1
|
Jobby R, Sarkar M, Bose R, Srivastava S, Suprasanna P. Chromiomics: Chromium detoxification and approaches for engineering tolerance in plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123991. [PMID: 38631449 DOI: 10.1016/j.envpol.2024.123991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Chromium (Cr) is a heavy metal that poses a grave threat to the ecosystem including plants. Chromium is very harmful to plants due to its effects on many physiological and metabolic pathways culminating in a negative impact on plant's growth, development, and ability to take up nutrients. Plants have developed physiological, biochemical, and molecular ways of defense against Cr, such as by augmenting antioxidant potential to reduce reactive oxygen species (ROS). A number of genes have been discovered to play a significant role in the defense mechanisms of plants against Cr, for example, genes associated with the activation of phytochelatins, metallothioneins, and those of enzymes like glutathione-S-transferases. Along with this, a few miRNAs have been found to be associated in alleviating Cr stress and, to augment plant tolerance by controlling transcription factors, HSPs, and the expression of a few proteins and hormones. Defense pathway genes and miRNAs have been used for the generation of transgenic phytoremediator plants. Not only do the transgenic plants have a higher tolerance to Cr, but they also act as hyperaccumulators for Cr and have the potential to remediate other heavy metals. This article describes about environmental Cr contamination, Cr effects on plants, different genes and miRNAs involved in Cr stress mitigation and use of candidate genes, microRNAs for creating transgenic plant systems for phytoremediation, and the applications of CRISPR technology. It is expected that the integration of omics approach and advanced genomics will offer scope for more effective phytoremediation of Chromium in the coming years.
Collapse
Affiliation(s)
- Renitta Jobby
- Amity Institute of Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Maharashtra 410206, India; Amity Centre of Excellence in Astrobiology, Amity University Maharashtra - Pune Expressway, Bhatan, Panvel, Mumbai, Maharashtra 410206, India
| | - Mrittika Sarkar
- Amity Institute of Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Maharashtra 410206, India
| | - Roshnee Bose
- Amity Institute of Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Maharashtra 410206, India
| | - Sudhakar Srivastava
- Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi-221005, India
| | - Penna Suprasanna
- Amity Institute of Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Maharashtra 410206, India; Amity Centre for Nuclear Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Maharashtra 410206, India.
| |
Collapse
|
2
|
Wiszniewska A, Labudda M, Muszyńska E. Response to Cadmium in Silene vulgaris Ecotypes Is Distinctly Affected by Priming-Induced Changes in Oxidation Status of Macromolecules. Int J Mol Sci 2023; 24:16075. [PMID: 38003264 PMCID: PMC10671773 DOI: 10.3390/ijms242216075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
This study investigated the impact of several priming agents on metal-tolerant and sensitive Silene vulgaris ecotypes exposed to environmentally relevant cadmium dose. We analyzed how priming-induced changes in the level of lipid, protein, and DNA oxidation contribute to calamine (Cal) and non-calamine (N-Cal) ecotype response to Cd toxicity, and whether the oxidative modifications interrelate with Cd tolerance. In non-primed ecotypes, the levels of DNA and protein oxidation were similar whereas Cal Cd tolerance was manifested in reduced lipid peroxidation. In both ecotypes protective action of salicylic acid (SA) and nitric oxide (NO) priming was observed. SA stimulated growth and reduced lipid and DNA oxidation at most, while NO protected DNA from fragmentation. Priming with hydrogen peroxide reduced biomass and induced DNA oxidation. In N-Cal, priming diminished Cd accumulation and oxidative activity, whereas in Cal, it merely affected Cd uptake and induced protein carbonylation. The study showed that priming did not stimulate extra stress resistance in the tolerant ecotype but induced metabolic remodeling. In turn, the lack of adaptive tolerance made the sensitive ecotype more responsive to the benefits of the primed state. These findings could facilitate priming exploitation with a view of enhancing metallophyte and non-metallophyte suitability for phytoremediation and land revegetation.
Collapse
Affiliation(s)
- Alina Wiszniewska
- Department of Botany, Physiology and Plant Protection, University of Agriculture in Kraków, 31-120 Cracow, Poland;
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland;
| | - Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland
| |
Collapse
|
3
|
Zulfiqar U, Haider FU, Ahmad M, Hussain S, Maqsood MF, Ishfaq M, Shahzad B, Waqas MM, Ali B, Tayyab MN, Ahmad SA, Khan I, Eldin SM. Chromium toxicity, speciation, and remediation strategies in soil-plant interface: A critical review. FRONTIERS IN PLANT SCIENCE 2023; 13:1081624. [PMID: 36714741 PMCID: PMC9880494 DOI: 10.3389/fpls.2022.1081624] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
In recent decades, environmental pollution with chromium (Cr) has gained significant attention. Although chromium (Cr) can exist in a variety of different oxidation states and is a polyvalent element, only trivalent chromium [Cr(III)] and hexavalent chromium [Cr(VI)] are found frequently in the natural environment. In the current review, we summarize the biogeochemical procedures that regulate Cr(VI) mobilization, accumulation, bioavailability, toxicity in soils, and probable risks to ecosystem are also highlighted. Plants growing in Cr(VI)-contaminated soils show reduced growth and development with lower agricultural production and quality. Furthermore, Cr(VI) exposure causes oxidative stress due to the production of free radicals which modifies plant morpho-physiological and biochemical processes at tissue and cellular levels. However, plants may develop extensive cellular and physiological defensive mechanisms in response to Cr(VI) toxicity to ensure their survival. To cope with Cr(VI) toxicity, plants either avoid absorbing Cr(VI) from the soil or turn on the detoxifying mechanism, which involves producing antioxidants (both enzymatic and non-enzymatic) for scavenging of reactive oxygen species (ROS). Moreover, this review also highlights recent knowledge of remediation approaches i.e., bioremediation/phytoremediation, or remediation by using microbes exogenous use of organic amendments (biochar, manure, and compost), and nano-remediation supplements, which significantly remediate Cr(VI)-contaminated soil/water and lessen possible health and environmental challenges. Future research needs and knowledge gaps are also covered. The review's observations should aid in the development of creative and useful methods for limiting Cr(VI) bioavailability, toxicity and sustainably managing Cr(VI)-polluted soils/water, by clear understanding of mechanistic basis of Cr(VI) toxicity, signaling pathways, and tolerance mechanisms; hence reducing its hazards to the environment.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Muhammad Mohsin Waqas
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Pakistan
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Pakistan
| | | | - Syed Amjad Ahmad
- Department of Mechanical Engineering, NFC IEFR, Faisalabad, Pakistan
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Sayed M. Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo, Egypt
| |
Collapse
|
4
|
Labudda M, Dziurka K, Fidler J, Gietler M, Rybarczyk-Płońska A, Nykiel M, Prabucka B, Morkunas I, Muszyńska E. The Alleviation of Metal Stress Nuisance for Plants—A Review of Promising Solutions in the Face of Environmental Challenges. PLANTS 2022; 11:plants11192544. [PMID: 36235410 PMCID: PMC9571535 DOI: 10.3390/plants11192544] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 12/04/2022]
Abstract
Environmental changes are inevitable with time, but their intensification and diversification, occurring in the last several decades due to the combination of both natural and human-made causes, are really a matter of great apprehension. As a consequence, plants are exposed to a variety of abiotic stressors that contribute to their morpho-physiological, biochemical, and molecular alterations, which affects plant growth and development as well as the quality and productivity of crops. Thus, novel strategies are still being developed to meet the challenges of the modern world related to climate changes and natural ecosystem degradation. Innovative methods that have recently received special attention include eco-friendly, easily available, inexpensive, and, very often, plant-based methods. However, such approaches require better cognition and understanding of plant adaptations and acclimation mechanisms in response to adverse conditions. In this succinct review, we have highlighted defense mechanisms against external stimuli (mainly exposure to elevated levels of metal elements) which can be activated through permanent microevolutionary changes in metal-tolerant species or through exogenously applied priming agents that may ensure plant acclimation and thereby elevated stress resistance.
Collapse
Affiliation(s)
- Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Kinga Dziurka
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Justyna Fidler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Marta Gietler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Anna Rybarczyk-Płońska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Małgorzata Nykiel
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Beata Prabucka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | - Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-59326-61
| |
Collapse
|
5
|
Alternative Pathway Is Involved in Hydrogen Peroxide-Enhanced Cadmium Tolerance in Hulless Barley Roots. PLANTS 2021; 10:plants10112329. [PMID: 34834692 PMCID: PMC8622811 DOI: 10.3390/plants10112329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 11/18/2022]
Abstract
Hulless barley, grown in the Qinghai Tibet Plateau, has a wide range of environmental stress tolerance. Alternative pathway (AP) and hydrogen peroxide (H2O2) are involved in enhancing plant tolerance to environmental stresses. However, the relationship between H2O2 and AP in hulless barley tolerance to cadmium (Cd) stress remains unclear. In the study, the role and relationship of AP and H2O2 under Cd stress were investigated in hulless barley (Kunlun14) and common barley (Ganpi6). Results showed that the expression level of alternative oxidase (AOX) genes (mainly AOX1a), AP capacity (Valt), and AOX protein were clearly induced more in Kunlun14 than in Ganpi 6 under Cd stress; moreover, these parameters were further enhanced by applying H2O2. Malondialdehyde (MDA) content, electrolyte leakage (EL) and NAD(P)H to NAD(P) ratio also increased in Cd-treated roots, especially in Kunlun 14, which can be markedly alleviated by exogenous H2O2. However, this mitigating effect was aggravated by salicylhydroxamic acid (SHAM, an AOX inhibitor), suggesting AP contributes to the H2O2-enhanced Cd tolerance. Further study demonstrated that the effect of SHAM on the antioxidant enzymes and antioxidants was minimal. Taken together, hulless barley has higher tolerance to Cd than common barley; and in the process, AP exerts an indispensable function in the H2O2-enhanced Cd tolerance. AP is mainly responsible for the decrease of ROS levels by dissipating excess reducing equivalents.
Collapse
|
6
|
Priming Strategies for Benefiting Plant Performance under Toxic Trace Metal Exposure. PLANTS 2021; 10:plants10040623. [PMID: 33805922 PMCID: PMC8064369 DOI: 10.3390/plants10040623] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022]
Abstract
Combating environmental stress related to the presence of toxic elements is one of the most important challenges in plant production. The majority of plant species suffer from developmental abnormalities caused by an exposure to toxic concentrations of metals and metalloids, mainly Al, As, Cd, Cu, Hg, Ni, Pb, and Zn. However, defense mechanisms are activated with diverse intensity and efficiency. Enhancement of defense potential can be achieved though exogenously applied treatments, resulting in a higher capability of surviving and developing under stress and become, at least temporarily, tolerant to stress factors. In this review, I present several already recognized as well as novel methods of the priming process called priming, resulting in the so-called “primed state” of the plant organism. Primed plants have a higher capability of surviving and developing under stress, and become, at least temporarily, tolerant to stress factors. In this review, several already recognized as well as novel methods of priming plants towards tolerance to metallic stress are discussed, with attention paid to similarities in priming mechanisms activated by the most versatile priming agents. This knowledge could contribute to the development of priming mixtures to counteract negative effects of multi-metallic and multi-abiotic stresses. Presentation of mechanisms is complemented with information on the genes regulated by priming towards metallic stress tolerance. Novel compounds and techniques that can be exploited in priming experiments are also summarized.
Collapse
|
7
|
Nazir F, Fariduddin Q, Khan TA. Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. CHEMOSPHERE 2020; 252:126486. [PMID: 32234629 DOI: 10.1016/j.chemosphere.2020.126486] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/29/2020] [Accepted: 03/12/2020] [Indexed: 05/03/2023]
Abstract
Hydrogen peroxide (H2O2) acts as a significant regulatory component interrelated with signal transduction in plants. The positive role of H2O2 in plants subjected to myriad of abiotic factors has led us to comprehend that it is not only a free radical, generated as a product of oxidative stress, but also helpful in the maintenance of cellular homeostasis in crop plants. Studies over the last two centuries has indicated that H2O2 is a key molecule which regulate photosynthesis, stomatal movement, pollen growth, fruit and flower development and leaf senescence. Exogenously-sourced H2O2 at nanomolar levels functions as a signalling molecule, facilitates seed germination, chlorophyll content, stomatal opening, and delays senescence, while at elevated levels, it triggers oxidative burst to organic molecules, which could lead to cell death. Furthermore, H2O2 is also known to interplay synergistically or antagonistically with other plant growth regulators such as auxins, gibberellins, cytokinins, abscisic acid, jasmonic acid, ethylene and salicylic acid, nitric oxide and Ca2+ (as signalling molecules), and brassinosteroids (steroidal PGRs) under myriad of environmental stresses and thus, mediate plant growth and development and reactions to abiotic factors. The purpose of this review is to specify accessible knowledge on the role and dynamic mechanisms of H2O2 in mediating growth responses and plant resilience to HM stresses, and its crosstalk with other significant PGRs in controlling various processes. More recently, signal transduction by mitogen activated protein kinases and other transcription factors which attenuate HM stresses in plants have also been dissected.
Collapse
Affiliation(s)
- Faroza Nazir
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Tanveer Alam Khan
- Department of Plant Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Gatersleben, Germany
| |
Collapse
|
8
|
Wakeel A, Xu M, Gan Y. Chromium-Induced Reactive Oxygen Species Accumulation by Altering the Enzymatic Antioxidant System and Associated Cytotoxic, Genotoxic, Ultrastructural, and Photosynthetic Changes in Plants. Int J Mol Sci 2020; 21:ijms21030728. [PMID: 31979101 PMCID: PMC7037945 DOI: 10.3390/ijms21030728] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 11/24/2022] Open
Abstract
Chromium (Cr) is one of the top seven toxic heavy metals, being ranked 21st among the abundantly found metals in the earth’s crust. A huge amount of Cr releases from various industries and Cr mines, which is accumulating in the agricultural land, is significantly reducing the crop development, growth, and yield. Chromium mediates phytotoxicity either by direct interaction with different plant parts and metabolic pathways or it generates internal stress by inducing the accumulation of reactive oxygen species (ROS). Thus, the role of Cr-induced ROS in the phytotoxicity is very important. In the current study, we reviewed the most recent publications regarding Cr-induced ROS, Cr-induced alteration in the enzymatic antioxidant system, Cr-induced lipid peroxidation and cell membrane damage, Cr-induced DNA damage and genotoxicity, Cr-induced ultrastructural changes in cell and subcellular level, and Cr-induced alterations in photosynthesis and photosynthetic apparatus. Taken together, we conclude that Cr-induced ROS and the suppression of the enzymatic antioxidant system actually mediate Cr-induced cytotoxic, genotoxic, ultrastructural, and photosynthetic changes in plants.
Collapse
Affiliation(s)
- Abdul Wakeel
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Environment and Planning, Henan University, Kaifeng 475004, China;
| | - Ming Xu
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Environment and Planning, Henan University, Kaifeng 475004, China;
- Correspondence: (M.X.); (Y.G.)
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Correspondence: (M.X.); (Y.G.)
| |
Collapse
|
9
|
Nazir F, Hussain A, Fariduddin Q. Hydrogen peroxide modulate photosynthesis and antioxidant systems in tomato (Solanum lycopersicum L.) plants under copper stress. CHEMOSPHERE 2019; 230:544-558. [PMID: 31125883 DOI: 10.1016/j.chemosphere.2019.05.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 04/09/2019] [Accepted: 05/01/2019] [Indexed: 05/23/2023]
Abstract
Plant growth and development could be modulated by minute concentrations of hydrogen peroxide (H2O2) which serves as a signaling molecule for various processes. The present work was conducted with an aim that H2O2 could also modify root morphology, morphology and movement of stomata, photosynthetic responses, activity of carbonic anhydrase, and antioxidant systems in tomato (Solanum lycopersicum L.) plants under copper stress (Cu; 10 or 100 mg kg-1 soil). Roots of 20 d old plants were dipped in 0.1 or 0.5 mM of H2O2 solution for 4 h and then transplanted to the soil filled in earthen pots. High Cu stress (100 mg kg-1 soil) altered root morphology, reduced chlorophyll content and photosynthetic capacity and also affected movement of stomata and generation of antioxidant species at 40 d after transplantation. Further, root dipping treatment of H2O2 to plants under stress and stress-free conditions enhanced accumulation of proline and activity of catalase, peroxidase, and superoxide dismutase, whereas production of superoxide radical (O2•¯) and H2O2 were decreased. Overall, H2O2 treatment improved growth, photosynthesis, metabolic state of the plants which provided tolerance and helped the plants to cope well under Cu stress.
Collapse
Affiliation(s)
- Faroza Nazir
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Anjuman Hussain
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
10
|
Gomes MADC, Hauser-Davis RA, Suzuki MS, Vitória AP. Plant chromium uptake and transport, physiological effects and recent advances in molecular investigations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 140:55-64. [PMID: 28231506 DOI: 10.1016/j.ecoenv.2017.01.042] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 05/13/2023]
Abstract
Increasingly, anthropogenic perturbations of the biosphere manifest in a broad array of global phenomena, causing widespread contamination of most ecosystems, with high dispersion rates of many contaminants throughout different environmental compartments, including metals. Chromium (Cr) contamination in particular, is, increasingly, posing a serious threat to the environment, emerging as a major health hazard to the biota. However, although the molecular and physiological mechanisms of plant responses to many heavy metals, especially lead (Pb) and cadmium (Cd), have been focused upon in recent years, chromium has attracted significantly less attention. In this context, this review discusses aspects of Cr uptake and transport, some physiological and biochemical effects of Cr exposure in plants, and molecular defense mechanisms against this metal. Recent advances in determining these responses, in fields of knowledge such as genomics, proteomics and metallomics, are discussed herein.
Collapse
Affiliation(s)
- Maria Angélica da Conceição Gomes
- Laboratório de Ciências Ambientais (LCA), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense ''Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, CEP:28013-602 Rio de Janeiro, RJ, Brasil.
| | - Rachel Ann Hauser-Davis
- Centro de Estudos da Saúde do Trabalhador e Ecologia Humana (CESTEH), ENSP, FIOCRUZ, Rua Leopoldo Bulhões, 1480, 21041-210 Rio de Janeiro, RJ, Brasil
| | - Marina Satika Suzuki
- Laboratório de Ciências Ambientais (LCA), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense ''Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, CEP:28013-602 Rio de Janeiro, RJ, Brasil
| | - Angela Pierre Vitória
- Laboratório de Ciências Ambientais (LCA), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense ''Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, CEP:28013-602 Rio de Janeiro, RJ, Brasil
| |
Collapse
|
11
|
Cuypers A, Hendrix S, Amaral dos Reis R, De Smet S, Deckers J, Gielen H, Jozefczak M, Loix C, Vercampt H, Vangronsveld J, Keunen E. Hydrogen Peroxide, Signaling in Disguise during Metal Phytotoxicity. FRONTIERS IN PLANT SCIENCE 2016; 7:470. [PMID: 27199999 PMCID: PMC4843763 DOI: 10.3389/fpls.2016.00470] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/24/2016] [Indexed: 05/18/2023]
Abstract
Plants exposed to excess metals are challenged by an increased generation of reactive oxygen species (ROS) such as superoxide ([Formula: see text]), hydrogen peroxide (H2O2) and the hydroxyl radical ((•)OH). The mechanisms underlying this oxidative challenge are often dependent on metal-specific properties and might play a role in stress perception, signaling and acclimation. Although ROS were initially considered as toxic compounds causing damage to various cellular structures, their role as signaling molecules became a topic of intense research over the last decade. Hydrogen peroxide in particular is important in signaling because of its relatively low toxicity, long lifespan and its ability to cross cellular membranes. The delicate balance between its production and scavenging by a plethora of enzymatic and metabolic antioxidants is crucial in the onset of diverse signaling cascades that finally lead to plant acclimation to metal stress. In this review, our current knowledge on the dual role of ROS in metal-exposed plants is presented. Evidence for a relationship between H2O2 and plant metal tolerance is provided. Furthermore, emphasis is put on recent advances in understanding cellular damage and downstream signaling responses as a result of metal-induced H2O2 production. Finally, special attention is paid to the interaction between H2O2 and other signaling components such as transcription factors, mitogen-activated protein kinases, phytohormones and regulating systems (e.g. microRNAs). These responses potentially underlie metal-induced senescence in plants. Elucidating the signaling network activated during metal stress is a pivotal step to make progress in applied technologies like phytoremediation of polluted soils.
Collapse
Affiliation(s)
- Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Savvides A, Ali S, Tester M, Fotopoulos V. Chemical Priming of Plants Against Multiple Abiotic Stresses: Mission Possible? TRENDS IN PLANT SCIENCE 2016; 21:329-340. [PMID: 26704665 DOI: 10.1016/j.tplants.2015.11.003] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/23/2015] [Accepted: 11/04/2015] [Indexed: 05/18/2023]
Abstract
Crop plants are subjected to multiple abiotic stresses during their lifespan that greatly reduce productivity and threaten global food security. Recent research suggests that plants can be primed by chemical compounds to better tolerate different abiotic stresses. Chemical priming is a promising field in plant stress physiology and crop stress management. We review here promising chemical agents such as sodium nitroprusside, hydrogen peroxide, sodium hydrosulfide, melatonin, and polyamines that can potentially confer enhanced tolerance when plants are exposed to multiple abiotic stresses. The challenges and opportunities of chemical priming are addressed, with the aim to boost future research towards effective application in crop stress management.
Collapse
Affiliation(s)
- Andreas Savvides
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus; Agrisearch Innovations Ltd, 2108 Nicosia, Cyprus
| | - Shawkat Ali
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mark Tester
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus.
| |
Collapse
|
13
|
Terzi H, Yıldız M. Interactive effects of sulfur and chromium on antioxidative defense systems and BnMP1 gene expression in canola (Brassica napus L.) cultivars differing in Cr(VI) tolerance. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:1171-1182. [PMID: 25956978 DOI: 10.1007/s10646-015-1468-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
Plants suffer with combined stress of sulfur (S) deficiency and hexavalent chromium [Cr(VI)] in soils. There are a few reports on the interactive effects of S-deficiency and Cr(VI) stress. Therefore, the interactions between S nutrition and Cr(VI) stress were investigated in hydroponically grown canola (Brassica napus L.) cultivars differing in Cr(VI) tolerance. The relatively Cr(VI)-tolerant (NK Petrol) and Cr(VI)-susceptible (Sary) cultivars were grown in S-sufficient nutrient solution and then exposed to variable S concentrations [deficient (0 mM S, -S) and sufficient (1 mM S, +S)]. The seedlings were then exposed to 100 μM Cr(VI) for 3 days. S-deficiency (-S/-Cr) and combined stress (-S/+Cr) caused a significant decrease in growth parameters of Sary than NK Petrol (P < 0.05). In -S/+Cr treatment, Cr accumulation in Sary was significantly higher than NK Petrol. The higher level of Cr in Sary increased lipid peroxidation and decreased chlorophyll content. The activities of antioxidant enzymes and cysteine content were significantly higher in NK Petrol than in Sary under combined stress. The levels of ascorbate (AsA) and glutathione (GSH) were significantly decreased by S deficiency. The expression level of metallothionein gene (BnMP1) in the tolerant NK Petrol was increased by -S/+Cr treatment. However, expression level of BnMP1 gene in the susceptible Sary was enhanced by +S/+Cr treatment. This result suggests metallothionein (MT) may be involved in Cr(VI) tolerance under S-deficient condition. In conclusion, S nutrition influenced Cr accumulation and enhanced tolerance caused by a positive effect on defense systems and gene expression.
Collapse
Affiliation(s)
- Hakan Terzi
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey,
| | | |
Collapse
|
14
|
Hossain MA, Bhattacharjee S, Armin SM, Qian P, Xin W, Li HY, Burritt DJ, Fujita M, Tran LSP. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. FRONTIERS IN PLANT SCIENCE 2015; 6:420. [PMID: 26136756 PMCID: PMC4468828 DOI: 10.3389/fpls.2015.00420] [Citation(s) in RCA: 358] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/25/2015] [Indexed: 05/08/2023]
Abstract
Plants are constantly challenged by various abiotic stresses that negatively affect growth and productivity worldwide. During the course of their evolution, plants have developed sophisticated mechanisms to recognize external signals allowing them to respond appropriately to environmental conditions, although the degree of adjustability or tolerance to specific stresses differs from species to species. Overproduction of reactive oxygen species (ROS; hydrogen peroxide, H2O2; superoxide, [Formula: see text]; hydroxyl radical, OH(⋅) and singlet oxygen, (1)O2) is enhanced under abiotic and/or biotic stresses, which can cause oxidative damage to plant macromolecules and cell structures, leading to inhibition of plant growth and development, or to death. Among the various ROS, freely diffusible and relatively long-lived H2O2 acts as a central player in stress signal transduction pathways. These pathways can then activate multiple acclamatory responses that reinforce resistance to various abiotic and biotic stressors. To utilize H2O2 as a signaling molecule, non-toxic levels must be maintained in a delicate balancing act between H2O2 production and scavenging. Several recent studies have demonstrated that the H2O2-priming can enhance abiotic stress tolerance by modulating ROS detoxification and by regulating multiple stress-responsive pathways and gene expression. Despite the importance of the H2O2-priming, little is known about how this process improves the tolerance of plants to stress. Understanding the mechanisms of H2O2-priming-induced abiotic stress tolerance will be valuable for identifying biotechnological strategies to improve abiotic stress tolerance in crop plants. This review is an overview of our current knowledge of the possible mechanisms associated with H2O2-induced abiotic oxidative stress tolerance in plants, with special reference to antioxidant metabolism.
Collapse
Affiliation(s)
- Mohammad A. Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural UniversityMymensingh, Bangladesh
| | | | - Saed-Moucheshi Armin
- Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz UniversityShiraz, Iran
| | - Pingping Qian
- Department of Biological Science, Graduate School of Science, Osaka UniversityToyonaka, Japan
| | - Wang Xin
- School of Pharmacy, Lanzhou UniversityLanzhou, China
| | - Hong-Yu Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou UniversityLanzhou, China
| | | | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa UniversityTakamatsu, Japan
| | - Lam-Son P. Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| |
Collapse
|
15
|
Bernard F, Brulle F, Dumez S, Lemiere S, Platel A, Nesslany F, Cuny D, Deram A, Vandenbulcke F. Antioxidant responses of Annelids, Brassicaceae and Fabaceae to pollutants: a review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:273-303. [PMID: 24951273 DOI: 10.1016/j.ecoenv.2014.04.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 04/15/2014] [Accepted: 04/20/2014] [Indexed: 06/03/2023]
Abstract
Pollutants, such as Metal Trace Elements (MTEs) and organic compounds (polycyclic aromatic hydrocarbons, pesticides), can impact DNA structure of living organisms and thus generate damage. For instance, cadmium is a well-known genotoxic and mechanisms explaining its clastogenicity are mainly indirect: inhibition of DNA repair mechanisms and/or induction of Reactive Oxygen Species (ROS). Animal or vegetal cells use antioxidant defense systems to protect themselves against ROS produced during oxidative stress. Because tolerance of organisms depends, at least partially, on their ability to cope with ROS, the mechanisms of production and management of ROS were investigated a lot in Ecotoxicology as markers of biotic and abiotic stress. This was mainly done through the measurement of enzyme activities The present Review focuses on 3 test species living in close contact with soil that are often used in soil ecotoxicology: the worm Eisenia fetida, and two plant species, Trifolium repens (white clover) and Brassica oleracea (cabbage). E. fetida is a soil-dwelling organism commonly used for biomonitoring. T. repens is a symbiotic plant species which forms root nodule with soil bacteria, while B. oleracea is a non-symbiotic plant. In literature, some oxidative stress enzyme activities have already been measured in those species but such analyses do not allow distinction between individual enzyme involvements in oxidative stress. Gene expression studies would allow this distinction at the transcriptomic level. A literature review and a data search in molecular database were carried out on the basis of keywords in Scopus, in PubMed and in Genbank™ for each species. Molecular data regarding E. fetida were already available in databases, but a lack of data regarding oxidative stress related genes was observed for T. repens and B. oleracea. By exploiting the conservation observed between species and using molecular biology techniques, we partially cloned missing candidates involved in oxidative stress and in metal detoxification in E. fetida, T. repens and B. oleracea.
Collapse
Affiliation(s)
- F Bernard
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Génie Civil et géo-Environnement EA4515 - Université Lille Nord de France - Lille 1, Ecologie Numérique et Ecotoxicologie, F-59655 Villeneuve d'Ascq, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France
| | - F Brulle
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France
| | - S Dumez
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France
| | - S Lemiere
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Génie Civil et géo-Environnement EA4515 - Université Lille Nord de France - Lille 1, Ecologie Numérique et Ecotoxicologie, F-59655 Villeneuve d'Ascq, France
| | - A Platel
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Toxicologie - Institut Pasteur de Lille, EA 4483, F-59800 Lille, France
| | - F Nesslany
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Toxicologie - Institut Pasteur de Lille, EA 4483, F-59800 Lille, France
| | - D Cuny
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France
| | - A Deram
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France; Faculté de Management de la Santé (ILIS) - Université de Lille 2, EA4483, F-59120 Loos, France
| | - F Vandenbulcke
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Génie Civil et géo-Environnement EA4515 - Université Lille Nord de France - Lille 1, Ecologie Numérique et Ecotoxicologie, F-59655 Villeneuve d'Ascq, France.
| |
Collapse
|
16
|
Terzi H, Yıldız M. Variations in chromium tolerance and accumulation among canola (Brassica napus L.) cultivars. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 93:113-119. [PMID: 24652626 DOI: 10.1007/s00128-014-1255-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 03/12/2014] [Indexed: 06/03/2023]
Abstract
Phytoremediation is a green technology for the remediation of contaminated ecosystems by using plants. In the present study, a hydroponic experiment was conducted to investigate the phytoremediation potential of eight canola (Brassica napus L.) cultivars for hexavalent chromium [Cr(VI)]. Chromium significantly affected dry weight, lipid peroxidation, chlorophylls, non-protein thiol and antioxidant enzymes. Based on the dry weight, the tolerance index was found maximum in cultivar (cv.) NK Petrol and minimum in cv. Sary. The cv. Sary accumulated the maximum amount of Cr (705.8 μg g(-1) DW), which was correlated with the lowest levels of chlorophyll content and highest levels of lipid peroxidation. However, Cr accumulation was lowest (255.0 μg g(-1) DW) in NK Petrol. Although cv. NK Petrol may be a Cr(VI) excluder relative to cv. Sary, it may have the potential for the phytoremediation of Cr-contaminated sites as it possesses higher resistance to Cr(VI) by producing higher biomasses.
Collapse
Affiliation(s)
- Hakan Terzi
- Department of Biology, Faculty of Science and Literature, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey,
| | | |
Collapse
|