1
|
Dhayalan V, Dodke VS, Pradeep Kumar M, Korkmaz HS, Hoffmann-Röder A, Amaladass P, Dandela R, Dhanusuraman R, Knochel P. Recent synthetic strategies for the functionalization of fused bicyclic heteroaromatics using organo-Li, -Mg and -Zn reagents. Chem Soc Rev 2024; 53:11045-11099. [PMID: 39311874 DOI: 10.1039/d4cs00369a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
This review highlights the use of functionalized organo-Li, -Mg and -Zn reagents for the construction and selective functionalization of 5- and 6-membered fused bicyclic heteroaromatics. Special attention is given to the discussion of advanced syntheses for the preparation of highly functionalized heteroaromatic scaffolds, including quinolines, naphthyridines, indoles, benzofurans, benzothiophenes, benzoxazoles, benzothiazoles, benzopyrimidines, anthranils, thienothiophenes, purine coumarins, chromones, quinolones and phthalazines and their fused heterocyclic derivatives. The organometallic reagents used for the desired functionalizations of these scaffolds are generally prepared in situ using the following methods: (i) through directed selective metalation reactions (DoM), (ii) by means of halogen/metal exchange reactions, (iii) through oxidative metal insertions (Li, Mg, Zn), and (iv) by transmetalation reactions (organo-Li and Mg transmetalations with ZnCl2 or ZnO(Piv)2). The resulting reactive organometallic reagents allow a wide range of C-C, C-N and C-X cross-coupling reactions with different electrophiles, employing in particular Kumada or Negishi protocols among other transition metal (Pd, Ni, Co, Cu, Cr, Fe, etc.)-catalyzed processes. In addition, key developments concerning selective metalation techniques will be presented, which rely on the use of RLi, LDA and TMP metal bases. These methods are now widely employed in organic synthetic chemistry and have proven to be particularly valuable for drug development programs in the pharmaceutical industry. New and improved protocols have resulted in many Li, Mg and Zn organyls now being compatible with functionalized aryl, heteroaryl, alkenyl, alkynyl and alkyl compounds even in the presence of labile functional groups, making these reagents well-suited for C(sp2)-C(sp2), C(sp2)-C(sp) and C(sp2)-C(sp3) cross-coupling reactions with fused heteroaryl halides. In addition, the use of some transition metal-catalyzed processes occasionally allows a reversed role of the reactants in cross-coupling reactions, providing alternative synthetic routes for the preparation of fused heteroaromatic-based bioactive drugs and natural products. In line with this, this article points to novel methods for the functionalization of bicyclic heteroaromatic scaffolds by organometallic reagents that have been published in the period 2010-2023.
Collapse
Affiliation(s)
- Vasudevan Dhayalan
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Union Territory Puducherry, India.
| | - Vishal S Dodke
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT, Kharagpur extension Centre, Mouza Samantpuri, Bhubaneswar-751013, Odisha, India
| | - Marappan Pradeep Kumar
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Union Territory Puducherry, India.
| | - Hatice Seher Korkmaz
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| | - Anja Hoffmann-Röder
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| | - Pitchamuthu Amaladass
- Department of Chemistry, Madanapalle Institute of Technology & Science, Madanapalle 517325, Andhra Pradesh, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT, Kharagpur extension Centre, Mouza Samantpuri, Bhubaneswar-751013, Odisha, India
| | - Ragupathy Dhanusuraman
- Central Instrumentation Facility (CIF), School of Physical, Chemical and Applied Sciences, Pondicherry University, Puducherry-605014, India
| | - Paul Knochel
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| |
Collapse
|
2
|
Muhammed MT, Kuyucuklu G, Kaynak-Onurdag F, Aki-Yalcin E. Synthesis, Antimicrobial Activity, and Molecular Modeling Studies of
Some Benzoxazole Derivatives. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220408133643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The need to develop novel antimicrobial agents is apparent as infectious diseases
are increasing and resistance is rapidly developing against the drugs used in the treatment.
Objective:
This study aimed at the synthesis, antimicrobial susceptibility testing, and computational elucidation
of the mechanism of action of benzoxazole derivatives. It also aimed to compare the results obtained
in this study with the previous studies by our group. This would pave the way for designing novel
molecules with better antimicrobial activity. The other goal was pharmacophore analysis and in silico
ADMET analysis of them.
Methods:
In this study, synthesis, antimicrobial susceptibility testing, molecular docking, pharmacophore
analysis, and ADMET prediction were carried out.
Results:
The antimicrobial activity studies demonstrated that the synthesized compounds were active
against standard strains and clinical isolates at high concentrations. Then, the antimicrobial testing results
were compared to similar benzoxazoles tested by our group previously. Benzoxazole derivatives without
a methylene bridge between oxazole and phenyl ring were found to be more active than those with the
methylene bridge. This was also confirmed by molecular modeling undertaken in this study. The computational
results indicated that the antibacterial activity could be achieved by DNA gyrase inhibition.
Pharmacophore analysis showed that hydrogen bond acceptor (HBA), hydrogen bond donor (HBD), and
hydrophobicity features would contribute to the inhibition. In addition, in silico ADMET property investigation
of the compounds exhibited that they had the desired pharmacokinetics.
Conclusion:
Although antibacterial activity by inhibiting DNA gyrase is selective, the synthesized compounds
were active at much higher concentrations than the standards. Therefore, in prospective antimicrobial
studies, it is better to focus on benzoxazole derivatives without the methylene bridge. Since the
compounds had suitable in silico ADMET properties, screening them against the other pharmacologic
activities should be carried out. It is recommended to support the molecular modeling results with in vitro
or in vivo studies.
Collapse
Affiliation(s)
- Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
- Department of Basic Biotechnology, Institute of Biotechnology, Ankara University, Ankara, Turkey
| | - Gulcan Kuyucuklu
- Department of Medical Microbiology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Fatma Kaynak-Onurdag
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Trakya University, Edirne, Turkey
| | - Esin Aki-Yalcin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
3
|
Lee HJ, Moon Y, Choi J, Heo JD, Kim S, Nallapaneni HK, Chin YW, Lee J, Han SY. Characterization of KRC-108 as a TrkA Kinase Inhibitor with Anti-Tumor Effects. Biomol Ther (Seoul) 2022; 30:360-367. [PMID: 35264466 PMCID: PMC9252884 DOI: 10.4062/biomolther.2021.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 11/21/2022] Open
Abstract
Tropomyosin receptor kinase A (TrkA) protein is a receptor tyrosine kinase encoded by the NTRK1 gene. TrkA signaling mediates the proliferation, differentiation, and survival of neurons and other cells following stimulation by its ligand, the nerve growth factor. Chromosomal rearrangements of the NTRK1 gene result in the generation of TrkA fusion protein, which is known to cause deregulation of TrkA signaling. Targeting TrkA activity represents a promising strategy for the treatment of cancers that harbor the TrkA fusion protein. In this study, we evaluated the TrkA-inhibitory activity of the benzoxazole compound KRC-108. KRC-108 inhibited TrkA activity in an in vitro kinase assay, and suppressed the growth of KM12C colon cancer cells harboring an NTRK1 gene fusion. KRC-108 treatment induced cell cycle arrest, apoptotic cell death, and autophagy. KRC-108 suppressed the phosphorylation of downstream signaling molecules of TrkA, including Akt, phospholipase Cγ, and ERK1/2. Furthermore, KRC-108 exhibited anti-tumor activity in vivo in a KM12C cell xenograft model. These results indicate that KRC-108 may be a promising therapeutic agent for Trk fusion-positive cancers.
Collapse
Affiliation(s)
- Hyo Jeong Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Jinju 52834, Republic of Korea
| | - Yeongyu Moon
- Gyeongnam Biohealth Research Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Jungil Choi
- Gyeongnam Biohealth Research Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Jeong Doo Heo
- Gyeongnam Biohealth Research Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Sekwang Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Jinju 52834, Republic of Korea
| | | | - Young-Won Chin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongkook Lee
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sun-Young Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Jinju 52834, Republic of Korea
| |
Collapse
|
4
|
Biological Activity and ADME/Tox Prediction of Some 2-Substituted Benzoxazole Derivatives. Bioorg Chem 2022; 123:105756. [DOI: 10.1016/j.bioorg.2022.105756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/01/2022] [Accepted: 03/20/2022] [Indexed: 11/20/2022]
|
5
|
Guzow K, Mulkiewicz E, Obuchowski M, Wiczk W. Biological activity of 3-(2-benzoxazol-5-yl)alanine derivatives. Amino Acids 2021; 53:1257-1268. [PMID: 34240252 PMCID: PMC8325670 DOI: 10.1007/s00726-021-03030-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/25/2021] [Indexed: 01/04/2023]
Abstract
Searching for new drugs is still a challenge for science, mainly because of civilization development and globalization which promote the rapid spread of diseases, which is particularly dangerous in the case of infectious ones. Moreover, readily available already known antibiotics are often overused or misused, possibly contributing to the increase in the number of multidrug-resistant microorganisms. A consequence of this is the need for new structures of potential drugs. One of them is a benzoxazole moiety, a basic skeleton of a group of fluorescent heterocyclic compounds already widely used in chemistry, industry, and medicine, which is also present in naturally occurring biologically active compounds. Moreover, synthetic benzoxazoles are also biologically active. Considering all of that, a large group of non-proteinogenic amino acids based on 3-(2-benzoxazol-5-yl)alanine skeleton was studied in search for new antimicrobial and anticancer agents. Screening tests revealed that antibacterial potential of 41 compounds studied is not very high; however, they are selective acting only against Gram-positive bacteria (B. subtilis). Moreover, almost half of the studied compounds have antifungal properties, also against pathogens (C. albicans). Most of studied compounds are toxic to both normal and cancer cells. However, in a few cases, toxicity to normal cells is much lower than for cancer cells indicating these compounds as future anticancer agents. The research carried out on such a large group of compounds allowed to establish a structure–activity relationship which enables to select candidates for further modifications, necessary to improve their biological activity and obtain a new lead structure with potential for therapeutic use.
Collapse
Affiliation(s)
- Katarzyna Guzow
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk, 80-308, Poland.
| | - Ewa Mulkiewicz
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk, 80-308, Poland
| | - Michał Obuchowski
- Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, Dębinki 1, Gdańsk, 80-211, Poland
| | - Wiesław Wiczk
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk, 80-308, Poland
| |
Collapse
|
6
|
Jiang T, Wang G, Liu Y, Feng L, Wang M, Liu J, Chen Y, Ouyang L. Development of small-molecule tropomyosin receptor kinase (TRK) inhibitors for NTRK fusion cancers. Acta Pharm Sin B 2021; 11:355-372. [PMID: 33643817 PMCID: PMC7893124 DOI: 10.1016/j.apsb.2020.05.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023] Open
Abstract
Tropomyosin receptor kinase A, B and C (TRKA, TRKB and TRKC), which are well-known members of the cell surface receptor tyrosine kinase (RTK) family, are encoded by the neurotrophic receptor tyrosine kinase 1, 2 and 3 (NTRK1, NTRK2 and NTRK3) genes, respectively. TRKs can regulate cell proliferation, differentiation and even apoptosis through the RAS/MAPKs, PI3K/AKT and PLCγ pathways. Gene fusions involving NTRK act as oncogenic drivers of a broad diversity of adult and pediatric tumors, and TRKs have become promising antitumor targets. Therefore, achieving a comprehensive understanding of TRKs and relevant TRK inhibitors should be urgently pursued for the further development of novel TRK inhibitors for potential clinical applications. This review focuses on summarizing the biological functions of TRKs and NTRK fusion proteins, the development of small-molecule TRK inhibitors with different chemotypes and their activity and selectivity, and the potential therapeutic applications of these inhibitors for future cancer drug discovery efforts.
Collapse
Key Words
- AFAP1, actin filament-associated protein 1
- AML, acute myeloid leukemia
- ARHGEF2, Rho/Rac guanine nucleotide exchange factor 2
- BCAN, brevican
- BDNF, brain-derived neurotrophic factor
- BTBD1, BTB (POZ) domain containing 1
- CDK-2, cyclin-dependent kinase 2
- CR, complete response
- CRC, colorectal cancer
- CTCs, sequencing of circulating tumor cells
- DFG, Asp-Phe-Gly
- DOR, durable objective responses
- ETV6, ETS translocation variant 6
- EWG, electron-withdrawing group
- FDA, U.S. Food and Drug Administration
- FISH, fluorescence in situ hybridization
- GBM, glioblastoma multiforme
- HNSCC, head and neck squamous cell carcinoma
- HTS, high-throughput screening
- ICC, intrahepatic cholangiocarcinoma
- IG-C2, Ig-like C2 type I
- LMNA, lamin A/C
- MASC, mammary analogue secretory carcinoma
- MPRIP, myosin phosphatase Rho interacting protein
- NACC2, NACC family member 2
- NCCN, National Comprehensive Cancer Network
- NFASC, neurofascin
- NGF, nerve growth factor
- NGS, next-generation sequencing of tumor tissue
- NSCLC, non-small cell lung cancer
- NT3, neurotrophin-3
- NTRK fusion cancer
- NTRK, neurotrophic receptor tyrosine kinase
- Neurotrophic receptor tyrosine kinase fusions
- OAK, osteoarthritis of the knee
- ORR, overall response rate
- PAN3, poly(A) nuclease 3
- PPL, periplakin
- PROTAC proteolysis targeting chimera, QKI
- RABGTPase activating protein 1-like, RFWD2
- RTK, receptor tyrosine kinase
- SAR, structure–activity relationship
- SBC, secretory breast carcinoma
- SCYL3, SCY1 like pseudokinase 3
- SQSTM1, sequestosome 1
- Small-molecule inhibitor
- TFG, TRK-fused gene
- TP53, tumor protein P53
- TPM3, tropomyosin 3
- TPR, translocated promoter region
- TRIM24, tripartite motif containing 24
- TRK, tropomyosin receptor kinase
- Tropomyosin receptor kinase
- VCL, vinculin
- VEGFR2, vascular endothelial growth factor receptor 2
- quaking I protein, RABGAP1L
- ring finger and WD repeat domain 2, E3 ubiquitin protein ligase
Collapse
Affiliation(s)
- Tingting Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yao Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lu Feng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Meng Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Ahn SH, Heo TH, Jun HS, Choi Y. In vitro and in vivo pharmacokinetic characterization of LMT-28 as a novel small molecular interleukin-6 inhibitor. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:670-677. [PMID: 31480155 PMCID: PMC7054612 DOI: 10.5713/ajas.19.0463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022]
Abstract
Objective Interleukin-6 (IL-6) is a T cell-derived B cell stimulating factor which plays an important role in inflammatory diseases. In this study, the pharmacokinetic properties of LMT-28 including physicochemical property, in vitro liver microsomal stability and an in vivo pharmacokinetic study using BALB/c mice were characterized. Methods LMT-28 has been synthesized and is being developed as a novel therapeutic IL-6 inhibitor. The physicochemical properties and in vitro pharmacokinetic profiles such as liver microsomal stability and Madin-Darby canine kidney (MDCK) cell permeability assay were examined. For in vivo pharmacokinetic studies, pharmacokinetic parameters using BALB/c mice were calculated. Results The logarithm of the partition coefficient value (LogP; 3.65) and the apparent permeability coefficient values (Papp; 9.7×10−6 cm/s) showed that LMT-28 possesses a moderate-high cell permeability property across MDCK cell monolayers. The plasma protein binding rate of LMT-28 was 92.4% and mostly bound to serum albumin. The metabolic half-life (t1/2) values of LMT-28 were 15.3 min for rat and 21.9 min for human at the concentration 1 μM. The area under the plasma drug concentration-time curve and Cmax after oral administration (5 mg/kg) of LMT-28 were 302±209 h·ng/mL and 137±100 ng/mL, respectively. Conclusion These data suggest that LMT-28 may have good physicochemical and pharmacokinetic properties and may be a novel oral drug candidate as the first synthetic IL-6 inhibitor to ameliorate mammalian inflammation.
Collapse
Affiliation(s)
- Sung-Hoon Ahn
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Tae-Hwe Heo
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea.,ILAb Inc., NP513, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea
| | - Hyun-Sik Jun
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019, Korea
| | - Yongseok Choi
- School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
8
|
Yan W, Lakkaniga NR, Carlomagno F, Santoro M, McDonald NQ, Lv F, Gunaganti N, Frett B, Li HY. Insights into Current Tropomyosin Receptor Kinase (TRK) Inhibitors: Development and Clinical Application. J Med Chem 2018; 62:1731-1760. [PMID: 30188734 DOI: 10.1021/acs.jmedchem.8b01092] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The use of kinase-directed precision medicine has been heavily pursued since the discovery and development of imatinib. Annually, it is estimated that around ∼20 000 new cases of tropomyosin receptor kinase (TRK) cancers are diagnosed, with the majority of cases exhibiting a TRK genomic rearrangement. In this Perspective, we discuss current development and clinical applications for TRK precision medicine by providing the following: (1) the biological background and significance of the TRK kinase family, (2) a compilation of known TRK inhibitors and analysis of their cocrystal structures, (3) an overview of TRK clinical trials, and (4) future perspectives for drug discovery and development of TRK inhibitors.
Collapse
Affiliation(s)
- Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Francesca Carlomagno
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università Federico II , Via S Pansini 5 , 80131 Naples , Italy.,Istituto di Endocrinologia e Oncologia Sperimentale del CNR , Via S Pansini 5 , 80131 Naples , Italy
| | - Massimo Santoro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università Federico II , Via S Pansini 5 , 80131 Naples , Italy
| | - Neil Q McDonald
- Signaling and Structural Biology Laboratory , The Francis Crick Institute , London NW1 1AT , U.K.,Institute of Structural and Molecular Biology, Department of Biological Sciences , Birkbeck College , Malet Street , London WC1E 7HX , U.K
| | - Fengping Lv
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Naresh Gunaganti
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| |
Collapse
|
9
|
Zilifdar F, Foto E, Ertan-Bolelli T, Aki-Yalcin E, Yalcin I, Diril N. Biological evaluation and pharmacophore modeling of some benzoxazoles and their possible metabolites. Arch Pharm (Weinheim) 2018; 351. [DOI: 10.1002/ardp.201700265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/17/2017] [Accepted: 01/02/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Fatma Zilifdar
- Faculty of Science; Department of Molecular Biology; Hacettepe University; Ankara Turkey
| | - Egemen Foto
- Faculty of Science; Department of Molecular Biology; Hacettepe University; Ankara Turkey
| | - Tugba Ertan-Bolelli
- Faculty of Pharmacy; Department of Pharmaceutical Chemistry; Ankara University; Ankara Turkey
| | - Esin Aki-Yalcin
- Faculty of Pharmacy; Department of Pharmaceutical Chemistry; Ankara University; Ankara Turkey
| | - Ismail Yalcin
- Faculty of Pharmacy; Department of Pharmaceutical Chemistry; Ankara University; Ankara Turkey
| | - Nuran Diril
- Faculty of Science; Department of Molecular Biology; Hacettepe University; Ankara Turkey
| |
Collapse
|
10
|
Yoon KB, Cho SY, An SJ, Park KR, Lee HJ, Yoon HS, Lee SM, Kim YC, Han SY. Characterization of the aminopyridine derivative KRC-180 as a JAK2 inhibitor. Oncol Lett 2017; 14:1347-1354. [PMID: 28789350 PMCID: PMC5529941 DOI: 10.3892/ol.2017.6353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 03/07/2017] [Indexed: 01/29/2023] Open
Abstract
Janus kinase 2 (JAK2) is a non-receptor tyrosine kinase that regulates the signal transducer and activator of transcription (STAT) signaling pathway. Deregulation of JAK2 signaling has previously been observed in hematologic malignancies, including erythroleukemia. In the present study, an aminopyridine derivative compound, KRC-180, exhibited direct inhibition of the JAK2 protein at the catalytic site, as demonstrated using in vitro kinase activity assays and docking analyses. In addition, KRC-180 reduced the phosphorylation of STAT3 and STAT5, downstream signaling molecules of JAK2. The growth of HEL92.1.7 erythroleukemia cells harboring a constitutively activated form of JAK2 was suppressed by KRC-180 treatment; KRC-180 induced apoptotic cell death and cell cycle arrest. The results of the present study indicate that KRC-180 is a JAK2 inhibitor with anti-leukemic properties.
Collapse
Affiliation(s)
- Kyoung Bin Yoon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Sung Yun Cho
- Bio-organic Science Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Su Jin An
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Kyeong Ryang Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Hyo Jeong Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Hae Sung Yoon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Sun-Mi Lee
- School of Life Sciences, Gwangju Institute of Science & Technology, Gwangju 61005, Republic of Korea
| | - Yong-Chul Kim
- School of Life Sciences, Gwangju Institute of Science & Technology, Gwangju 61005, Republic of Korea
| | - Sun-Young Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| |
Collapse
|
11
|
Kim DC, Park KR, Jeong YJ, Yoon H, Ahn MJ, Rho GJ, Lee J, Gong YD, Han SY. Resistance to the c-Met inhibitor KRC-108 induces the epithelial transition of gastric cancer cells. Oncol Lett 2015; 11:991-997. [PMID: 26893681 PMCID: PMC4734112 DOI: 10.3892/ol.2015.4029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 08/17/2015] [Indexed: 12/16/2022] Open
Abstract
Investigation of the mechanisms of resistance to targeted therapies is essential as resistance acquired during treatment may lead to relapse or refractoriness to the therapy. Our previous study identified the small molecule KRC-108 as a result of efforts to find an anticancer agent with c-Met-inhibitory activity. In the present study, the changes accompanying resistance to KRC-108 were investigated in the gastric cancer cell line MKN-45 and its KRC-108-resistant clones by western blot and immunofluorescence analyses. Increased expression of the c-Met protein was observed in KRC-108-resistant cells compared with that of the parental cells, and the phosphorylation of c-Met also increased in cell lines resistant to KRC-108. Resistance to the c-Met inhibitor was associated with cell morphological changes: MKN-45 parental cells, which had a round and poorly differentiated morphology, were altered to exhibit an epithelial cell-like phenotype in KRC-108-resistant clones. Consistent with the transition to an epithelial morphology, the expression of E-cadherin was increased in resistant cells. Using immunoprecipitation, an interaction between E-cadherin and the c-Met protein was observed in the KRC-108-resistant cells. Immunohistochemical analysis of human gastric carcinoma tissues revealed the co-expression of E-cadherin and c-Met. These results suggest that the epithelial transition in KRC-108-resistant cells is mediated by recruiting E-cadherin to c-Met protein. Thus, the present study identified a mechanism used by cancer cells to confer resistance to anticancer agents.
Collapse
Affiliation(s)
- Dong Chul Kim
- Department of Pathology, School of Medicine, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| | - Kyeong Ryang Park
- College of Pharmacy, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea; Research Institute of Life Sciences, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| | - Yeon Ji Jeong
- College of Pharmacy, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea; Research Institute of Life Sciences, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| | - Hyonok Yoon
- College of Pharmacy, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea; Research Institute of Life Sciences, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| | - Mi-Jeong Ahn
- College of Pharmacy, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea; Research Institute of Life Sciences, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, School of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| | - Jongkook Lee
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Young-Dae Gong
- Innovative Drug Library Research Center, Dongguk University, Seoul 100-715, Republic of Korea
| | - Sun-Young Han
- College of Pharmacy, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea; Research Institute of Life Sciences, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| |
Collapse
|
12
|
Singh S, Veeraswamy G, Bhattarai D, Goo JI, Lee K, Choi Y. Recent Advances in the Development of Pharmacologically Active Compounds that Contain a Benzoxazole Scaffold. ASIAN J ORG CHEM 2015. [DOI: 10.1002/ajoc.201500235] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sarbjit Singh
- College of Pharmacy; Dongguk University-Seoul; Republic of Korea
| | - Gajulapati Veeraswamy
- College of Life Science and Biotechnology; Korea University-Seoul; Republic of Korea
| | - Deepak Bhattarai
- College of Pharmacy; Dongguk University-Seoul; Republic of Korea
| | - Ja-Il Goo
- College of Life Science and Biotechnology; Korea University-Seoul; Republic of Korea
| | - Kyeong Lee
- College of Pharmacy; Dongguk University-Seoul; Republic of Korea
| | - Yongseok Choi
- College of Life Science and Biotechnology; Korea University-Seoul; Republic of Korea
| |
Collapse
|
13
|
Chung HJ, Park KR, Lee HJ, Lee J, Kim JH, Kim YC, Han SY. Effects of KRC-108 on the Aurora A activity and growth of colorectal cancer cells. Biochem Biophys Res Commun 2015; 461:605-11. [PMID: 25912878 DOI: 10.1016/j.bbrc.2015.04.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 04/14/2015] [Indexed: 11/16/2022]
Abstract
Aurora A is involved in regulating multiple steps of mitosis. Over-expression of Aurora A is related to tumorigenesis and poor prognosis. KRC-108 is a novel multi-kinase inhibitor which has anti-tumor activity in vivo. In this study, we identified the inhibitory effects of KRC-108 on Aurora A kinase and growth-inhibitory characteristics of KRC-108. The in vitro kinase activity assay, immunoblot, and immunofluorescence analyses demonstrated that KRC-108 inhibited Aurora A activity. KRC-108 exhibited cytotoxicity against human colorectal cancer cell line HT-29. Colony formation assays showed that KRC-108 reduced the colony growth of HT-29 cells. KRC-108 also inhibited migration of HT-29 cells. The expression levels of cyclin B1 and CDC2 were decreased by KRC-108 in HT-29 cells. Cell cycle analysis and flow cytometry indicated that the inhibitory effects of KRC-108 on cell growth are due to induction of G2/M arrest and apoptosis by inhibition of Aurora A. KRC-108 induces cell-cycle arrest and apoptosis in colorectal cancer cell line by Aurora A inhibition. The reported in vivo anti-tumor effects of KRC-108 might partly be due to anti-Aurora A effects. This study suggests that KRC-108 has potential for development as an anti-tumor agent, although further studies are needed.
Collapse
Affiliation(s)
- Hye Jin Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyeong Ryang Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyo Jeong Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jongkook Lee
- College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Jeong-Hyun Kim
- School of Life Sciences, Gwangju Institute of Science & Technology, Gwangju, Republic of Korea
| | - Yong-Chul Kim
- School of Life Sciences, Gwangju Institute of Science & Technology, Gwangju, Republic of Korea
| | - Sun-Young Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
14
|
Kang ST, Kim EY, Archary R, Jung H, Park CH, Yun CS, Hwang JY, Choi SU, Chae C, Lee CO, Kim HR, Ha JD, Ryu D, Cho SY. Discovery of substituted 6-pheny-3H-pyridazin-3-one derivatives as novel c-Met kinase inhibitors. Bioorg Med Chem Lett 2014; 24:5093-7. [DOI: 10.1016/j.bmcl.2014.08.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/18/2014] [Accepted: 08/29/2014] [Indexed: 12/15/2022]
|
15
|
Wu W, Bi C, Credille KM, Manro JR, Peek VL, Donoho GP, Yan L, Wijsman JA, Yan SB, Walgren RA. Inhibition of tumor growth and metastasis in non-small cell lung cancer by LY2801653, an inhibitor of several oncokinases, including MET. Clin Cancer Res 2013; 19:5699-710. [PMID: 23989980 DOI: 10.1158/1078-0432.ccr-13-1758] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Lung cancer is the leading cause of cancer-related death worldwide. Sustained activation, overexpression, or mutation of the MET pathway is associated with a poor prognosis in a variety of tumors, including non-small cell lung cancer (NSCLC), implicating the MET pathway as a potential therapeutic target for lung cancer. Previously, we reported on the development of LY2801653: a novel, orally bioavailable oncokinase inhibitor with MET as one of its targets. Here, we discuss the evaluation of LY2801653 in both preclinical in vitro and in vivo NSCLC models. Experimental Design/ RESULTS Treatment with LY2801653 showed tumor growth inhibition in tumor cell lines and patient-derived tumor xenograft models as a single agent (37.4%-90.0% inhibition) or when used in combination with cisplatin, gemcitabine, or erlotinib (66.5%-86.3% inhibition). Mechanistic studies showed that treatment with LY2801653 inhibited the constitutive activation of MET pathway signaling and resulted in inhibition of NCI-H441 cell proliferation, anchorage-independent growth, migration, and invasion. These in vitro findings were confirmed in the H441 orthotopic model where LY2801653 treatment significantly inhibited both primary tumor growth (87.9% inhibition) and metastasis (64.5% inhibition of lymph node and 67.7% inhibition of chest wall). Tumor-bearing animals treated with LY2801653 had a significantly greater survival time (87% increase compared with the vehicle-treated mice). In the MET-independent NCI-H1299 orthotopic model, treatment with LY2801653 showed a significant inhibition of primary tumor growth but not metastasis. CONCLUSIONS Collectively, these results support clinical evaluation of LY2801653 in NSCLCs and suggest that differences in the MET activation of tumors may be predictive of response.
Collapse
Affiliation(s)
- Wenjuan Wu
- Authors' Affiliation: Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lee J, Han SY, Jung H, Yang J, Choi JW, Chae CH, Park CH, Choi SU, Lee K, Ha JD, Lee CO, Ryu JW, Kim HR, Koh JS, Cho SY. Synthesis and structure–activity relationship of aminopyridines with substituted benzoxazoles as c-Met kinase inhibitors. Bioorg Med Chem Lett 2012; 22:4044-8. [DOI: 10.1016/j.bmcl.2012.04.083] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 04/10/2012] [Accepted: 04/17/2012] [Indexed: 01/03/2023]
|
17
|
Ryu JW, Han SY, Yun JI, Choi SU, Jung H, Ha JD, Cho SY, Lee CO, Kang NS, Koh JS, Kim HR, Lee J. Design and synthesis of triazolopyridazines substituted with methylisoquinolinone as selective c-Met kinase inhibitors. Bioorg Med Chem Lett 2011; 21:7185-8. [DOI: 10.1016/j.bmcl.2011.09.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/16/2011] [Accepted: 09/17/2011] [Indexed: 11/29/2022]
|