1
|
Zieba A, Kozik V, Suwinska K, Kawulok A, Pluta T, Jampilek J, Bak A. Synthesis and Structure of 5-Methyl-9-(trifluoromethyl)-12 H-quino[3,4- b][1,4]benzothiazinium Chloride as Anticancer Agent. Molecules 2024; 29:4337. [PMID: 39339332 PMCID: PMC11433864 DOI: 10.3390/molecules29184337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
In this work, the synthesis, structural analysis and anticancer properties of 5-methyl-9-trifluoromethyl-12H-quino[3,4-b][1,4]benzothiazinium chloride (3) are described. Compound 3 was synthesized by reacting 1-methyl-4-butylthio-3-(benzoylthio)quinolinium chloride with 4-(trifluoromethyl)aniline, respectively. The structure of the resulting product was determined using 1H-NMR and 13C-NMR spectroscopy as well as HR-MS spectrometry. The spatial geometry of agent 3 and the arrangement of molecules in the crystal (unit cell) were also confirmed using X-ray diffraction. The tetracyclic quinobenzothiazinium system is fairly planar because the dihedral angle between the planes formed by the benzene ring and the quinoline system is 173.47°. In order to obtain insight into the electronic charge distribution of the investigated molecule, electronic structure calculations employing the Density Functional Theory (DFT) were performed. Moreover, antiproliferative activity against a set of pancreatic cancer cell lines was tested, with compound 3 showing IC50 values against human primary pancreatic adenocarcinoma BxPC-3 and human epithelioid pancreatic carcinoma Panc-1 of 0.051 µM and 0.066 µM, respectively. The IC50 value of cytotoxicity/cell viability of the investigated compound assessed on normal human lung fibroblasts WI38 was 0.36 µM.
Collapse
Affiliation(s)
- Andrzej Zieba
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Violetta Kozik
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-007 Katowice, Poland; (A.K.); (T.P.); (J.J.); (A.B.)
| | - Kinga Suwinska
- Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszynski University, K. Woycickiego 1/3, 01-938 Warszawa, Poland;
| | - Agata Kawulok
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-007 Katowice, Poland; (A.K.); (T.P.); (J.J.); (A.B.)
- Department of Bone Marrow Transplantation and Oncohematology, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, ul. Wybrzeze Armii Krajowej 15, 44-101 Gliwice, Poland
| | - Tadeusz Pluta
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-007 Katowice, Poland; (A.K.); (T.P.); (J.J.); (A.B.)
| | - Josef Jampilek
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-007 Katowice, Poland; (A.K.); (T.P.); (J.J.); (A.B.)
| | - Andrzej Bak
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-007 Katowice, Poland; (A.K.); (T.P.); (J.J.); (A.B.)
| |
Collapse
|
2
|
Burguin A, Roy J, Ouellette G, Maltais R, Bherer J, Diorio C, Poirier D, Durocher F. Aminosteroid RM-581 Decreases Cell Proliferation of All Breast Cancer Molecular Subtypes, Alone and in Combination with Breast Cancer Treatments. J Clin Med 2023; 12:4241. [PMID: 37445276 DOI: 10.3390/jcm12134241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer (BC) is a heterogenous disease classified into four molecular subtypes (Luminal A, Luminal B, HER2 and triple-negative (TNBC)) depending on the expression of the estrogen receptor (ER), the progesterone receptor (PR) and the human epidermal receptor 2 (HER2). The development of effective treatments for BC, especially TNBC, remains a challenge. Aminosteroid derivative RM-581 has previously shown an antiproliferative effect in multiple cancers in vitro and in vivo. In this study, we evaluated its effect in BC cell lines representative of BC molecular subtypes, including metastatic TNBC. We found that RM-581 has an antiproliferative effect on all BC molecular subtypes, especially on Luminal A and TNBC, in 2D and 3D cultures. The combination of RM-581 and trastuzumab or trastuzumab-emtansine enhanced the anticancer effect of each drug for HER2-positive BC cell lines, and the combination of RM-581 and taxanes (docetaxel or paclitaxel) improved the antiproliferative effect of RM-581 in TNBC and metastatic TNBC cell lines. We also confirmed that RM-581 is an endoplasmic reticulum (EnR)-stress aggravator by inducing an increase in EnR-stress-induced apoptosis markers such as BIP/GRP78 and CHOP and disrupting lipid homeostasis. This study demonstrates that RM-581 could be effective for the treatment of BC, especially TNBC.
Collapse
Affiliation(s)
- Anna Burguin
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC GIV 0A6, Canada
- Cancer Research Centre, CHU de Québec-Research Centre, Québec, QC G1R 3S3, Canada
| | - Jenny Roy
- Cancer Research Centre, CHU de Québec-Research Centre, Québec, QC G1R 3S3, Canada
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec-Research Center, Québec, QC G1V 4G2, Canada
| | - Geneviève Ouellette
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC GIV 0A6, Canada
- Cancer Research Centre, CHU de Québec-Research Centre, Québec, QC G1R 3S3, Canada
| | - René Maltais
- Cancer Research Centre, CHU de Québec-Research Centre, Québec, QC G1R 3S3, Canada
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec-Research Center, Québec, QC G1V 4G2, Canada
| | - Juliette Bherer
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC GIV 0A6, Canada
- Cancer Research Centre, CHU de Québec-Research Centre, Québec, QC G1R 3S3, Canada
| | - Caroline Diorio
- Cancer Research Centre, CHU de Québec-Research Centre, Québec, QC G1R 3S3, Canada
- Department of Social and Preventive Medicine, Faculty of Medicine, Université Laval, Québec, QC GIV 0A6, Canada
| | - Donald Poirier
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC GIV 0A6, Canada
- Cancer Research Centre, CHU de Québec-Research Centre, Québec, QC G1R 3S3, Canada
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec-Research Center, Québec, QC G1V 4G2, Canada
| | - Francine Durocher
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC GIV 0A6, Canada
- Cancer Research Centre, CHU de Québec-Research Centre, Québec, QC G1R 3S3, Canada
| |
Collapse
|
3
|
Poirier D, Roy J, Maltais R, Weidmann C, Audet-Walsh É. An Aminosteroid Derivative Shows Higher In Vitro and In Vivo Potencies than Gold Standard Drugs in Androgen-Dependent Prostate Cancer Models. Cancers (Basel) 2023; 15:cancers15113033. [PMID: 37296995 DOI: 10.3390/cancers15113033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The aminosteroid derivative RM-581 blocks with high potency the growth of androgen-dependent (AR+) prostate cancer VCaP, 22Rv1, and LAPC-4 cells. Notably, RM-581 demonstrated superior antiproliferative activity in LAPC-4 cells compared to enzalutamide and abiraterone, two drugs that exhibited a synergistic effect in combination with RM-581. These findings suggest that RM-581 may have an action that is not directly associated with the hormonal pathway of androgens. Furthermore, RM-581 completely blocks tumor growth in LAPC-4 xenografts when given orally at 3, 10, and 30 mg/kg in non-castrated (intact) nude mice. During this study, an accumulation of RM-581 was observed in tumors compared to plasma (3.3-10 folds). Additionally, the level of fatty acids (FA) increased in the tumors and livers of mice treated with RM-581 but not in plasma. The increase was greater in unsaturated FA (21-28%) than in saturated FA (7-11%). The most affected FA were saturated palmitic acid (+16%), monounsaturated oleic acid (+34%), and di-unsaturated linoleic acid (+56%), i.e., the 3 most abundant FA, with a total of 55% of the 56 FA measured. For cholesterol levels, there was no significant difference in the tumor, liver, or plasma of mice treated or not with RM-581. Another important result was the innocuity of RM-581 in mice during a 28-day xenograft experiment and a 7-week dose-escalation study, suggesting a favorable safety window for this new promising drug candidate when given orally.
Collapse
Affiliation(s)
- Donald Poirier
- Endocrinology and Nephrology Unit, CHU de Québec Research Center-Université Laval, Pavillon CHUL, Québec, QC G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jenny Roy
- Endocrinology and Nephrology Unit, CHU de Québec Research Center-Université Laval, Pavillon CHUL, Québec, QC G1V 4G2, Canada
| | - René Maltais
- Endocrinology and Nephrology Unit, CHU de Québec Research Center-Université Laval, Pavillon CHUL, Québec, QC G1V 4G2, Canada
| | - Cindy Weidmann
- Endocrinology and Nephrology Unit, CHU de Québec Research Center-Université Laval, Pavillon CHUL, Québec, QC G1V 4G2, Canada
| | - Étienne Audet-Walsh
- Endocrinology and Nephrology Unit, CHU de Québec Research Center-Université Laval, Pavillon CHUL, Québec, QC G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
4
|
Djiemeny Ngueta A, Roy J, Poirier D. Chemical synthesis, NMR characterization, and anticancer activity of androstene derivatives with a C17-side chain. Steroids 2022; 186:109064. [PMID: 35714784 DOI: 10.1016/j.steroids.2022.109064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/02/2022] [Accepted: 06/11/2022] [Indexed: 11/21/2022]
Abstract
Cancer remains one of the leading causes of death, worldwide. In addition, the lack of efficacy and selectivity of chemotherapeutic agents for cancer cells is a challenge that needs to be addressed through the development of new drugs. Since aminosteroids are of interest in fighting cancer, our group previously reported antiproliferative activity on several cancer cell lines of two representatives, RM-133 and RM-581. To extend the structure-activity relationship study of aminosteroids, of which RM-133 (androstane) and RM-581 (estrane) are the main candidates, we performed the chemical synthesis and biological evaluation on lung (SHP-77), breast (T-47D) and prostate (DU-145, PC-3 and LAPC-4) cancer cells of four analogues of RM-581. We moved the functionalized side chain from position 2 of the androstane and estrane derivatives to incorporate it into a new chain located at position 17. Chemical synthesis took place in 2 steps from steroidal side-chain carboxylic acids, allowing to obtain 4 steroid derivatives with acceptable yields, which were fully characterized by nuclear magnetic resonance spectroscopy (1H and 13C NMR). After the evaluation of compounds 12-15, lower antiproliferative activities varying from 12 to 54%, 0-33% and 0-63% were observed for SHP-77, DU-145 and PC-3 cell lines, respectively, while higher activities varying from 33 to 62% and 45-84% were observed for T-47D and LAPC-4 cell lines, respectively, when tested at 10 µM. Overall, it was observed that these aminosteroids have a lower cytotoxic activity than that of RM-581 and, that moving the side chain from steroid position C2 to C17 is clearly detrimental for antiproliferative activity. However, this work has enabled us to expand our knowledge of the structural requirements to maintain the anticancer activity of aminosteroid derivatives.
Collapse
Affiliation(s)
- Adrien Djiemeny Ngueta
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Quebec, QC G1V 4G2, Canada
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Quebec, QC G1V 4G2, Canada
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Quebec, QC G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada.
| |
Collapse
|
5
|
Maltais R, Roy J, Perreault M, Sato S, Lévesque JC, Poirier D. Induction of Endoplasmic Reticulum Stress-Mediated Apoptosis by Aminosteroid RM-581 Efficiently Blocks the Growth of PC-3 Cancer Cells and Tumors Resistant or Not to Docetaxel. Int J Mol Sci 2021; 22:ijms222011181. [PMID: 34681843 PMCID: PMC8537847 DOI: 10.3390/ijms222011181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
Aminosteroid derivative RM-581 was previously identified as an endoplasmic-reticulum (ER) stress inducer with potent in vitro and in vivo anticancer activities. We report its evaluation in androgen-independent prostate cancer (PC-3) cells. RM-581 efficiently blocks PC-3 cell proliferation with stronger activity than that of a selection of known antineoplastic agents. This later also showed a synergistic effect with docetaxel, able to block the proliferation of docetaxel-resistant PC-3 cells and, contrary to docetaxel, did not induce cell resistance. RM-581 induced an increase in the expression level of ER stress-related markers of apoptosis, potentially triggered by the presence of RM-581 in the ER of PC-3 cells. These in vitro results were then successfully translated in vivo in a PC-3 xenograft tumor model in nude mice, showing superior blockade than that of docetaxel. RM-581 was also able to stop the progression of PC-3 cells when they had become resistant to docetaxel treatment. Concomitantly, we observed a decrease in gene markers of mevalonate and fatty acid pathways, and intratumoral levels of cholesterol by 19% and fatty acids by 22%. Overall, this work demonstrates the potential of an ER stress inducer as an anticancer agent for the treatment of prostate cancers that are refractory to commonly used chemotherapy treatments.
Collapse
Affiliation(s)
- René Maltais
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, QC G1V 4G2, Canada; (R.M.); (J.R.); (M.P.)
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, QC G1V 4G2, Canada; (R.M.); (J.R.); (M.P.)
| | - Martin Perreault
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, QC G1V 4G2, Canada; (R.M.); (J.R.); (M.P.)
| | - Sachiko Sato
- Bioimaging Platform, CHU de Québec—Research Center, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada; (S.S.); (J.-C.L.)
| | - Julie-Christine Lévesque
- Bioimaging Platform, CHU de Québec—Research Center, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada; (S.S.); (J.-C.L.)
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, QC G1V 4G2, Canada; (R.M.); (J.R.); (M.P.)
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-654-2296; Fax: +1-418-654-2298
| |
Collapse
|
6
|
Cortés-Benítez F, Roy J, Perreault M, Maltais R, Poirier D. 16-Picolyl-androsterone derivative exhibits potent 17β-HSD3 inhibitory activity, improved metabolic stability and cytotoxic effect on various cancer cells: Synthesis, homology modeling and docking studies. J Steroid Biochem Mol Biol 2021; 210:105846. [PMID: 33609690 DOI: 10.1016/j.jsbmb.2021.105846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 11/18/2022]
Abstract
A new androsterone derivative bearing a 16β-picolyl group (compound 5; FCO-586-119) was synthetized in four steps from the lead compound 1 (RM-532-105). We measured its inhibitory activity on 17β-HSD3 using microsomal fraction of rat testes as well as transfected LNCaP[17β-HSD3] cells. We then assessed its metabolic stability as well as its cytotoxic effect against a panel of cancer cell lines. The addition of a picolyl moiety at C-16 of RM-532-105 steroid core improves the 17β-HSD3 inhibitory activity in the microsomal fraction of rat testes, but not in whole LNCaP[17β-HSD3] cells. Interestingly, this structural modification enhances 3-fold the metabolic stability in conjunction with a significant cytotoxic effect against pancreatic, ovarian, breast, lung, and prostate cancer cells. Because the inhibitory activity data against 17β-HSD3 suggested that both steroid derivatives are non-competitive inhibitors, we performed docking and molecular dynamics simulations using a homology model of this membrane-associated enzyme. The results of these simulations revealed that both RM-532-105 (1) and FCO-586-119 (5) can compete for the cofactor-binding site displaying better binding energy than NADP+.
Collapse
Affiliation(s)
- Francisco Cortés-Benítez
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU De Québec - Research Center, Québec City, Québec, G1V 4G2, Canada; Laboratory of Synthesis and Isolation of Bioactive Substances, Department of Biological Systems, Biological and Health Sciences Division, Metropolitan Autonomous University- Xochimilco (UAM-X), Mexico City 04960, Mexico
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU De Québec - Research Center, Québec City, Québec, G1V 4G2, Canada
| | - Martin Perreault
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU De Québec - Research Center, Québec City, Québec, G1V 4G2, Canada
| | - René Maltais
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU De Québec - Research Center, Québec City, Québec, G1V 4G2, Canada
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU De Québec - Research Center, Québec City, Québec, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, G1V 0A6, Canada.
| |
Collapse
|
7
|
Lei ZX, Wang JJ, Li K, Liu P. Herp knockout protects against nonalcoholic fatty liver disease in mice on a high fat diet. Kaohsiung J Med Sci 2021; 37:487-496. [PMID: 33464700 DOI: 10.1002/kjm2.12349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/04/2020] [Accepted: 12/06/2020] [Indexed: 12/22/2022] Open
Abstract
This study aims to discover the role of Homocysteine-induced ER protein (Herp) deficiency in high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD). After 8 weeks of feeding with normal-fat diet (NFD) or HFD, WT (wild type) and Herp-/- mice were measured for the body weight, liver weight and serum biochemical parameters. HE, Oil Red O, and Sirius red stainings were used to evaluate the histopathological changes of liver tissues. QRT-PCR, Western blotting and Immunohistochemistry were employed to detect the mRNA and protein expression. TUNEL staining was used to observe the hepatocyte apoptosis. Herp knockout reduced the liver/body weight ratio of mice fed with HFD with the decreased serum levels of TG, TC, HDL, LDL, GGT, Hcy, ALT, and AST. Besides, WT mice fed with HFD presented obvious steatosis, inflammation and hepatocytes ballooning, which was relieved in Herp-/- mice. HFD-induce NFALD mice demonstrated increased Oil Red, Sirius red, and α-SMA staining than NFD-induced mice, but mice in the Herp-/- + HFD group was lower than the WT + HFD group. HFD-induce NFALD mice showed up-regulated expression of Grp78, Chop, and Atf4 in liver tissues when compared with NFD fed mice. However, regarding to the mice fed with HFD, Herp deficiency decrease in the expression of Grp78, Chop, and Atf4 in liver tissues with the reduced hepatocyte apoptosis. Herp was highly expressed in HFD-induced NAFLD mice. Herp knockout improved liver function and histopathological conditions with the decreased hepatocyte apoptosis and endoplasmic reticulum stress (ERS) of HFD-induce NFALD mice.
Collapse
Affiliation(s)
- Zhi-Xiong Lei
- Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Juan-Juan Wang
- Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Kang Li
- Department of Cardiothoracic Surgery, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Ping Liu
- Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| |
Collapse
|
8
|
Maltais R, Roy J, Poirier D. Turning a Quinoline-based Steroidal Anticancer Agent into Fluorescent Dye for its Tracking by Cell Imaging. ACS Med Chem Lett 2021; 12:822-826. [PMID: 34055232 DOI: 10.1021/acsmedchemlett.1c00111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
RM-581 is an aminosteroid derivative comprised of a steroid core and a quinoline side chain showing potent cytotoxic activity on several types of cancer cells but for which the mechanism of action (MoA) remains to be fully elucidated. The opportunity to turn RM-581 into a fluorescent probe was explored because the addition of a N-dimethyl group was recently reported to induce fluorescence to quinoline derivatives. After the chemical synthesis of the N-dimethyl analogue of RM-581 (RM-581-Fluo), its fluorescent properties, as well as its cytotoxic activity in breast cancer MCF-7 cells, were confirmed. A cell imaging experiment in MCF-7 cells using confocal microscopy then revealed that RM-581-Fluo accumulated into the endoplasmic reticulum (ER) as highlighted by its colocalization with an ER-Tracker dye. This work provides a new tool for RM-581 MoA investigations as well as being a relevant example of a tailor-made quinolone-fluorescent version of a bioactive molecule.
Collapse
Affiliation(s)
- René Maltais
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec Research Center, Québec, Québec G1V 4G2, Canada
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec Research Center, Québec, Québec G1V 4G2, Canada
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec Research Center, Québec, Québec G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
9
|
Tian B, Hua Z, Wang Z, Wang J. RETRACTED ARTICLE: Physcion 8-O-β-glucopyranoside mediates the NLRP3-associated pyroptosis and cell metastasis in the human osteosarcoma cells via ER stress activation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:555. [PMID: 32072190 DOI: 10.1007/s00210-020-01836-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/30/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Baogang Tian
- Department of Orthopedics, Wuxi Traditional Chinese Medicine Hospital, Nanjing University of Chinese Medicine, No.8 Zhong'nan Road, Wuxi, 214071, Jiangsu, China
| | - Zhen Hua
- Department of Orthopedics, Wuxi Traditional Chinese Medicine Hospital, Nanjing University of Chinese Medicine, No.8 Zhong'nan Road, Wuxi, 214071, Jiangsu, China
| | - Zhijiong Wang
- Department of Orthopedics, Wuxi Traditional Chinese Medicine Hospital, Nanjing University of Chinese Medicine, No.8 Zhong'nan Road, Wuxi, 214071, Jiangsu, China
| | - Jianwei Wang
- Department of Orthopedics, Wuxi Traditional Chinese Medicine Hospital, Nanjing University of Chinese Medicine, No.8 Zhong'nan Road, Wuxi, 214071, Jiangsu, China.
| |
Collapse
|
10
|
Maltais R, Perreault M, Roy J, Poirier D. Minor chemical modifications of the aminosteroid derivative RM-581 lead to major impact on its anticancer activity, metabolic stability and aqueous solubility. Eur J Med Chem 2020; 188:111990. [PMID: 31893547 DOI: 10.1016/j.ejmech.2019.111990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022]
Abstract
The aminosteroid (AM) RM-581 is built around a mestranol backbone and has recently emerged as this family's lead candidate, showing in vitro and in vivo potency over different types of cancer, including high fatality pancreatic cancer. To extend the structure-activity relationships (SAR) to other estrane analogs, we synthesized a focused series of RM-581 derivatives at position C3 or C2 of its steroidal core. These new AM derivatives were first tested on a large selection of prostate, breast, pancreatic and ovarian cancer cell lines. The impact of these modifications on metabolic stability (human liver microsomes) was also measured. A SAR study revealed a fine regulation of anticancer activity related to the nature of the substituent. Indeed, the addition of potential prodrug groups like acetate, sulfamate or phosphate (compounds 8, 9 and 10) at C3 of the phenolic counterpart provided better antiproliferative activities than RM-581 in breast and pancreatic cancer cell types while maintaining activity in other cancer cell lines. Also, the phosphate group was highly beneficial on water solubility. However, the bulkier carbamate prodrugs 6 (N,N-dimethyl) and 7 (N,N-diethyl) were less active. Otherwise, carbon homologation (CH2) at C2 (compound 33) was beneficial to metabolic stability and, in the meantime, this AM conserved the same anticancer activity as RM-581. However, the replacement of the hydroxy or methoxy at C3 by a hydrogen or an acetyl (compound 17 or 21b) was detrimental for anticancer activity, pointing to a crucial molecular interaction of the aromatic oxygen atom at this position. Overall, this work provided a better knowledge of the structural requirements to maintain RM-581's anticancer activity, and also identified minor structural modifications to increase both metabolic stability and water solubility, three important parameters of pharmacological development.
Collapse
Affiliation(s)
- René Maltais
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Québec, QC, G1V 4G2, Canada
| | - Martin Perreault
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Québec, QC, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Québec, QC, G1V 4G2, Canada
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Québec, QC, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
11
|
Poirier D, Roy J, Maltais R, Ayan D. Antisulfatase, Osteogenic, and Anticancer Activities of Steroid Sulfatase Inhibitor EO-33 in Mice. J Med Chem 2019; 62:5512-5521. [DOI: 10.1021/acs.jmedchem.9b00382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, Québec G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, Québec G1V 4G2, Canada
| | - René Maltais
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, Québec G1V 4G2, Canada
| | - Diana Ayan
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, Québec G1V 4G2, Canada
| |
Collapse
|