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang, China.
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China.
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| |
Collapse
|
11
|
Pan K, Concannon K, Li J, Zhang J, Heymach JV, Le X. Emerging therapeutics and evolving assessment criteria for intracranial metastases in patients with oncogene-driven non-small-cell lung cancer. Nat Rev Clin Oncol 2023; 20:716-732. [PMID: 37592034 PMCID: PMC10851171 DOI: 10.1038/s41571-023-00808-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 08/19/2023]
Abstract
The improved survival outcomes of patients with non-small-cell lung cancer (NSCLC), largely owing to the improved control of systemic disease provided by immune-checkpoint inhibitors and novel targeted therapies, have highlighted the challenges posed by central nervous system (CNS) metastases as a devastating yet common complication, with up to 50% of patients developing such lesions during the course of the disease. Early-generation tyrosine-kinase inhibitors (TKIs) often provide robust systemic disease control in patients with oncogene-driven NSCLCs, although these agents are usually unable to accumulate to therapeutically relevant concentrations in the CNS owing to an inability to cross the blood-brain barrier. However, the past few years have seen a paradigm shift with the emergence of several novel or later-generation TKIs with improved CNS penetrance. Such agents have promising levels of activity against brain metastases, as demonstrated by data from preclinical and clinical studies. In this Review, we describe current preclinical and clinical evidence of the intracranial activity of TKIs targeting various oncogenic drivers in patients with NSCLC, with a focus on newer agents with enhanced CNS penetration, leptomeningeal disease and the need for intrathecal treatment options. We also discuss evolving assessment criteria and regulatory considerations for future clinical investigations.
Collapse
Affiliation(s)
- Kelsey Pan
- Department of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kyle Concannon
- Department of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Li
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
12
|
Schulz JA, Hartz AMS, Bauer B. ABCB1 and ABCG2 Regulation at the Blood-Brain Barrier: Potential New Targets to Improve Brain Drug Delivery. Pharmacol Rev 2023; 75:815-853. [PMID: 36973040 PMCID: PMC10441638 DOI: 10.1124/pharmrev.120.000025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
The drug efflux transporters ABCB1 and ABCG2 at the blood-brain barrier limit the delivery of drugs into the brain. Strategies to overcome ABCB1/ABCG2 have been largely unsuccessful, which poses a tremendous clinical problem to successfully treat central nervous system (CNS) diseases. Understanding basic transporter biology, including intracellular regulation mechanisms that control these transporters, is critical to solving this clinical problem.In this comprehensive review, we summarize current knowledge on signaling pathways that regulate ABCB1/ABCG2 at the blood-brain barrier. In Section I, we give a historical overview on blood-brain barrier research and introduce the role that ABCB1 and ABCG2 play in this context. In Section II, we summarize the most important strategies that have been tested to overcome the ABCB1/ABCG2 efflux system at the blood-brain barrier. In Section III, the main component of this review, we provide detailed information on the signaling pathways that have been identified to control ABCB1/ABCG2 at the blood-brain barrier and their potential clinical relevance. This is followed by Section IV, where we explain the clinical implications of ABCB1/ABCG2 regulation in the context of CNS disease. Lastly, in Section V, we conclude by highlighting examples of how transporter regulation could be targeted for therapeutic purposes in the clinic. SIGNIFICANCE STATEMENT: The ABCB1/ABCG2 drug efflux system at the blood-brain barrier poses a significant problem to successful drug delivery to the brain. The article reviews signaling pathways that regulate blood-brain barrier ABCB1/ABCG2 and could potentially be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Julia A Schulz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Anika M S Hartz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| |
Collapse
|
13
|
Xu Z, Hao X, Wang Q, Yang K, Li J, Xing P. Intracranial efficacy and safety of furmonertinib 160 mg with or without anti-angiogenic agent in advanced NSCLC patients with BM/LM as salvage therapy. BMC Cancer 2023; 23:206. [PMID: 36870951 PMCID: PMC9985196 DOI: 10.1186/s12885-023-10676-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
OBJECTIVES Central nervous system (CNS) metastases including brain metastases (BM) and leptomeningeal metastases (LM) are frequent in epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer (NSCLC), and are correlated with poor outcomes. In this study, we evaluated the efficacy of single-agent furmonertinib 160 mg or combining with anti-angiogenic agent in NSCLC patients who had developed BM/LM progression from previous tyrosine kinase inhibior (TKI) treatment. METHODS EGFR-mutated NSCLC patients who developed BM (the BM cohort) or LM progression (the LM cohort) were included, having received furmonertinib 160 mg daily as second-line or later treatment, with or without anti-angiogenic agents. The intracranial efficacy was evaluated by intracranial progression-free survival (iPFS). RESULTS Totally 12 patients in the BM cohort and 16 patients in the LM cohort were included. Almost one half of patients in the BM cohort and a majority in the LM cohort had a poor physical status, with a Eastern Cooperative Oncology Group performance status (ECOG-PS) ≥2. The administration of single-agent furmonertinib or combination treatment achieved a median iPFS of 3.6 months (95%CI 1.435-5.705) in the BM cohort, and 4.3 months (95%CI 2.094-6.486) in the LM cohort. Subgroup and univariate analysis has shown that a good ECOG-PS correlated with a favorable efficacy of furmonertinib in the BM cohort (median iPFS = 2.1 with ECOG-PS ≥ 2 vs. 14.6 months with ECOG-PS < 2, P < 0.05). Overall, any grade of adverse events (AEs) occured in 46.4% of patients (13/28). Among them, 14.3% of patients (4 of 28) had grade 3 or higher AEs, and were all under control, led to no dose reductions or suspension. CONCLUSION Single-agent furmonertinib 160 mg or in combination of anti-angiogenic agent is an optional salvage therapy for advanced NSCLC patients who developed BM/LM progression from prior EGFR-TKI treatment, with a promising efficacy and an acceptable safety profile, and is worth of further exploration.
Collapse
Affiliation(s)
- Ziyi Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xuezhi Hao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qi Wang
- Department of Medical Oncology, Beijing Chaoyang Sanhuan Hospital, Beijing, 100021, China
| | - Ke Yang
- Department of Medical Oncology, Cancer Hospital of Huanxing, Beijing, 100021, China
| | - Junling Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Puyuan Xing
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
14
|
Wang Y, Li J, Liu T, Ge M, Ji X, Chu Z, Zhan Q, Liang X, Zhou X. Clinical Outcomes of Patients with Epidermal Growth Factor Receptor-Mutated Non-Small-Cell Lung Cancer with Leptomeningeal Metastasis in the Modern Target Therapy Era. World Neurosurg 2023; 170:e500-e509. [PMID: 36396052 DOI: 10.1016/j.wneu.2022.11.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Leptomeningeal metastasis (LM) is a severe complication in patients with non-small-cell lung cancer (NSCLC) and the optimal treatment strategy remains a challenge. This study aimed to investigate the treatment strategies and clinical outcomes in these patients. METHODS We retrospectively reviewed the data of 44 patients with epidermal growth factor receptor (EGFR)-mutated NSCLC with LM between 2014 and 2020 at our institute. The patient characteristics, treatment approaches, LM progression-free survival (LMPFS) and overall survival (OS) after the diagnosis of LM (OSLM) were analyzed. RESULTS The median OSLM was 16.0 months and the 3-year OS rate was 22.5%. The PFSLM in EGFR T790M-positive NSCLC patients with leptomeingeal disease was significantly improved by initiation of third-generation tyrosine kinase inhibitors (TKIs) compared with that of patients who were T790M negative (14.0 vs. 7.0 months; P = 0.030). A significantly higher LM disease control rate was shown in patients who received third-generation TKIs compared with previous generations of TKIs (90.1% vs. 60.0%; P = 0.024). Better Eastern Cooperative Oncology Group performance status, EGFR exon 19del, and clinical improvement of LM after therapy were independently associated with better OS. CONCLUSIONS The survival of patients with NSCLC with LM has improved in the target therapy era. Our study provided real-world clinical evidence that patients with EGFR-mutated NSCLC who developed LM from previous TKIs can be benefit from third-generation EGFR-TKIs, especially for patients with EGFR T790M-positive.
Collapse
Affiliation(s)
- Yu Wang
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Li
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tao Liu
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengxi Ge
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoyu Ji
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhaohui Chu
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiong Zhan
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohua Liang
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Xinli Zhou
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Qi D, Dou Y, Zhang W, Wang M, Li Y, Zhang M, Qin J, Cao J, Fang D, Ma J, Yang W, Xie S, Sun H. The influence of verapamil on the pharmacokinetics of the pan-HER tyrosine kinase inhibitor neratinib in rats: the role of P-glycoprotein-mediated efflux. Invest New Drugs 2023; 41:13-24. [PMID: 36331675 DOI: 10.1007/s10637-022-01314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Neratinib, an irreversible pan-HER tyrosine kinase inhibitor, has been approved for the treatment of HER2-positive (HER2+) early-stage and brain metastatic breast cancer. Thus far, the pharmacology effects and pharmacodynamics of neratinib have been well studied. However, the disposition of neratinib and its influencing factors in vivo remain unclear. P-glycoprotein (P-gp), one of the most extensively studied transporters, substantially restricts penetration of drugs into the body or deeper compartments (i.e., blood-brain barrier, BBB), regarding drug resistance and drug-drug interactions. Thereby, the aim of this study was to investigate the influence of verapamil (a P-gp inhibitor) on the pharmacokinetics of neratinib in rats. Here, we have established a high specific, selective and sensitive ultra-performance liquid chromatography-tandem mass spectrometric (UPLC-MS/MS) method to quantify plasma concentrations of neratinib in rats. Pharmacokinetic results showed that verapamil significantly increased the system exposure of neratinib, as Cmax increased by 2.09-fold and AUC0-t increased by 1.64-fold, respectively. Additionally, the in vitro transport of neratinib was evaluated using Madin-Darby canine kidney II (MDCK II) and human MDR1 gene overexpressed MDCK (MDCK-MDR1) cell line models. As a result, the net flux ratio was over than 2 and decreased over 50% by verapamil, suggesting that neratinib was a substrate of P-gp. Hence, our findings have highlighted the important role of P-gp in the system exposure of neratinib in vivo, and drug-drug interaction should be considered when coadministration of P-gp inhibitors with neratinib. These findings may support the further clinical development and application of neratinib.
Collapse
Affiliation(s)
- Defei Qi
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Yuanyuan Dou
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Wenke Zhang
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Mengqing Wang
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Yingying Li
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Mingzhu Zhang
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Jia Qin
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Jinlan Cao
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Dong Fang
- Academy for Advanced Interdisciplinary Studies, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Jing Ma
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
- Academy for Advanced Interdisciplinary Studies, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Wei Yang
- Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research), Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd, Guangzhou, 510980, Guangdong, China
| | - Songqiang Xie
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China.
| | - Hua Sun
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China.
- Academy for Advanced Interdisciplinary Studies, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China.
| |
Collapse
|
16
|
Capogiri M, De Micheli AJ, Lassaletta A, Muñoz DP, Coppé JP, Mueller S, Guerreiro Stucklin AS. Response and resistance to BRAF V600E inhibition in gliomas: Roadblocks ahead? Front Oncol 2023; 12:1074726. [PMID: 36698391 PMCID: PMC9868954 DOI: 10.3389/fonc.2022.1074726] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
BRAFV600E represents the most common BRAF mutation in all human cancers. Among central nervous system (CNS) tumors, BRAFV600E is mostly found in pediatric low-grade gliomas (pLGG, ~20%) and, less frequently, in pediatric high-grade gliomas (pHGG, 5-15%) and adult glioblastomas (GBM, ~5%). The integration of BRAF inhibitors (BRAFi) in the treatment of patients with gliomas brought a paradigm shift to clinical care. However, not all patients benefit from treatment due to intrinsic or acquired resistance to BRAF inhibition. Defining predictors of response, as well as developing strategies to prevent resistance to BRAFi and overcome post-BRAFi tumor progression/rebound growth are some of the main challenges at present in the field. In this review, we outline current achievements and limitations of BRAF inhibition in gliomas, with a special focus on potential mechanisms of resistance. We discuss future directions of targeted therapy for BRAFV600E mutated gliomas, highlighting how insights into resistance to BRAFi could be leveraged to improve outcomes.
Collapse
Affiliation(s)
- Monica Capogiri
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zurich, Switzerland
| | - Andrea J. De Micheli
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zurich, Switzerland
| | - Alvaro Lassaletta
- Department of Pediatric Hematology and Oncology, Hospital Universitario Niño Jesús, Madrid, Spain
| | - Denise P. Muñoz
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, United States
| | - Jean-Philippe Coppé
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, United States
| | - Sabine Mueller
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zurich, Switzerland,Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, United States
| | - Ana S. Guerreiro Stucklin
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zurich, Switzerland,*Correspondence: Ana S. Guerreiro Stucklin,
| |
Collapse
|
17
|
Alcaniz J, Winkler L, Dahlmann M, Becker M, Orthmann A, Haybaeck J, Krassnig S, Skofler C, Kratzsch T, Kuhn SA, Jödicke A, Linnebacher M, Fichtner I, Walther W, Hoffmann J. Clinically relevant glioblastoma patient-derived xenograft models to guide drug development and identify molecular signatures. Front Oncol 2023; 13:1129627. [PMID: 37114125 PMCID: PMC10126369 DOI: 10.3389/fonc.2023.1129627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/14/2023] [Indexed: 04/29/2023] Open
Abstract
Glioblastoma (GBM) heterogeneity, aggressiveness and infiltrative growth drastically limit success of current standard of care drugs and efficacy of various new therapeutic approaches. There is a need for new therapies and models reflecting the complex biology of these tumors to analyze the molecular mechanisms of tumor formation and resistance, as well as to identify new therapeutic targets. We established and screened a panel of 26 patient-derived subcutaneous (s.c.) xenograft (PDX) GBM models on immunodeficient mice, of which 15 were also established as orthotopic models. Sensitivity toward a drug panel, selected for their different modes of action, was determined. Best treatment responses were observed for standard of care temozolomide, irinotecan and bevacizumab. Matching orthotopic models frequently show reduced sensitivity, as the blood-brain barrier limits crossing of the drugs to the GBM. Molecular characterization of 23 PDX identified all of them as IDH-wt (R132) with frequent mutations in EGFR, TP53, FAT1, and within the PI3K/Akt/mTOR pathway. Their expression profiles resemble proposed molecular GBM subtypes mesenchymal, proneural and classical, with pronounced clustering for gene sets related to angiogenesis and MAPK signaling. Subsequent gene set enrichment analysis identified hallmark gene sets of hypoxia and mTORC1 signaling as enriched in temozolomide resistant PDX. In models sensitive for mTOR inhibitor everolimus, hypoxia-related gene sets reactive oxygen species pathway and angiogenesis were enriched. Our results highlight how our platform of s.c. GBM PDX can reflect the complex, heterogeneous biology of GBM. Combined with transcriptome analyses, it is a valuable tool in identification of molecular signatures correlating with monitored responses. Available matching orthotopic PDX models can be used to assess the impact of the tumor microenvironment and blood-brain barrier on efficacy. Our GBM PDX panel therefore represents a valuable platform for screening regarding molecular markers and pharmacologically active drugs, as well as optimizing delivery of active drugs to the tumor.
Collapse
Affiliation(s)
- Joshua Alcaniz
- Experimental Pharmacology and Oncology GmbH, Berlin, Germany
- *Correspondence: Joshua Alcaniz,
| | - Lars Winkler
- Experimental Pharmacology and Oncology GmbH, Berlin, Germany
| | | | - Michael Becker
- Experimental Pharmacology and Oncology GmbH, Berlin, Germany
| | - Andrea Orthmann
- Experimental Pharmacology and Oncology GmbH, Berlin, Germany
| | - Johannes Haybaeck
- Department of Neuropathology, Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine, Graz, Austria
- Institute of Pathology, Neuropathology, and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefanie Krassnig
- Department of Neuropathology, Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Tobias Kratzsch
- Department of Neurosurgery, Charité Universitätsmedizin, Berlin, Germany
| | - Susanne A. Kuhn
- Department of Neurosurgery, Ernst von Bergmann Hospital, Potsdam, Germany
| | - Andreas Jödicke
- Department of Neurosurgery, Vivantes Hospital Berlin Neukölln, Berlin, Germany
| | - Michael Linnebacher
- Department of Surgery, Molecular Oncology and Immunotherapy, University Medical Center Rostock, Rostock, Germany
| | - Iduna Fichtner
- Experimental Pharmacology and Oncology GmbH, Berlin, Germany
| | - Wolfgang Walther
- Experimental Pharmacology and Oncology GmbH, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center, Charité Universitätsmedizin, Berlin, Germany
| | - Jens Hoffmann
- Experimental Pharmacology and Oncology GmbH, Berlin, Germany
| |
Collapse
|
18
|
Peng X, Zhang S, Wang Y, Zhou Z, Yu Z, Zhong Z, Zhang L, Chen Z, Claret FX, Elkabets M, Wang F, Sun F, Wang R, Liang H, Lin H, Kong D. Stellettin B Sensitizes Glioblastoma to DNA-Damaging Treatments by Suppressing PI3K-Mediated Homologous Recombination Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205529. [PMID: 36453577 PMCID: PMC9875605 DOI: 10.1002/advs.202205529] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Indexed: 06/02/2023]
Abstract
Glioblastoma (GBM) is the most aggressive type of cancer. Its current first-line postsurgery regimens are radiotherapy and temozolomide (TMZ) chemotherapy, both of which are DNA damage-inducing therapies but show very limited efficacy and a high risk of resistance. There is an urgent need to develop novel agents to sensitize GBM to DNA-damaging treatments. Here it is found that the triterpene compound stellettin B (STELB) greatly enhances the sensitivity of GBM to ionizing radiation and TMZ in vitro and in vivo. Mechanistically, STELB inhibits the expression of homologous recombination repair (HR) factors BRCA1/2 and RAD51 by promoting the degradation of PI3Kα through the ubiquitin-proteasome pathway; and the induced HR deficiency then leads to augmented DNA damage and cell death. It is further demonstrated that STELB has the potential to rapidly penetrate the blood-brain barrier to exert anti-GBM effects in the brain, based on zebrafish and nude mouse orthotopic xenograft tumor models. The study provides strong evidence that STELB represents a promising drug candidate to improve GBM therapy in combination with DNA-damaging treatments.
Collapse
Affiliation(s)
- Xin Peng
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
- Department of Bioinformatics and Computational BiologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
- Department of Systems Biologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Shaolu Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Yingying Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Zhicheng Zhou
- Department of Bioinformatics and Computational BiologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
- Department of Systems Biologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Zixiang Yu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Zhenxing Zhong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Liang Zhang
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNY11439USA
| | - Francois X. Claret
- Department of Bioinformatics and Computational BiologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Moshe Elkabets
- The Shraga Segal Department of MicrobiologyImmunology and GeneticsFaculty of Health SciencesBen‐Gurion University of the NegevBeer‐Sheva84105Israel
| | - Feng Wang
- Department of GeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| | - Fan Sun
- Research Center for Marine DrugsState Key Laboratory of Oncogenes and Related GenesDepartment of PharmacyRenji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghai200127China
| | - Ran Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Han Liang
- Department of Bioinformatics and Computational BiologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
- Department of Systems Biologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Hou‐Wen Lin
- Research Center for Marine DrugsState Key Laboratory of Oncogenes and Related GenesDepartment of PharmacyRenji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghai200127China
| | - Dexin Kong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| |
Collapse
|
19
|
Marie S, Frost KL, Hau RK, Martinez-Guerrero L, Izu JM, Myers CM, Wright SH, Cherrington NJ. Predicting disruptions to drug pharmacokinetics and the risk of adverse drug reactions in non-alcoholic steatohepatitis patients. Acta Pharm Sin B 2023; 13:1-28. [PMID: 36815037 PMCID: PMC9939324 DOI: 10.1016/j.apsb.2022.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/18/2022] Open
Abstract
The liver plays a central role in the pharmacokinetics of drugs through drug metabolizing enzymes and transporters. Non-alcoholic steatohepatitis (NASH) causes disease-specific alterations to the absorption, distribution, metabolism, and excretion (ADME) processes, including a decrease in protein expression of basolateral uptake transporters, an increase in efflux transporters, and modifications to enzyme activity. This can result in increased drug exposure and adverse drug reactions (ADRs). Our goal was to predict drugs that pose increased risks for ADRs in NASH patients. Bibliographic research identified 71 drugs with reported ADRs in patients with liver disease, mainly non-alcoholic fatty liver disease (NAFLD), 54 of which are known substrates of transporters and/or metabolizing enzymes. Since NASH is the progressive form of NAFLD but is most frequently undiagnosed, we identified other drugs at risk based on NASH-specific alterations to ADME processes. Here, we present another list of 71 drugs at risk of pharmacokinetic disruption in NASH, based on their transport and/or metabolism processes. It encompasses drugs from various pharmacological classes for which ADRs may occur when used in NASH patients, especially when eliminated through multiple pathways altered by the disease. Therefore, these results may inform clinicians regarding the selection of drugs for use in NASH patients.
Collapse
Affiliation(s)
- Solène Marie
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Kayla L. Frost
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Raymond K. Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Lucy Martinez-Guerrero
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Jailyn M. Izu
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Cassandra M. Myers
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Stephen H. Wright
- College of Medicine, Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Nathan J. Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA,Corresponding author. Tel.: +1 520 6260219; fax: +1 520 6266944.
| |
Collapse
|
20
|
Aili Y, Maimaitiming N, Qin H, Ji W, Fan G, Wang Z, Wang Y. Tumor microenvironment and exosomes in brain metastasis: Molecular mechanisms and clinical application. Front Oncol 2022; 12:983878. [PMID: 36338717 PMCID: PMC9631487 DOI: 10.3389/fonc.2022.983878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/28/2022] [Indexed: 12/03/2022] Open
Abstract
Metastasis is one of the important biological features of malignant tumors and one of the main factors responsible for poor prognosis. Although the widespread application of newer clinical technologies and their continuous development have significantly improved survival in patients with brain metastases, there is no uniform standard of care. More effective therapeutic measures are therefore needed to improve prognosis. Understanding the mechanisms of tumor cell colonization, growth, and invasion in the central nervous system is of particular importance for the prevention and treatment of brain metastases. This process can be plausibly explained by the “seed and soil” hypothesis, which essentially states that tumor cells can interact with various components of the central nervous system microenvironment to produce adaptive changes; it is this interaction that determines the development of brain metastases. As a novel form of intercellular communication, exosomes play a key role in the brain metastasis microenvironment and carry various bioactive molecules that regulate receptor cell activity. In this paper, we review the roles and prospects of brain metastatic tumor cells, the brain metastatic tumor microenvironment, and exosomes in the development and clinical management of brain metastases.
Collapse
Affiliation(s)
- Yirizhati Aili
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Nuersimanguli Maimaitiming
- Department of Four Comprehensive Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Hu Qin
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wenyu Ji
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Guofeng Fan
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zengliang Wang
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- School of Health Management, Xinjiang Medical University, Urumqi, China
- Department of Neurosurgery, Xinjiang Bazhou People’s Hospital, Xinjiang, China
- *Correspondence: Zengliang Wang, ; Yongxin Wang,
| | - Yongxin Wang
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Zengliang Wang, ; Yongxin Wang,
| |
Collapse
|
21
|
Beytagh MC, Weiss WA. EGFR ligands dictate tumour suppression. Nat Cell Biol 2022; 24:1189-1191. [PMID: 35915160 PMCID: PMC10484171 DOI: 10.1038/s41556-022-00967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Amplification of EGFR occurs frequently in glioblastoma. Canonically, EGFR is an oncogene with a major role in cancer pathogenesis. A new study posits a tumor suppressive role of EGFR in EGFR -amplified glioblastoma, regulated by ligand abundance. Increased EGFR ligand in EGFR -amplified glioblastoma suppresses invasion by upregulation of BIN3, inhibiting activation of Rho GTPases.
Collapse
Affiliation(s)
- Mary Clare Beytagh
- Medical Scientist Training Program and Graduate Program in Biomedical Sciences, University of California, San Francisco, CA, USA
| | - William A Weiss
- Medical Scientist Training Program and Graduate Program in Biomedical Sciences, University of California, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.
- Departments of Pediatrics and Neurological Surgery, University of California, San Francisco, CA, USA.
| |
Collapse
|
22
|
Ritonavir-Boosted Exposure of Kinase Inhibitors: an Open Label, Cross-over Pharmacokinetic Proof-of-Concept Trial with Erlotinib. Pharm Res 2022; 39:669-676. [PMID: 35352280 PMCID: PMC8964029 DOI: 10.1007/s11095-022-03244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/21/2022] [Indexed: 11/26/2022]
Abstract
Background Although kinase inhibitors (KIs) are generally effective, their use has a large impact on the current health care budget. Dosing strategies to reduce treatment costs are warranted. Boosting pharmacokinetic exposure of KIs metabolized by cytochrome P450 (CYP)3A4 with ritonavir might result in lower doses needed and subsequently reduces treatment costs. This study is a proof-of-concept study to evaluate if the dose of erlotinib can be reduced by co-administration with ritonavir. Methods In this open-label, cross-over study, we compared the pharmacokinetics of monotherapy erlotinib 150 mg once daily (QD) (control arm) with erlotinib 75 mg QD plus ritonavir 200 mg QD (intervention arm). Complete pharmacokinetic profiles at steady-state were taken up to 24 h after erlotinib intake for both dosing strategies. Results Nine patients were evaluable in this study. For the control arm, the systemic exposure over 24 h, maximum plasma concentration and minimal plasma concentration of erlotinib were 29.3 μg*h/mL (coefficient of variation (CV):58%), 1.84 μg/mL (CV:60%) and 1.00 μg/mL (CV:62%), respectively, compared with 28.9 μg*h/mL (CV:116%, p = 0.545), 1.68 μg/mL (CV:68%, p = 0.500) and 1.06 μg/mL (CV:165%, p = 0.150) for the intervention arm. Exposure to the metabolites of erlotinib (OSI-413 and OSI-420) was statistically significant lower following erlotinib plus ritonavir dosing. Similar results regarding safety in both dosing strategies were observed, no grade 3 or higher adverse event was reported. Conclusions Pharmacokinetic exposure at a dose of 75 mg erlotinib when combined with the strong CYP3A4 inhibitor ritonavir is similar to 150 mg erlotinib. Ritonavir-boosting is a promising strategy to reduce erlotinib treatment costs and provides a rationale for other expensive therapies metabolized by CYP3A4.
Collapse
|
23
|
Kolesar J, Peh S, Thomas L, Baburaj G, Mukherjee N, Kantamneni R, Lewis S, Pai A, Udupa KS, Kumar An N, Rangnekar VM, Rao M. Integration of liquid biopsy and pharmacogenomics for precision therapy of EGFR mutant and resistant lung cancers. Mol Cancer 2022; 21:61. [PMID: 35209919 PMCID: PMC8867675 DOI: 10.1186/s12943-022-01534-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/07/2022] [Indexed: 11/22/2022] Open
Abstract
The advent of molecular profiling has revolutionized the treatment of lung cancer by comprehensively delineating the genomic landscape of the epidermal growth factor receptor (EGFR) gene. Drug resistance caused by EGFR mutations and genetic polymorphisms of drug metabolizing enzymes and transporters impedes effective treatment of EGFR mutant and resistant lung cancer. This review appraises current literature, opportunities, and challenges associated with liquid biopsy and pharmacogenomic (PGx) testing as precision therapy tools in the management of EGFR mutant and resistant lung cancers. Liquid biopsy could play a potential role in selection of precise tyrosine kinase inhibitor (TKI) therapies during different phases of lung cancer treatment. This selection will be based on the driver EGFR mutational status, as well as monitoring the development of potential EGFR mutations arising during or after TKIs treatment, since some of these new mutations may be druggable targets for alternative TKIs. Several studies have identified the utility of liquid biopsy in the identification of EGFR driver and acquired resistance with good sensitivities for various blood-based biomarkers. With a plethora of sequencing technologies and platforms available currently, further evaluations using randomized controlled trials (RCTs) in multicentric, multiethnic and larger patient cohorts could enable optimization of liquid-based assays for the detection of EGFR mutations, and support testing of CYP450 enzymes and drug transporter polymorphisms to guide precise dosing of EGFR TKIs.
Collapse
Affiliation(s)
- Jill Kolesar
- Department of Pharmacy Practice & Science, University of Kentucky, Lexington, KY, 40536, USA
| | - Spencer Peh
- Department of Pharmacy Practice & Science, University of Kentucky, Lexington, KY, 40536, USA
| | - Levin Thomas
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gayathri Baburaj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nayonika Mukherjee
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raveena Kantamneni
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shirley Lewis
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal Comprehensive Cancer Care Centre, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ananth Pai
- Department of Medical Oncology, Kasturba Medical College, Manipal Comprehensive Cancer Care Centre, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Karthik S Udupa
- Department of Medical Oncology, Kasturba Medical College, Manipal Comprehensive Cancer Care Centre, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Naveena Kumar An
- Department of Surgical Oncology, Kasturba Medical College, Manipal Comprehensive Cancer Care Centre, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vivek M Rangnekar
- Markey Cancer Centre and Department of Radiation Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
24
|
Brain Metastasis Treatment: The Place of Tyrosine Kinase Inhibitors and How to Facilitate Their Diffusion across the Blood-Brain Barrier. Pharmaceutics 2021; 13:pharmaceutics13091446. [PMID: 34575525 PMCID: PMC8468523 DOI: 10.3390/pharmaceutics13091446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/28/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
The incidence of brain metastases has been increasing constantly for the last 20 years, because of better control of metastases outside the brain, and the failure of most drugs to cross the blood–brain barrier at relevant pharmacological concentrations. Recent advances in the molecular biology of cancer have led to the identification of numerous molecular alterations, some of them targetable with the development of specific targeted therapies, including tyrosine kinase inhibitors. In this narrative review, we set out to describe the state-of-the-art in the use of tyrosine kinase inhibitors for the treatment of melanoma, lung cancer, and breast cancer brain metastases. We also report preclinical and clinical pharmacological data on brain exposure to tyrosine kinase inhibitors after oral administration and describe the most recent advances liable to facilitate their penetration of the blood–brain barrier at relevant concentrations and limit their physiological efflux.
Collapse
|
25
|
Ibrahim MAA, Badr EAA, Abdelrahman AHM, Almansour NM, Mekhemer GAH, Shawky AM, Moustafa MF, Atia MAM. In Silico Targeting Human Multidrug Transporter ABCG2 in Breast Cancer: Database Screening, Molecular Docking, and Molecular Dynamics Study. Mol Inform 2021; 41:e2060039. [PMID: 34491628 DOI: 10.1002/minf.202060039] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022]
Abstract
ABCG2 is a substantial member of the ABC transporter superfamily that plays a significant role in multidrug resistance in cancer. Until recently, the 3D structure of ABCG2 has not been resolved, which resulted in the limitation of developing potential ABCG2 inhibitors using structure-based drug discovery. Herein, eMolecules, ChEMBL, and ChEBI databases, containing >25 million compounds, were virtually screened against the ABCG2 transporter in homodimer form. Performance of AutoDock4.2.6 software to predict inhibitor-ABCG2 binding mode and affinity were validated on the basis of available experimental data. The explored databases were filtered based on docking scores. The most potent hits with binding affinities higher than that of experimental bound ligand (MZ29) were then selected and subjected to molecular mechanics minimization, followed by binding energy calculation using molecular mechanics-generalized Born surface area (MM-GBSA) approach. Furthermore, molecular dynamics simulations for 50 ns, followed by MM-GBSA binding energy calculations, were performed for the promising compounds, unveiling eight potential inhibitors with binding affinities <-55.8 kcal/mol. Structural and energetic analyses demonstrated the stability of the eight identified inhibitors over the 50 ns MD simulation. This research sheds light on the potentiality of the identified ABCG2 inhibitors as a therapeutic approach to overcome multidrug resistance cancer therapy.
Collapse
Affiliation(s)
- Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Esraa A A Badr
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Alaa H M Abdelrahman
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin, 1803, Saudi Arabia
| | - Gamal A H Mekhemer
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Mahmoud F Moustafa
- Department of Biology, College of Science, King Khalid University, Abha, 9004, Saudi Arabia.,Department of Botany & Microbiology, Faculty of Science, South Valley University, Qena, Egypt
| | - Mohamed A M Atia
- Molecular Genetics and Genome Mapping Laboratory, Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, 12619, Egypt
| |
Collapse
|
26
|
Zhao S, Cong X, Liu Z. Successful treatment of 2 patients with brain metastases from non-small cell lung cancer with epidermal growth factor receptor mutation receiving dacomitinib: A case report. Medicine (Baltimore) 2021; 100:e26680. [PMID: 34397694 PMCID: PMC8322497 DOI: 10.1097/md.0000000000026680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/07/2021] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Approximately 20% of patients with non-small cell lung cancer (NSCLC) are diagnosed with brain metastasis, which is related to poor survival outcomes. The ability of tyrosine kinase inhibitor drugs to penetrate the blood-brain barrier makes them a potential option for intracranial metastases. Dacomitinib, an irreversible second-generation pan-HER tyrosine kinase inhibitor, has become a standard therapy for patients with epidermal growth factor receptor mutations. However, its efficacy in patients with brain metastases (BMs) is not yet established. Here, we present 2 patients with epidermal growth factor receptor-mutant NSCLC with brain metastasis. After initiation of dacomitinib as first-line treatment, a significant clinical response was achieved, and a long-lasting complete remission was achieved in 1 patient up to this date. PATIENT CONCERN Case 1 was a 47-year-old man who was admittedtothe hospital because of recurrent cough and expectoration for >1 year. Chest computed tomography scans revealed a high-density shadow in the left upper lobe. Cranial magnetic resonance imaging indicated an abnormal nodular enhancement in the right cerebellar hemisphere. Case 2 was a 55-year-old man with a chief complaint of intermittent cough and expectoration for >1 month. Chest computed tomography revealed a high-density mass in the left superior lobe. Magnetic resonance imaging of the central nervous system revealed 2 abnormal nodular enhancements in the left frontal lobe. DIAGNOSIS Both patients were diagnosed with lung adenocarcinoma by bronchoscopy and lymph node biopsy. INTERVENTIONS Both patients received dacomitinib 30 mg once daily as first-line therapy for 8 and 11 months, respectively until disease progression. OUTCOME After treatment with dacomitinib, both patients achieved complete response in BMs. Progression-free survival was 11 and 8 months, respectively. LESSONS Dacomitinib strongly controlled BMs in patients with advanced NSCLC, and the adverse reactions were tolerable. Dacomitinib may be considered a new treatment option for these patients. Further prospective studies are recommended to confirm this conclusion.
Collapse
|
27
|
Tournier N, Goutal S, Mairinger S, Hernández-Lozano I, Filip T, Sauberer M, Caillé F, Breuil L, Stanek J, Freeman AF, Novarino G, Truillet C, Wanek T, Langer O. Complete inhibition of ABCB1 and ABCG2 at the blood-brain barrier by co-infusion of erlotinib and tariquidar to improve brain delivery of the model ABCB1/ABCG2 substrate [ 11C]erlotinib. J Cereb Blood Flow Metab 2021; 41:1634-1646. [PMID: 33081568 PMCID: PMC8221757 DOI: 10.1177/0271678x20965500] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) restrict at the blood-brain barrier (BBB) the brain distribution of the majority of currently known molecularly targeted anticancer drugs. To improve brain delivery of dual ABCB1/ABCG2 substrates, both ABCB1 and ABCG2 need to be inhibited simultaneously at the BBB. We examined the feasibility of simultaneous ABCB1/ABCG2 inhibition with i.v. co-infusion of erlotinib and tariquidar by studying brain distribution of the model ABCB1/ABCG2 substrate [11C]erlotinib in mice and rhesus macaques with PET. Tolerability of the erlotinib/tariquidar combination was assessed in human embryonic stem cell-derived cerebral organoids. In mice and macaques, baseline brain distribution of [11C]erlotinib was low (brain distribution volume, VT,brain < 0.3 mL/cm3). Co-infusion of erlotinib and tariquidar increased VT,brain in mice by 3.0-fold and in macaques by 3.4- to 5.0-fold, while infusion of erlotinib alone or tariquidar alone led to less pronounced VT,brain increases in both species. Treatment of cerebral organoids with erlotinib/tariquidar led to an induction of Caspase-3-dependent apoptosis. Co-infusion of erlotinib/tariquidar may potentially allow for complete ABCB1/ABCG2 inhibition at the BBB, while simultaneously achieving brain-targeted EGFR inhibition. Our protocol may be applicable to enhance brain delivery of molecularly targeted anticancer drugs for a more effective treatment of brain tumors.
Collapse
Affiliation(s)
- Nicolas Tournier
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Sebastien Goutal
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France.,MIRCen, CEA/IBFJ/DRF-JACOB/LMN, UMR CEA CNRS 9199-Université Paris Saclay, Fontenay-aux-Roses, France
| | - Severin Mairinger
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | | | - Thomas Filip
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Michael Sauberer
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Fabien Caillé
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Louise Breuil
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Johann Stanek
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Anna F Freeman
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Gaia Novarino
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Charles Truillet
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Thomas Wanek
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Oliver Langer
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria.,Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
El-Khayat SM, Arafat WO. Therapeutic strategies of recurrent glioblastoma and its molecular pathways 'Lock up the beast'. Ecancermedicalscience 2021; 15:1176. [PMID: 33680090 PMCID: PMC7929780 DOI: 10.3332/ecancer.2021.1176] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) has a poor prognosis-despite aggressive primary treatment composed of surgery, radiotherapy and chemotherapy, median survival is still around 15 months. It starts to grow again after a year of treatment and eventually nothing is effective at this stage. Recurrent GBM is one of the most disappointing fields for researchers in which their efforts have gained no benefit for patients. They were directed for a long time towards understanding the molecular basis that leads to the development of GBM. It is now known that GBM is a heterogeneous disease and resistance comes mainly from the regrowth of malignant cells after eradicating specific clones by targeted treatment. Epidermal growth factor receptor, platelet derived growth factor receptor, vascular endothelial growth factor receptor are known to be highly active in primary and recurrent GBM through different underlying pathways, despite this bevacizumab is the only Food and Drug Administration (FDA) approved drug for recurrent GBM. Immunotherapy is another important promising modality of treatment of GBM, after proper understanding of the microenvironment of the tumour and overcoming the reasons that historically stigmatise GBM as an 'immunologically cold tumour'. Radiotherapy can augment the effect of immunotherapy by different mechanisms. Also, dual immunotherapy which targets immune pathways at different stages and through different receptors further enhances immune stimulation against GBM. Delivery of pro-drugs to be activated at the tumour site and suicidal genes by gene therapy using different vectors shows promising results. Despite using neurotropic viral vectors specifically targeting glial cells (which are the cells of origin of GBM), no significant improvement of overall-survival has been seen as yet. Non-viral vectors 'polymeric and non-polymeric' show significant tumour shrinkage in pre-clinical trials and now at early-stage clinical trials. To this end, in this review, we aim to study the possible role of different molecular pathways that are involved in GBM's recurrence, we will also review the most relevant and recent clinical experience with targeted treatments and immunotherapies. We will discuss trials utilised tyrosine receptor kinase inhibitors, immunotherapy and gene therapy in recurrent GBM pointing to the causes of potential disappointing preliminary results of some of them. Additionally, we are suggesting a possible future treatment based on recent successful clinical data that could alter the outcome for GBM patients.
Collapse
Affiliation(s)
- Shaimaa M El-Khayat
- Cancer Management and Research Department, Medical Research Institute, Alexandria University, Alexandria 21568, Egypt
| | - Waleed O Arafat
- Alexandria Clinical Oncology Department, Alexandria University, Alexandria 21568, Egypt
| |
Collapse
|
29
|
Varan G, Akkın S, Demirtürk N, Benito JM, Bilensoy E. Erlotinib entrapped in cholesterol-depleting cyclodextrin nanoparticles shows improved antitumoral efficacy in 3D spheroid tumors of the lung and the liver. J Drug Target 2020; 29:439-453. [PMID: 33210947 DOI: 10.1080/1061186x.2020.1853743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Erlotinib (ERL), a tyrosine kinase inhibitor approved for therapeutic use in non-small cell lung cancer is further researched for eventual liver cancer treatment. However, conventional ERL has important bioavailability problems resulting from oral administration, poor solubility and gastrointestinal degradation into inactive metabolites. Alternative administration routes and nanoparticulate drug delivery systems are studied to prevent or reduce these drawbacks. In this study, ERL-loaded CD nanosphere and nanocapsule formulations capable of cholesterol depletion in resistant cancer cells were evaluated for ERL delivery. Drug loading and release profile depended largely on the surface charge of nanoparticles. Antiproliferative activity data obtained from 2D and 3D cell culture models demonstrated that polycationic βCD nanocapsules were the most effective formulation for ERL delivery to lung and liver cancer cells. 3D tumour tumoral penetration studies further revealed that nanocapsule formulations penetrated deeper into the tumour through the multilayered cells. Furthermore, all formulations were able to extract membrane cholesterol from lung and liver cancer cell lines, indicating the induction of apoptosis and overcoming drug resistance. In conclusion, given their tumoral penetration and cell membrane cholesterol depletion abilities, amphiphilic CD nanocapsules emerge as promising alternatives to improve the safety and efficiency of ERL treatment of both liver and lung tumours.
Collapse
Affiliation(s)
- Gamze Varan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Safiye Akkın
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Nurbanu Demirtürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Juan M Benito
- Institute for Chemical Research, CSIC - University of Sevilla, Sevilla, Spain
| | - Erem Bilensoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
30
|
Mizusaki S, Otsubo K, Ninomiya T, Arimura H, Tsuchiya-Kawano Y, Inoue K. Remarkable response to dacomitinib in a patient with leptomeningeal carcinomatosis due to EGFR-mutant non-small cell lung cancer. Thorac Cancer 2020; 12:114-116. [PMID: 33112047 PMCID: PMC7779185 DOI: 10.1111/1759-7714.13712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
Dacomitinib, a second‐generation epidermal growth factor receptor (EGFR)‐tyrosine kinase inhibitor, is a standard therapeutic option for patients with EGFR‐mutant non‐small cell lung cancer (NSCLC). However, its efficacy in patients with central nervous system lesions is unclear. Here, we describe a case of EGFR‐mutant NSCLC whose neurological symptoms were due to leptomeningeal carcinomatosis that was successfully treated with dacomitinib. After initiation of dacomitinib, the neurological symptoms of the patient were remarkably improved and leptomeningeal dissemination and brain metastases were shown to have regressed on magnetic resonance imaging (MRI) scan. To our knowledge, this is the first report showing the efficacy of dacomitinib in a patient with leptomeningeal carcinomatosis due to EGFR‐mutant NSCLC. The current case suggests that dacomitinib is a novel treatment option for patients with EGFR‐mutant NSCLC accompanied by central nervous system lesions, even those with symptomatic leptomeningeal carcinomatosis. Key points Significant findings of the study This is the first report showing the efficacy of dacomitinib in a patient with leptomeningeal carcinomatosis due to EGFR‐mutant NSCLC. What this study adds The current case suggests that dacomitinib is a novel treatment option for patients with EGFR‐mutant NSCLC accompanied by CNS lesions, even in those with symptomatic leptomeningeal carcinomatosis.
Collapse
Affiliation(s)
- Shun Mizusaki
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, Fukuoka, Japan
| | - Kohei Otsubo
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, Fukuoka, Japan
| | - Toshifumi Ninomiya
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, Fukuoka, Japan
| | - Hidenobu Arimura
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, Fukuoka, Japan
| | - Yuko Tsuchiya-Kawano
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, Fukuoka, Japan
| | - Koji Inoue
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, Fukuoka, Japan
| |
Collapse
|
31
|
Jnaidi R, Almeida AJ, Gonçalves LM. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as Smart Drug Delivery Systems in the Treatment of Glioblastoma Multiforme. Pharmaceutics 2020; 12:E860. [PMID: 32927610 PMCID: PMC7558650 DOI: 10.3390/pharmaceutics12090860] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant type of brain tumor. In fact, tumor recurrence usually appears a few months after surgical resection and chemotherapy, mainly due to many factors that make GBM treatment a real challenge, such as tumor location, heterogeneity, presence of the blood-brain barrier (BBB), and others. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) represent the most promising carriers for therapeutics delivery into the central nervous system (CNS) owing to their inherent ability to cross the BBB. In this review, we present the main challenges in GBM treatment, a description of SLNs and NLCs and their valuable role as drug carriers in GBM treatment, and finally, a detailed description of all modification strategies that aim to change composition of SLNs and NLCs to enhance treatment outcomes. This includes modification of SLNs and NLCs to improve crossing the BBB, reduced GBM cell resistance, target GBM cells selectively minimizing side effects, and modification strategies to enhance SLNs and NLCs nose-to-brain delivery. Finally, future perspectives on their use are also be discussed, to provide insight about all strategies with SLNs and NLCs formulation that could result in drug delivery systems for GBM treatment with highly effective theraputic and minimum undesirable effects.
Collapse
Affiliation(s)
| | | | - Lídia M. Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (R.J.); (A.J.A.)
| |
Collapse
|
32
|
Leptomeningeal Metastases in Non-small Cell Lung Cancer: Optimal Systemic Management in NSCLC With and Without Driver Mutations. Curr Treat Options Oncol 2020; 21:72. [PMID: 32725549 DOI: 10.1007/s11864-020-00759-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OPINION STATEMENT As a devastating complication of non-small cell lung cancer (NSCLC), the incidence of leptomeningeal metastasis (LM) is rising, largely due to overall longer survival of NSCLC, especially in patients with targetable molecular driver mutations. There is no clear consensus on the optimal management of LM. This review will cover recent advances in diagnosis, monitoring, and treatment of LM in NSCLC. In LM without oncogene drivers, systemic chemotherapy, intrathecal therapy, and radiation have modestly improved the clinical outcomes. Emerging data have also suggested encouraging activity of immunotherapy. At the same time, in LM with sensitizing EGFR mutations, osimertinib should be considered regardless of T790M status. Pulse erlotinib, afatinib, and newer agents with improved CNS penetration have also shown benefits. Moreover, accumulating evidences support potential benefits of molecularly targeted therapy in ALK-rearranged and other oncogene-driven NSCLC with LM. Future studies are warranted to better define the underlying mechanism, to optimize the clinical management, and to improve patient outcomes.
Collapse
|
33
|
van Vliet EA, Iyer AM, Mesarosova L, Çolakoglu H, Anink JJ, van Tellingen O, Maragakis NJ, Shefner J, Bunt T, Aronica E. Expression and Cellular Distribution of P-Glycoprotein and Breast Cancer Resistance Protein in Amyotrophic Lateral Sclerosis Patients. J Neuropathol Exp Neurol 2020; 79:266-276. [PMID: 31999342 PMCID: PMC7036662 DOI: 10.1093/jnen/nlz142] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 11/23/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
For amyotrophic lateral sclerosis (ALS), achieving and maintaining effective drug levels in the brain is challenging due to the activity of ATP-binding cassette (ABC) transporters which efflux drugs that affect drug exposure and response in the brain. We investigated the expression and cellular distribution of the ABC transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) using immunohistochemistry in spinal cord (SC), motor cortex, and cerebellum from a large cohort of genetically well characterized ALS patients (n = 25) and controls (n = 14). The ALS group included 17 sporadic (sALS) and 8 familial (fALS) patients. Strong P-gp expression was observed in endothelial cells in both control and ALS specimens. Immunohistochemical analysis showed higher P-gp expression in reactive astroglial cells in both gray (ventral horn) and white matter of the SC, as well as in the motor cortex of all ALS patients, as compared with controls. BCRP expression was higher in glia in the SC and in blood vessels and glia in the motor cortex of ALS patients, as compared with controls. P-gp and BCRP immunoreactivity did not differ between sALS and fALS cases. The upregulation of both ABC transporters in the brain may explain multidrug resistance in ALS patients and has implications for the use of both approved and experimental therapeutics.
Collapse
Affiliation(s)
- Erwin A van Vliet
- From the Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam
| | - Anand M Iyer
- From the Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience
| | - Lucia Mesarosova
- From the Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience
| | - Hilal Çolakoglu
- Division of Pharmacology, The Netherlands Cancer Institute (HÇ, OvT), Amsterdam, The Netherlands
| | - Jasper J Anink
- From the Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute (HÇ, OvT), Amsterdam, The Netherlands
| | - Nicholas J Maragakis
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeremy Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona
| | - Ton Bunt
- Izumi Biosciences, Inc., Lexington, Massachusetts
| | - Eleonora Aronica
- From the Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience
| |
Collapse
|
34
|
Ellingson BM, Yao J, Raymond C, Nathanson DA, Chakhoyan A, Simpson J, Garner JS, Olivero AG, Mueller LU, Rodon J, Gerstner E, Cloughesy TF, Wen PY. Multiparametric MR-PET Imaging Predicts Pharmacokinetics and Clinical Response to GDC-0084 in Patients with Recurrent High-Grade Glioma. Clin Cancer Res 2020; 26:3135-3144. [PMID: 32269051 DOI: 10.1158/1078-0432.ccr-19-3817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/14/2020] [Accepted: 04/03/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE GDC-0084 is an oral, brain-penetrant small-molecule inhibitor of PI3K and mTOR. Because these two targets alter tumor vascularity and metabolism, respectively, we hypothesized multiparametric MR-PET could be used to quantify the response, estimate pharmacokinetic (PK) parameters, and predict progression-free survival (PFS) in patients with recurrent malignant gliomas. PATIENTS AND METHODS Multiparametric advanced MR-PET imaging was performed to evaluate physiologic response in a first-in-man, multicenter, phase I, dose-escalation study of GDC-0084 (NCT01547546) in 47 patients with recurrent malignant glioma. RESULTS Measured maximum concentration (C max) was associated with a decrease in enhancing tumor volume (P = 0.0287) and an increase in fractional anisotropy (FA; P = 0.0418). Posttreatment tumor volume, 18F-FDG uptake, Ktrans, and relative cerebral blood volume (rCBV) were all correlated with C max. A linear combination of change in 18F-FDG PET uptake, apparent diffusion coefficient (ADC), FA, Ktrans, vp, and rCBV was able to estimate both C max (R2 = 0.4113; P < 0.0001) and drug exposure (AUC; R2 = 0.3481; P < 0.0001). Using this composite multiparametric MR-PET imaging response biomarker to predict PK, patients with an estimated C max > 0.1 μmol/L and AUC > 1.25 μmol/L*hour demonstrated significantly longer PFS compared with patients with a lower estimated concentration and exposure (P = 0.0039 and P = 0.0296, respectively). CONCLUSIONS Results from this study suggest composite biomarkers created from multiparametric MR-PET imaging targeting metabolic and/or physiologic processes specific to the drug mechanism of action may be useful for subsequent evaluation of treatment efficacy for larger phase II-III studies.
Collapse
Affiliation(s)
- Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California. .,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.,Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.,UCLA Neuro-Oncology Program, University of California, Los Angeles, Los Angeles, California
| | - Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California.,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California.,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Ararat Chakhoyan
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California.,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jeremy Simpson
- Kazia Therapeutics Limited, Sydney, New South Wales, Australia
| | - James S Garner
- Kazia Therapeutics Limited, Sydney, New South Wales, Australia
| | | | | | - Jordi Rodon
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Elizabeth Gerstner
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Timothy F Cloughesy
- UCLA Neuro-Oncology Program, University of California, Los Angeles, Los Angeles, California.,Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
35
|
Chi AS, Cahill DP, Reardon DA, Wen PY, Mikkelsen T, Peereboom DM, Wong ET, Gerstner ER, Dietrich J, Plotkin SR, Norden AD, Lee EQ, Nayak L, Tanaka S, Wakimoto H, Lelic N, Koerner MV, Klofas LK, Bertalan MS, Arrillaga-Romany IC, Betensky RA, Curry WT, Borger DR, Balaj L, Kitchen RR, Chakrabortty SK, Valentino MD, Skog J, Breakefield XO, Iafrate AJ, Batchelor TT. Exploring Predictors of Response to Dacomitinib in EGFR-Amplified Recurrent Glioblastoma. JCO Precis Oncol 2020; 4:1900295. [PMID: 32923886 DOI: 10.1200/po.19.00295] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2020] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Despite the high frequency of EGFR genetic alterations in glioblastoma (GBM), EGFR-targeted therapies have not had success in this disease. To improve the likelihood of efficacy, we targeted adult patients with recurrent GBM enriched for EGFR gene amplification, which occurs in approximately half of GBM, with dacomitinib, a second-generation, irreversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that penetrates the blood-brain barrier, in a multicenter phase II trial. PATIENTS AND METHODS We retrospectively explored whether previously described EGFR extracellular domain (ECD)-sensitizing mutations in the context of EGFR gene amplification could predict response to dacomitinib, and in a predefined subset of patients, we measured post-treatment intratumoral dacomitinib levels to verify tumor penetration. RESULTS We found that dacomitinib effectively penetrates contrast-enhancing GBM tumors. Among all 56 treated patients, 8 (14.3%) had a clinical benefit as defined by a duration of treatment of at least 6 months, of whom 5 (8.9%) remained progression free for at least 1 year. Presence of EGFRvIII or EGFR ECD missense mutation was not associated with clinical benefit. We evaluated the pretreatment transcriptome in circulating extracellular vesicles (EVs) by RNA sequencing in a subset of patients and identified a signature that distinguished patients who had durable benefit versus those with rapid progression. CONCLUSION While dacomitinib was not effective in most patients with EGFR-amplified GBM, a subset experienced a durable, clinically meaningful benefit. Moreover, EGFRvIII and EGFR ECD mutation status in archival tumors did not predict clinical benefit. RNA signatures in circulating EVs may warrant investigation as biomarkers of dacomitinib efficacy in GBM.
Collapse
Affiliation(s)
- Andrew S Chi
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Daniel P Cahill
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - David A Reardon
- Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, Boston, MA
| | - Patrick Y Wen
- Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, Boston, MA
| | - Tom Mikkelsen
- Ontario Brain Institute, Toronto, Ontario, Canada.,Henry Ford Hospital, Detroit, MI
| | | | - Eric T Wong
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | | | - Jorg Dietrich
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Scott R Plotkin
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Andrew D Norden
- Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, Boston, MA
| | - Eudocia Q Lee
- Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, Boston, MA
| | - Lakshmi Nayak
- Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, Boston, MA
| | - Shota Tanaka
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Hiroaki Wakimoto
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Nina Lelic
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Mara V Koerner
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Lindsay K Klofas
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Mia S Bertalan
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | | | - William T Curry
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Darrel R Borger
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Leonora Balaj
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | | | | | | | | | - A John Iafrate
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Tracy T Batchelor
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
36
|
Bryukhovetskiy I, Pak O, Khotimchenko Y, Bryukhovetskiy A, Sharma A, Sharma HS. Personalized therapy and stem cell transplantation for pro-inflammatory modulation of cancer stem cells microenvironment in glioblastoma: Review. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 151:67-98. [PMID: 32448615 DOI: 10.1016/bs.irn.2020.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive types of brain tumor in humans. The prognosis for patients with GBM is unfavorable and treatment is largely ineffective, where modern treatment regimens typically increase survival by 15 months. GBM relapse and progression are associated with cancer stem cells (CSCs). The present review provides a critical analysis of the primary reasons underlying the lack of effectiveness of modern CSC management methods. An emphasis is placed on the role of the blood-brain barrier in the development of treatment resistance. The existing methods for increasing the efficiency of antitumor genotoxic therapy are also described, and a strategy for personalized regulation of CSC based on post-genome technologies is suggested. The hypothesis that GBM cells employ a special mechanism for DNA repair based on their interactions with normal stem cells, is presented and the function of the tumor microenvironment in fulfilling the antitumor potential of normal stem cells is explained. Additionally, the mechanisms by which cancer stem cells regulate glioblastoma progression and recurrence are described based on novel biomedical technologies.
Collapse
Affiliation(s)
- Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia.
| | - Oleg Pak
- Medical Center, Far Eastern Federal University, Vladivostok, Russia
| | - Yuri Khotimchenko
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Andrey Bryukhovetskiy
- NeuroVita Clinic of Interventional and Restorative Neurology and Therapy, Moscow, Russia
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, S-75185 Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, S-75185 Uppsala, Sweden
| |
Collapse
|
37
|
Hyun DG, Choi CM, Lee DH, Kim SW, Yoon S, Kim WS, Ji W, Lee JC. Outcomes according to initial and subsequent therapies following intracranial progression in patients with EGFR-mutant lung cancer and brain metastasis. PLoS One 2020; 15:e0231546. [PMID: 32298306 PMCID: PMC7162462 DOI: 10.1371/journal.pone.0231546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/25/2020] [Indexed: 12/25/2022] Open
Abstract
In patients with epidermal growth factor receptor (EGFR)-mutant non–small-cell lung cancer (NSCLC) with brain metastases, it remains controversial whether the use of EGFR-tyrosine kinase inhibitor (TKI) alone without radiotherapy (RT) is an optimal approach. Here, we investigated the clinical outcomes according to the use of upfront RT as well as the subsequent therapy following intracranial progression. This single-centre retrospective study included a total of 173 patients who were treated with EGFR-TKI alone (TKI alone group) or with upfront whole-brain RT (WBRT) or stereotactic radiosurgery (SRS) followed by EGFR-TKI (RT plus TKI group). Clinical outcomes according to initial and subsequent therapies following intracranial progression were analysed. There was no significant difference in OS according to the use of upfront RT (TKI alone group, 24.5 months vs. WBRT group, 20.0 months vs. SRS group, 17.8 months; P = 0.186). Intracranial progression was found in 35 (32.7%) of 107 patients in the TKI alone group. Among them, 19 patients who received salvage RT had the better prognosis than others [median overall survival (OS); 28.6 vs. 11.2 months; P = 0.041]. In the RT plus TKI group, 12 (18.1%) of the 66 patients experienced intracranial progression and 3 of them received salvage RT (median OS; 37.4 vs. 20.0 months; P = 0.044). In multivariate analysis, upfront WBRT was associated with trends towards a lower probability of intracranial progression, whereas upfront SRS was found to be an independent risk factor for poor OS. In conclusion, using EGFR-TKI alone for brain metastasis in EGFR-mutant lung cancer patients showed outcomes comparable to those using upfront RT followed by EGFR-TKI. Patients who could not receive salvage RT following intracranial progression had the worst survival regardless of the type of initial treatment.
Collapse
Affiliation(s)
- Dong-gon Hyun
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Songpa-Gu, Seoul, Republic of Korea
| | - Chang-Min Choi
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Songpa-Gu, Seoul, Republic of Korea
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Songpa-Gu, Seoul, Republic of Korea
| | - Dae Ho Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Songpa-Gu, Seoul, Republic of Korea
| | - Sang-We Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Songpa-Gu, Seoul, Republic of Korea
| | - Shinkyo Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Songpa-Gu, Seoul, Republic of Korea
| | - Woo Sung Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Songpa-Gu, Seoul, Republic of Korea
| | - Wonjun Ji
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Songpa-Gu, Seoul, Republic of Korea
- * E-mail: (WJ); (JCL)
| | - Jae Cheol Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Songpa-Gu, Seoul, Republic of Korea
- * E-mail: (WJ); (JCL)
| |
Collapse
|
38
|
Li R, Zhou X, Yao H, Li L. Four generations of EGFR TKIs associated with different pathogenic mutations in non-small cell lung carcinoma. J Drug Target 2020; 28:861-872. [PMID: 32118494 DOI: 10.1080/1061186x.2020.1737934] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Non-small cell lung carcinoma (NSCLC) is a malignant tumour with poor prognosis and high mortality. Platinum-based dual-agent chemotherapy is the main therapeutic regimen for this disease. In recent years, because of the introduction of molecular targeted therapy, various targeted therapeutic agents against epidermal growth factor receptor (EGFR) have been rapidly developed, which has become a research hotspot for NSCLC treatment. Here, we review the latest studies describing the features and types of EGFR pathogenic mutations, currently established EGFR-tyrosine kinase inhibitors from the first to fourth generation, including their action mechanisms, acquired resistance, and clinical applications, and potential challenges and perspectives that current researchers should address.
Collapse
Affiliation(s)
- Rui Li
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, P. R. China
| | - Xiaofei Zhou
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, P. R. China
| | - Hongjuan Yao
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, P. R. China
| | - Liang Li
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, P. R. China
| |
Collapse
|
39
|
Peng Y, Chen L, Ye S, Kang Y, Liu J, Zeng S, Yu L. Research and development of drug delivery systems based on drug transporter and nano-formulation. Asian J Pharm Sci 2020; 15:220-236. [PMID: 32373201 PMCID: PMC7193453 DOI: 10.1016/j.ajps.2020.02.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/16/2020] [Accepted: 02/29/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, the continuous occurrence of multi-drug resistance in the clinic has made people pay more attention to the transporter. Changes in the expression and activity of transporters can cause corresponding changes in drug pharmacokinetics and pharmacodynamics. The drug-drug interactions (DDI) caused by transporters can seriously affect drug effectiveness and toxicity. In the development of pharmaceutical preparations, people have increasingly concerned about the effects and regulation of transporters in drug effects. To improve the targeting and physicochemical properties of drugs, the development of targeted agents is very rapid. Among them, novel nano-formulations are the best. With the continuous innovation and development of nano-formulation, its application has become more and more extensive. Nano-formulation has exerted certain advantages in the drug development based on transporters, and is also involved in the combination of targeted transporters. This review focuses on the application of novel nano-agents targeting transporters and the introduction of drug-transporter-based nano-formulations.
Collapse
Affiliation(s)
- Yi Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lu Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng Ye
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yu Kang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junqing Liu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Su Zeng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lushan Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
40
|
Dong J, Qin Z, Zhang WD, Cheng G, Yehuda AG, Ashby CR, Chen ZS, Cheng XD, Qin JJ. Medicinal chemistry strategies to discover P-glycoprotein inhibitors: An update. Drug Resist Updat 2020; 49:100681. [PMID: 32014648 DOI: 10.1016/j.drup.2020.100681] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022]
Abstract
The presence of multidrug resistance (MDR) in malignant tumors is one of the primary causes of treatment failure in cancer chemotherapy. The overexpression of the ATP binding cassette (ABC) transporter, P-glycoprotein (P-gp), which significantly increases the efflux of certain anticancer drugs from tumor cells, produces MDR. Therefore, inhibition of P-gp may represent a viable therapeutic strategy to overcome cancer MDR. Over the past 4 decades, many compounds with P-gp inhibitory efficacy (referred to as first- and second-generation P-gp inhibitors) have been identified or synthesized. However, these compounds were not successful in clinical trials due to a lack of efficacy and/or untoward toxicity. Subsequently, third- and fourth-generation P-gp inhibitors were developed but dedicated clinical trials did not indicate a significant therapeutic effect. In recent years, an extraordinary array of highly potent, selective, and low-toxicity P-gp inhibitors have been reported. Herein, we provide a comprehensive review of the synthetic and natural products that have specific inhibitory activity on P-gp drug efflux as well as promising chemosensitizing efficacy in MDR cancer cells. The present review focuses primarily on the structural features, design strategies, and structure-activity relationships (SAR) of these compounds.
Collapse
Affiliation(s)
- Jinyun Dong
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zuodong Qin
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Wei-Dong Zhang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Gang Cheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Assaraf G Yehuda
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Charles R Ashby
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| | - Jiang-Jiang Qin
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
41
|
Tea MN, Poonnoose SI, Pitson SM. Targeting the Sphingolipid System as a Therapeutic Direction for Glioblastoma. Cancers (Basel) 2020; 12:cancers12010111. [PMID: 31906280 PMCID: PMC7017054 DOI: 10.3390/cancers12010111] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most commonly diagnosed malignant brain tumor in adults. The prognosis for patients with GBM remains poor and largely unchanged over the last 30 years, due to the limitations of existing therapies. Thus, new therapeutic approaches are desperately required. Sphingolipids are highly enriched in the brain, forming the structural components of cell membranes, and are major lipid constituents of the myelin sheaths of nerve axons, as well as playing critical roles in cell signaling. Indeed, a number of sphingolipids elicit a variety of cellular responses involved in the development and progression of GBM. Here, we discuss the role of sphingolipids in the pathobiology of GBM, and how targeting sphingolipid metabolism has emerged as a promising approach for the treatment of GBM.
Collapse
Affiliation(s)
- Melinda N. Tea
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5001, Australia;
| | - Santosh I. Poonnoose
- Department of Neurosurgery, Flinders Medical Centre, Adelaide, SA 5042, Australia;
| | - Stuart M. Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5001, Australia;
- Adelaide Medical School and School of Biological Sciences, University of Adelaide, SA 5001, Australia
- Correspondence: ; Tel.: +61-8-8302-7832; Fax: +61-8-8302-9246
| |
Collapse
|
42
|
Co-delivery of GOLPH3 siRNA and gefitinib by cationic lipid-PLGA nanoparticles improves EGFR-targeted therapy for glioma. J Mol Med (Berl) 2019; 97:1575-1588. [PMID: 31673738 DOI: 10.1007/s00109-019-01843-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/10/2019] [Accepted: 10/09/2019] [Indexed: 12/19/2022]
Abstract
Glioblastoma is one of the most aggressive types of brain tumor. Epidermal growth factor receptors (EGFRs) are overexpressed in glioma, and EGFR amplifications and mutations lead to rapid proliferation and invasion. EGFR-targeted therapy might be an effective treatment for glioma. Gefitinib (Ge) is an EGFR tyrosine kinase inhibitor (TKI), and Golgi phosphoprotein 3 (GOLPH3) expression is associated with worse glioma prognosis. Downregulation of GOLPH3 could promote EGFR degradation. Here, an angiopep-2 (A2)-modified cationic lipid-poly (lactic-co-glycolic acid) (PLGA) nanoparticle (A2-N) was developed that can release Ge and GOLPH3 siRNA (siGOLPH3) upon entering glioma cells and therefore acts as a combinatorial anti-tumor therapy. The in vitro and in vivo studies proved that A2-N/Ge/siGOLPH3 successfully crossed the blood-brain barrier (BBB) and targeted glioma. Released siGOLPH3 effectively silenced GOLPH3 mRNA expression and further promoted EGFR and p-EGFR degradation. Released Ge also markedly inhibited EGFR signaling. This combined EGFR-targeted action achieved remarkable anti-glioma effects and could be a safe and effective treatment for glioma. KEY MESSAGES: Angiopep-2-modified cationic lipid polymer can penetrate the BBB. Gefitinib can inhibit EGFR signaling and block the autophosphorylation of critical tyrosine residues on EGFR. GOLPH3 siRNA can be transfected into glioma and downregulate GLOPH3 expression. A2-N/Ge/siGOLPH3 can inhibit glioma growth.
Collapse
|
43
|
Building on the success of osimertinib: achieving CNS exposure in oncology drug discovery. Drug Discov Today 2019; 24:1067-1073. [DOI: 10.1016/j.drudis.2019.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/10/2019] [Accepted: 01/24/2019] [Indexed: 01/16/2023]
|
44
|
Kim M, Laramy JK, Mohammad AS, Talele S, Fisher J, Sarkaria JN, Elmquist WF. Brain Distribution of a Panel of Epidermal Growth Factor Receptor Inhibitors Using Cassette Dosing in Wild-Type and Abcb1/Abcg2-Deficient Mice. Drug Metab Dispos 2019; 47:393-404. [PMID: 30705084 PMCID: PMC6408736 DOI: 10.1124/dmd.118.084210] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/28/2019] [Indexed: 01/03/2023] Open
Abstract
Tyrosine kinase inhibitors that target the epidermal growth factor receptor (EGFR) have had success in treating EGFR-positive tumors, including non-small-cell lung cancer (NSCLC). However, developing EGFR inhibitors that can be delivered to the brain remains a challenge. To identify optimal compounds for brain delivery, eight EGFR inhibitors [afatinib, 6-[4-[(4-ethylpiperazin-1-yl)methyl]phenyl]-N-(1-phenylethyl)-7H-pyrrolo[2,3-day]pyrimidin-4-amine (AEE788), [4-(3-chloro-2-fluoroanilino)-7-methoxyquinazolin-6-yl] (2R)-2,4-dimethylpiperazine-1-carboxylate (AZD3759), erlotinib, dacomitinib, gefitinib, osimertinib, and vandetanib] were evaluated for distributional kinetics using cassette dosing with the ultimate goal of understanding the brain penetrability of compounds that share the same molecular target in an important oncogenic signaling pathway for both primary brain tumors (glioblastoma) and brain metastases (e.g., NSCLC). Cassette dosing was validated by comparing the brain-to-plasma ratios obtained from cassette-dosing to discrete-dosing studies. The brain-to-blood partition coefficients (Kp,brain) were calculated following cassette dosing of the eight EGFR inhibitors. The comparison of Kp,brain in wild-type and transporter-deficient mice confirmed that two major efflux transporters at the blood-brain barrier (BBB), P-glycoprotein and breast cancer resistance protein, play a crucial role in the brain distribution of seven out of eight EGFR inhibitors. Results show that the prediction of brain distribution based on physicochemical properties of a drug can be misleading, especially for compounds subject to extensive efflux transport. Moreover, this study informs the choice of EGFR inhibitors, i.e., determining BBB permeability combined with a known target potency, that may be effective in future clinical trials for brain tumors.
Collapse
Affiliation(s)
- Minjee Kim
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy (M.K., J.K.L., A.S.M., S.T., W.F.E.) and Clinical Pharmacology and Analytical Services Laboratory, Department of Experimental and Clinical Pharmacology (J.F.), University of Minnesota, Minneapolis, Minnesota; and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.)
| | - Janice K Laramy
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy (M.K., J.K.L., A.S.M., S.T., W.F.E.) and Clinical Pharmacology and Analytical Services Laboratory, Department of Experimental and Clinical Pharmacology (J.F.), University of Minnesota, Minneapolis, Minnesota; and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.)
| | - Afroz S Mohammad
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy (M.K., J.K.L., A.S.M., S.T., W.F.E.) and Clinical Pharmacology and Analytical Services Laboratory, Department of Experimental and Clinical Pharmacology (J.F.), University of Minnesota, Minneapolis, Minnesota; and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.)
| | - Surabhi Talele
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy (M.K., J.K.L., A.S.M., S.T., W.F.E.) and Clinical Pharmacology and Analytical Services Laboratory, Department of Experimental and Clinical Pharmacology (J.F.), University of Minnesota, Minneapolis, Minnesota; and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.)
| | - James Fisher
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy (M.K., J.K.L., A.S.M., S.T., W.F.E.) and Clinical Pharmacology and Analytical Services Laboratory, Department of Experimental and Clinical Pharmacology (J.F.), University of Minnesota, Minneapolis, Minnesota; and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.)
| | - Jann N Sarkaria
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy (M.K., J.K.L., A.S.M., S.T., W.F.E.) and Clinical Pharmacology and Analytical Services Laboratory, Department of Experimental and Clinical Pharmacology (J.F.), University of Minnesota, Minneapolis, Minnesota; and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.)
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy (M.K., J.K.L., A.S.M., S.T., W.F.E.) and Clinical Pharmacology and Analytical Services Laboratory, Department of Experimental and Clinical Pharmacology (J.F.), University of Minnesota, Minneapolis, Minnesota; and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.)
| |
Collapse
|
45
|
Traxl A, Mairinger S, Filip T, Sauberer M, Stanek J, Poschner S, Jäger W, Zoufal V, Novarino G, Tournier N, Bauer M, Wanek T, Langer O. Inhibition of ABCB1 and ABCG2 at the Mouse Blood-Brain Barrier with Marketed Drugs To Improve Brain Delivery of the Model ABCB1/ABCG2 Substrate [ 11C]erlotinib. Mol Pharm 2019; 16:1282-1293. [PMID: 30694684 DOI: 10.1021/acs.molpharmaceut.8b01217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
P-Glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) are two efflux transporters at the blood-brain barrier (BBB), which effectively restrict brain distribution of diverse drugs, such as tyrosine kinase inhibitors. There is a crucial need for pharmacological ABCB1 and ABCG2 inhibition protocols for a more effective treatment of brain diseases. In the present study, seven marketed drugs (osimertinib, erlotinib, nilotinib, imatinib, lapatinib, pazopanib, and cyclosporine A) and one nonmarketed drug (tariquidar), with known in vitro ABCB1/ABCG2 inhibitory properties, were screened for their inhibitory potency at the BBB in vivo. Positron emission tomography (PET) using the model ABCB1/ABCG2 substrate [11C]erlotinib was performed in mice. Tested inhibitors were administered as i.v. bolus injections at 30 min before the start of the PET scan, followed by a continuous i.v. infusion for the duration of the PET scan. Five of the tested drugs increased total distribution volume of [11C]erlotinib in the brain ( VT,brain) compared to vehicle-treated animals (tariquidar, + 69%; erlotinib, + 19% and +23% for the 21.5 mg/kg and the 43 mg/kg dose, respectively; imatinib, + 22%; lapatinib, + 25%; and cyclosporine A, + 49%). For all drugs, increases in [11C]erlotinib brain distribution were lower than in Abcb1a/b(-/-)Abcg2(-/-) mice (+149%), which suggested that only partial ABCB1/ABCG2 inhibition was reached at the mouse BBB. The plasma concentrations of the tested drugs at the time of the PET scan were higher than clinically achievable plasma concentrations. Some of the tested drugs led to significant increases in blood radioactivity concentrations measured at the end of the PET scan (erlotinib, + 103% and +113% for the 21.5 mg/kg and the 43 mg/kg dose, respectively; imatinib, + 125%; and cyclosporine A, + 101%), which was most likely caused by decreased hepatobiliary excretion of radioactivity. Taken together, our data suggest that some marketed tyrosine kinase inhibitors may be repurposed to inhibit ABCB1 and ABCG2 at the BBB. From a clinical perspective, moderate increases in brain delivery despite the administration of high i.v. doses as well as peripheral drug-drug interactions due to transporter inhibition in clearance organs question the translatability of this concept.
Collapse
Affiliation(s)
- Alexander Traxl
- Center for Health & Bioresources , AIT Austrian Institute of Technology GmbH , 2444 Seibersdorf , Austria
| | - Severin Mairinger
- Center for Health & Bioresources , AIT Austrian Institute of Technology GmbH , 2444 Seibersdorf , Austria
| | - Thomas Filip
- Center for Health & Bioresources , AIT Austrian Institute of Technology GmbH , 2444 Seibersdorf , Austria
| | - Michael Sauberer
- Center for Health & Bioresources , AIT Austrian Institute of Technology GmbH , 2444 Seibersdorf , Austria
| | - Johann Stanek
- Center for Health & Bioresources , AIT Austrian Institute of Technology GmbH , 2444 Seibersdorf , Austria
| | - Stefan Poschner
- Department of Clinical Pharmacy and Diagnostics , University of Vienna , 1090 Vienna , Austria
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics , University of Vienna , 1090 Vienna , Austria
| | - Viktoria Zoufal
- Center for Health & Bioresources , AIT Austrian Institute of Technology GmbH , 2444 Seibersdorf , Austria
| | - Gaia Novarino
- Institute of Science and Technology (IST) Austria , 3400 Klosterneuburg , Austria
| | - Nicolas Tournier
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot , CEA, Inserm, Univ. Paris Sud, CNRS, Université Paris-Saclay , 91450 Orsay , France
| | - Martin Bauer
- Department of Clinical Pharmacology , Medical University of Vienna , 1090 Vienna , Austria
| | - Thomas Wanek
- Center for Health & Bioresources , AIT Austrian Institute of Technology GmbH , 2444 Seibersdorf , Austria
| | - Oliver Langer
- Center for Health & Bioresources , AIT Austrian Institute of Technology GmbH , 2444 Seibersdorf , Austria.,Department of Clinical Pharmacology , Medical University of Vienna , 1090 Vienna , Austria.,Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine , Medical University of Vienna , 1090 Vienna , Austria
| |
Collapse
|
46
|
Liam CK. Central nervous system activity of first-line osimertinib in epidermal growth factor receptor-mutant advanced non-small cell lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:61. [PMID: 30906765 DOI: 10.21037/atm.2018.12.68] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Chong-Kin Liam
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
47
|
Liu L, Liu X. Contributions of Drug Transporters to Blood-Brain Barriers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:407-466. [PMID: 31571171 DOI: 10.1007/978-981-13-7647-4_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Blood-brain interfaces comprise the cerebral microvessel endothelium forming the blood-brain barrier (BBB) and the epithelium of the choroid plexuses forming the blood-cerebrospinal fluid barrier (BCSFB). Their main functions are to impede free diffusion between brain fluids and blood; to provide transport processes for essential nutrients, ions, and metabolic waste products; and to regulate the homeostasis of central nervous system (CNS), all of which are attributed to absent fenestrations, high expression of tight junction proteins at cell-cell contacts, and expression of multiple transporters, receptors, and enzymes. Existence of BBB is an important reason that systemic drug administration is not suitable for the treatment of CNS diseases. Some diseases, such epilepsy, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and diabetes, alter BBB function via affecting tight junction proteins or altering expression and function of these transporters. This chapter will illustrate function of BBB, expression of transporters, as well as their alterations under disease status.
Collapse
Affiliation(s)
- Li Liu
- China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
48
|
Tang D, Zhao X, Zhang L, Wang Z, Wang C. Identification of hub genes to regulate breast cancer metastasis to brain by bioinformatics analyses. J Cell Biochem 2018; 120:9522-9531. [PMID: 30506958 DOI: 10.1002/jcb.28228] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/15/2018] [Indexed: 12/30/2022]
Abstract
Breast cancer with metastasis especially brain metastasis represents a significant cause of morbidity and mortality in patients. In this study, we aimed to investigate the hub genes and potential molecular mechanism in brain metastasis breast cancer. Expression profiles of the genes were extracted from the Gene Expression Omnibus (GEO) database. GO and KEGG pathway enrichment analyses were conducted at Database for Annotation, Visualization, and Integrated Discovery. Protein-protein interaction (PPI) network was established by STRING database constructed by Cytoscape software. Hub genes were identified by the molecular complex detection (MCODE) plugin and the CytoHubba plugin. The transcription factor (TF) that regulates the expression of hub genes was analyzed using the NetworkAnalyst algorithm. Kaplan-Meier curve was used to analyze the effects of hub genes on overall survival. Two GEO databases (GSE100534 and GSE52604) were downloaded from GEO databases. A total of 102 overlapped genes were identified, and the top five KEGG pathways enriched were pathways in cancer, HTLV-I infection, focal adhesion, ECM-receptor interaction, and protein digestion and absorption. By combing the results of MCODE and CytoHubba, a total of 10 hub genes were selected. Kaplan-Meier curve showed that ANLN, BUB1, TTK, and SKA3 were closely associated with the overall survival of breast cancer patients. TF analysis results showed that E2F4, KDM5B, and MYC were crucial regulators for these four hub genes. The current study based on the GEO database provided novel understanding regarding the mechanism of breast cancer metastasis to brain and may provide novel therapeutic targets.
Collapse
Affiliation(s)
- Dongyang Tang
- Department of Experimental Management Center, Henan Institute of Science and Technology, Xinxiang, China
| | - Xin Zhao
- Department of Pharmacy, Xinxiang Central Hospital, Xinxiang, China
| | - Li Zhang
- Department of architecture, College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhiwei Wang
- Department of Experimental Management Center, Henan Institute of Science and Technology, Xinxiang, China
| | - Cheng Wang
- Department of pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
49
|
Randall EC, Emdal KB, Laramy JK, Kim M, Roos A, Calligaris D, Regan MS, Gupta SK, Mladek AC, Carlson BL, Johnson AJ, Lu FK, Xie XS, Joughin BA, Reddy RJ, Peng S, Abdelmoula WM, Jackson PR, Kolluri A, Kellersberger KA, Agar JN, Lauffenburger DA, Swanson KR, Tran NL, Elmquist WF, White FM, Sarkaria JN, Agar NYR. Integrated mapping of pharmacokinetics and pharmacodynamics in a patient-derived xenograft model of glioblastoma. Nat Commun 2018; 9:4904. [PMID: 30464169 PMCID: PMC6249307 DOI: 10.1038/s41467-018-07334-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
Therapeutic options for the treatment of glioblastoma remain inadequate despite concerted research efforts in drug development. Therapeutic failure can result from poor permeability of the blood-brain barrier, heterogeneous drug distribution, and development of resistance. Elucidation of relationships among such parameters could enable the development of predictive models of drug response in patients and inform drug development. Complementary analyses were applied to a glioblastoma patient-derived xenograft model in order to quantitatively map distribution and resulting cellular response to the EGFR inhibitor erlotinib. Mass spectrometry images of erlotinib were registered to histology and magnetic resonance images in order to correlate drug distribution with tumor characteristics. Phosphoproteomics and immunohistochemistry were used to assess protein signaling in response to drug, and integrated with transcriptional response using mRNA sequencing. This comprehensive dataset provides simultaneous insight into pharmacokinetics and pharmacodynamics and indicates that erlotinib delivery to intracranial tumors is insufficient to inhibit EGFR tyrosine kinase signaling.
Collapse
Affiliation(s)
- Elizabeth C Randall
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kristina B Emdal
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St, Cambridge, MA, 02142, USA
| | - Janice K Laramy
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Minjee Kim
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Alison Roos
- Department of Cancer Biology, Mayo Clinic, 13400 E. Shea Blvd.MCCRB 03-055, Scottsdale, AZ, 85259, USA
| | - David Calligaris
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael S Regan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Shiv K Gupta
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN, 55902, USA
| | - Ann C Mladek
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN, 55902, USA
| | - Brett L Carlson
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN, 55902, USA
| | - Aaron J Johnson
- Department of Immunology, Mayo Clinic, 200 First St SW, Rochester, MN, 55902, USA
| | - Fa-Ke Lu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Biomedical Engineering, Binghamton University, State University of New York, Binghamton, NY, 13902, USA
| | - X Sunney Xie
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Brian A Joughin
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St, Cambridge, MA, 02142, USA
| | - Raven J Reddy
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St, Cambridge, MA, 02142, USA
| | - Sen Peng
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Walid M Abdelmoula
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Pamela R Jackson
- Mathematical NeuroOncology Lab, Department of Neurosurgery, Mayo Clinic, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Aarti Kolluri
- Mathematical NeuroOncology Lab, Department of Neurosurgery, Mayo Clinic, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | | | - Jeffrey N Agar
- Department of Chemistry and Chemical Biology, Northeastern University, 412 TF (140 The Fenway), Boston, MA, 02111, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St, Cambridge, MA, 02142, USA
| | - Kristin R Swanson
- Mathematical NeuroOncology Lab, Department of Neurosurgery, Mayo Clinic, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Nhan L Tran
- Department of Cancer Biology, Mayo Clinic, 13400 E. Shea Blvd.MCCRB 03-055, Scottsdale, AZ, 85259, USA
| | - William F Elmquist
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Forest M White
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St, Cambridge, MA, 02142, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN, 55902, USA
| | - Nathalie Y R Agar
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
50
|
Goutal S, Gerstenmayer M, Auvity S, Caillé F, Mériaux S, Buvat I, Larrat B, Tournier N. Physical blood-brain barrier disruption induced by focused ultrasound does not overcome the transporter-mediated efflux of erlotinib. J Control Release 2018; 292:210-220. [PMID: 30415015 DOI: 10.1016/j.jconrel.2018.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022]
Abstract
Overcoming the efflux mediated by ATP-binding cassette (ABC) transporters at the blood-brain barrier (BBB) remains a challenge for the delivery of small molecule tyrosine kinase inhibitors (TKIs) such as erlotinib to the brain. Inhibition of ABCB1 and ABCG2 at the mouse BBB improved the BBB permeation of erlotinib but could not be achieved in humans. BBB disruption induced by focused ultrasound (FUS) was investigated as a strategy to overcome the efflux transport of erlotinib in vivo. In rats, FUS combined with microbubbles allowed for a large and spatially controlled disruption of the BBB in the left hemisphere. ABCB1/ABCG2 inhibition was performed using elacridar (10 mg/kg i.v). The brain kinetics of erlotinib was studied using 11C-erlotinib Positron Emission Tomography (PET) imaging in 5 groups (n = 4-5 rats per group) including a baseline group, immediately after sonication (FUS), 48 h after FUS (FUS + 48 h), elacridar (ELA) and their combination (FUS + ELA). BBB integrity was assessed using the Evan's Blue (EB) extravasation test. Brain exposure to 11C-erlotinib was measured as the area under the curve (AUC) of the brain kinetics (% injected dose (%ID) versus time (min)) in volumes corresponding to the disrupted (left) and the intact (right) hemispheres, respectively. EB extravasation highlighted BBB disruption in the left hemisphere of animals of the FUS and FUS + ELA groups but not in the control and ELA groups. EB extravasation was not observed 48 h after FUS suggesting recovery of BBB integrity. Compared with the control group (AUCBaseline = 1.4 ± 0.5%ID.min), physical BBB disruption did not impact the brain kinetics of 11C-erlotinib in the left hemisphere (p > .05) either immediately (AUCFUS = 1.2 ± 0.1%ID.min) or 48 h after FUS (AUCFUS+48h = 1.1 ± 0.3%ID.min). Elacridar similarly increased 11C-erlotinib brain exposure to the left hemisphere in the absence (AUCELA = 2.2 ± 0.5%ID.min, p < .001) and in the presence of BBB disruption (AUCFUS+ELA = 2.1 ± 0.5%ID.min, p < .001). AUCleft was never significantly different from AUCright (p > .05), in any of the tested conditions. BBB integrity is not the rate limiting step for erlotinib delivery to the brain which is mainly governed by ABC-mediated efflux. Efflux transport of erlotinib persisted despite BBB disruption.
Collapse
Affiliation(s)
- Sébastien Goutal
- Imagerie Moléculaire In Vivo, IMIV, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France; Molecular Imaging Research Center, MIRCen, Institut de Biologie François Jacob, Direction de la Recherche Fondamentale, CEA, Fontenay-Aux-Roses, France
| | - Matthieu Gerstenmayer
- Neurospin, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Université Paris Saclay, Gif sur Yvette, France
| | - Sylvain Auvity
- Imagerie Moléculaire In Vivo, IMIV, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France
| | - Fabien Caillé
- Imagerie Moléculaire In Vivo, IMIV, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France
| | - Sébastien Mériaux
- Neurospin, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Université Paris Saclay, Gif sur Yvette, France
| | - Irène Buvat
- Imagerie Moléculaire In Vivo, IMIV, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France
| | - Benoit Larrat
- Neurospin, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Université Paris Saclay, Gif sur Yvette, France
| | - Nicolas Tournier
- Imagerie Moléculaire In Vivo, IMIV, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France.
| |
Collapse
|