1
|
Park SY, Lee J, Hong S, Kim T, Yoon SJ, Lee C, Kwon BO, Hu W, Wang T, Khim JS. Evaluation of ecotoxicological effects associated with coastal sediments of the Yellow Sea large marine ecosystem using the marine copepod Tigriopus japonicus. MARINE POLLUTION BULLETIN 2022; 181:113937. [PMID: 35850088 DOI: 10.1016/j.marpolbul.2022.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
A copepod bioassay with Tigriopus japonicus was applied to evaluate the relative ecotoxicity of sediments in the Yellow and Bohai seas, and contributions of individual PAHs to copepod toxicity were evaluated. Mean toxicity was greatest in the Yellow Sea of China, followed by the Bohai Sea and Yellow Sea of Korea. Elevated concentrations of sedimentary PAHs, alkylphenols, and styrene oligomers back-supported the significant toxicities observed in bioassay. Copepod toxicity in relation to PAHs indicated the greatest contribution by indeno[1,2,3-c,d]pyrene. However, lacked contribution by PAHs, viz., 2.4 and 3.0 % for the total immobilization and mortality, respectively, indicated a large proportion of unknown toxicants being widely distributed along the Yellow Sea Large Marine Ecosystem (YSLME) coastline. Overall, the present study provides useful baseline information for evaluating the potential sedimentary toxicants, with emphasizing further investigation to identify the unknown toxicants at an LME scale, and elsewhere.
Collapse
Affiliation(s)
- Shin Yeong Park
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Seongjin Hong
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Taewoo Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Seo Joon Yoon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Changkeun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong-Oh Kwon
- Department of Marine Biotechnology, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Wenyou Hu
- Key Laboratory of Soil Environmental and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Hao H, Li P, Lv Y, Chen W, Ge D. Probabilistic health risk assessment for residents exposed to potentially toxic elements near typical mining areas in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58791-58809. [PMID: 35378652 DOI: 10.1007/s11356-022-20015-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Public health problems caused by toxic elements in mining areas have always been an important topic worldwide. However, existing studies have focused on single exposure routes and common toxic elements, which might underestimate the risks faced by residents. In this study, three typical mining areas in central China were selected to assess the health risks of 14 potentially toxic elements through five exposure routes using Monte Carlo simulations. The results indicated that the 95th percentile non-carcinogenic risk values to humans via rice and vegetable ingestion ranged from 9.8 to 26.0 and 6.2 to 19.0. The corresponding carcinogenic risks ranged from 1.4E-2 to 6.3E-2 and from 2.9E-3 to 2.3E-2, respectively. Therefore, residents face serious health risks. Multi-element analysis showed that cadmium (Cd), boron (B), and arsenic (As) were the main contributors to rice non-carcinogenicity, whereas Cd and nickel (Ni) were the main elements of rice carcinogenicity. B and lead (Pb) played an essential role in the non-carcinogenesis of vegetables, and B, Ni, and Cd played an essential role in carcinogenesis. Accidental ingestion is the main route of soil exposure. In these three areas, the probability of non-carcinogenic risk faced by adults was 40%, 0%, and 1%, respectively, while the probabilities for children were 100%, 62%, and 83%, respectively. Regarding carcinogenicity, the risk for both adults and children was up to 100%. This study emphasizes the overall health risks in polluted areas via multi-route and multi-element analysis. This conclusion is helpful to comprehensively assess the potential health risks faced by residents in mining areas and provide baseline data support and a scientific basis for formulating reasonable risk control measures.
Collapse
Affiliation(s)
- Huijuan Hao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410125, People's Republic of China
- Risk Assessment Laboratory for Environmental Factors of Agro-Product Quality Safety, Ministry of Agriculture and Villages, Changsha, 410005, People's Republic of China
| | - Panpan Li
- College of Computer, National University of Defense Technology, Changsha, 410005, People's Republic of China
| | - Yuntao Lv
- Risk Assessment Laboratory for Environmental Factors of Agro-Product Quality Safety, Ministry of Agriculture and Villages, Changsha, 410005, People's Republic of China
| | - Wanming Chen
- Risk Assessment Laboratory for Environmental Factors of Agro-Product Quality Safety, Ministry of Agriculture and Villages, Changsha, 410005, People's Republic of China
| | - Dabing Ge
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410125, People's Republic of China.
| |
Collapse
|
3
|
Pelcová P, Ridošková A, Hrachovinová J, Grmela J. Evaluation of mercury bioavailability to vegetables in the vicinity of cinnabar mine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117092. [PMID: 33892369 DOI: 10.1016/j.envpol.2021.117092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 03/09/2021] [Accepted: 04/04/2021] [Indexed: 05/27/2023]
Abstract
Knowledge of the concentration of the bioavailable forms of mercury in the soil is necessary, especially, if these soils contain above-limit total mercury concentrations. The bioavailability of mercury in soil samples collected from the vicinity of abandoned cinnabar mines was evaluated using diffusive gradients in the thin films technique (DGT) and mercury phytoaccumulation by vegetables (lettuce, spinach, radish, beetroot, carrot, and green peas). Mercury was accumulated primarily in roots of vegetables. The phytoaccumulation of mercury into edible plant parts was site-specific as well as vegetable species-specific. The mercury concentration in edible parts decreased in the order: spinach leaf ≥ lettuce leaf ≥ carrot storage root ≥ beetroot storage root > radish storage root > pea legume. The translocation index as well as the target hazard quotient indicate the possible usability of soils from the vicinity of abandoned cinnabar mines for planting pod vegetables (peas). A strong positive correlation (r = 0.75 to 0.92, n > 30, p < 0.05) was observed between mercury concentration in secondary roots, the storage roots, leaves of vegetables and the flux of mercury from soil to the DGT units, and the effective concentration of mercury in soil solutions.
Collapse
Affiliation(s)
- Pavlína Pelcová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300, Brno, Czech Republic.
| | - Andrea Ridošková
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300, Brno, Czech Republic; CEITEC MENDELU, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Jana Hrachovinová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300, Brno, Czech Republic
| | - Jan Grmela
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University in Brno, Zemedelska 1, CZ-61300, Brno, Czech Republic
| |
Collapse
|
4
|
Identifying the Source of Heavy Metal Pollution and Apportionment in Agricultural Soils Impacted by Different Smelters in China by the Positive Matrix Factorization Model and the Pb Isotope Ratio Method. SUSTAINABILITY 2021. [DOI: 10.3390/su13126526] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the agricultural soil around Zhuzhou Smelter in Zhuzhou district, Hunan, China and Huludao Zinc Plant in Huludao district, Liaoning, China was selected as the research area to discuss the current situation of heavy metal pollution in the surrounding agricultural soil caused by different smelting plants for soil environmental management and sustainable development of soil resources. Eight elements’ (Cd, Pb, As, Hg, Cr, Ni, Cu, and Zn) contents were measured to assess their pollution risk level and spatial distribution distinction. Correlation analysis, the positive matrix factorization (PMF), and Pb isotope ratio method were employed to analyze the sources of soil heavy metal pollution in the research area. The contents of Cd, Pb, Hg, and Zn in the soil of the two research areas were seriously polluted, and the changes of their spatial content were related to the migration and sedimentation of the smelter waste gas. Four types of pollution sources, including the smelting source, agricultural sources, natural sources, and mixed sources of industrial activity and traffic were identified in both areas by PMF, and the contribution rates of the four pollution sources in both areas were similar. Taking the agricultural soil around Huludao Zinc Plant as an example, the contribution rates of the different pollution sources analyzed by Pb isotope ratio method were the lead smelting source (43.7%), followed by the agricultural source (34.6%), traffic source (14.2%), and natural source (7.5%), which were basically consistent with that of PMF analysis, verifying the reliability of the two methods. The results above showed that the smelters were the main cause of heavy metal pollution in agricultural soils around the two research areas, and the analysis results of element content ratio and smelting source characteristic element contribution rate ratio could provide reference for the analysis of heavy metal pollution in agricultural soil around smelters for soil pollution control decision making.
Collapse
|
5
|
Peng Y, Chen J, Wei H, Li S, Jin T, Yang R. Distribution and transfer of potentially toxic metal(loid)s in Juncus effusus from the indigenous zinc smelting area, northwest region of Guizhou Province, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 152:24-32. [PMID: 29367113 DOI: 10.1016/j.ecoenv.2018.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/15/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
We collected samples (i.e., the aerial parts and roots of Juncus effusus and their growth media) in the indigenous zinc smelting area in the northwest region of Guizhou Province, China, and we measured and analyzed potentially toxic metal(loid)s (arsenic, As; cadmium, Cd; chromium, Cr; copper, Cu; mercury, Hg; lead, Pb and zinc, Zn) in these samples. The results include the following: First, there is a high concentration of one or more potentially toxic metal(loid)s in the slag and surrounding soil in the research area. This situation might be caused by metal(loid) damage or contamination due to the circumstances. Additionally, Juncus effusus in the indigenous zinc smelting area are contaminated by some potentially toxic metal(loid)s; since they are used for Chinese medical materials, it is especially significant that their As, Cd and Pb concentrations are greater than their limited standard values. Finally, both the bioconcentration factors and transfer factors for most potentially toxic metal(loid)s in Juncus effusus are less than 1 in the study area. Therefore, we suggest that Juncus effusus could be used for phytostabilization or as a pioneer plant for phytoremediation of potentially toxic metal(loid)s because it has a tolerance and exclusion mechanism for these metal(loid)s in the research district.
Collapse
Affiliation(s)
- Yishu Peng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Jun Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Huairui Wei
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Shibin Li
- Institute of Land Resources Survey and Plan of Guizhou Province, Guiyang 550004, China
| | - Tao Jin
- Institute of Mountain Resources of Guizhou Province, Guizhou Academy of Sciences, Guiyang 550001, China
| | - Ruidong Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
6
|
Wai KM, Dai J, Yu PKN, Zhou X, Wong CMS. Public health risk of mercury in China through consumption of vegetables, a modelling study. ENVIRONMENTAL RESEARCH 2017; 159:152-157. [PMID: 28800473 DOI: 10.1016/j.envres.2017.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 06/16/2017] [Accepted: 08/05/2017] [Indexed: 06/07/2023]
Abstract
Sample measurement of mercury (Hg) contents is a common method for health risk assessment of Hg through vegetable consumption in China. In the present work, we undertook the first modelling study which produced consistent health-risk maps for the whole eastern China. Regional maps of Probable Daily Intake (PDI) of Total mercury (THg) and Methylmercury (MeHg) over the studied area were produced, which were important for the researchers and policy-makers to evaluate the risk and to propose mitigation measures if necessary. The model predictions of air-borne Hg(0) concentrations agreed well with the observations and simulated Hg distribution over China as reported elsewhere. Our calculated PDIs of THg in vegetables were also comparable to those reported in the literature. There was 19% of the studied area with PDIs > 0.08µgkg-1 bw d-1 [half of the reference dose (RfD)]. The PDI for THg (MeHg) varied from 0.034 (0.007) to 0.162 (0.035)µgkg-1 bw d-1 with an average of 0.058 (0.013)µgkg-1 bw d-1. The highest calculated PDIs of THg over China was equal to the RfD, while the calculated PDIs of MeHg were well below the RfD of 0.1µgkg-1 bw d-1. The health risk was of concern through consumption of THg in leafy vegetables, rice/wheat and fish in Liaoning Provinces, Hunan, Zhejiang and Guizhou Provinces, with the associated PDIs exceeding the RfD. Despite this, the heath risk of MeHg exposure for the general population in southern China from the same foodstuff consumption was not a concern. The contribution of consumption through leafy vegetation should be considered when THg and MeHg exposures to the population are evaluated. The results improve our understanding in managing public health risk in China especially in large cities with high population, and thus have important contribution to enhance sustainable urbanization as one of the principle goals under the framework of the Nature-Based Solution (NBS).
Collapse
Affiliation(s)
- Ka-Ming Wai
- Department of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI, USA.
| | - Jiulan Dai
- Environment Research Institute, Shandong University, China
| | - Peter K N Yu
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR
| | - Xuehua Zhou
- Environment Research Institute, Shandong University, China
| | - Charles M S Wong
- Department of Land Surveying and Geo-informatics, Hong Kong Polytechnic University, Hong Kong SAR
| |
Collapse
|
7
|
Genome-wide association analysis identifies loci governing mercury accumulation in maize. Sci Rep 2017; 7:247. [PMID: 28325924 PMCID: PMC5427852 DOI: 10.1038/s41598-017-00189-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/06/2017] [Indexed: 01/08/2023] Open
Abstract
Owing to the rapid development of urbanisation and industrialisation, heavy metal pollution has become a widespread environmental problem. Maize planted on mercury (Hg)-polluted soil can absorb and accumulate Hg in its edible parts, posing a potential threat to human health. To understand the genetic mechanism of Hg accumulation in maize, we performed a genome-wide association study using a mixed linear model on an association population consisting of 230 maize inbred lines with abundant genetic variation. The order of relative Hg concentrations in different maize tissues was as follows: leaves > bracts > stems > axes > kernels. Combined two locations, a total of 37 significant single-nucleotide polymorphisms (SNPs) associated with kernels, 12 with axes, 13 with stems, 27 with bracts and 23 with leaves were detected with p < 0.0001. Each significant SNP was calculated and the SNPs significant associated with kernels, axes, stems, bracts and leaves explained 6.96%–10.56%, 7.19%–15.87%, 7.11%–10.19%, 7.16%–8.71% and 6.91%–9.17% of the phenotypic variation, respectively. Among the significant SNPs, nine co-localised with previously detected quantitative trait loci. This study will aid in the selection of Hg-accumulation inbred lines that satisfy the needs for pollution-safe cultivars and maintaining maize production.
Collapse
|
8
|
Zhou Q, Zheng N, Liu J, Wang Y, Sun C, Liu Q, Wang H, Zhang J. Residents health risk of Pb, Cd and Cu exposure to street dust based on different particle sizes around zinc smelting plant, Northeast of China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2015; 37:207-20. [PMID: 25117486 DOI: 10.1007/s10653-014-9640-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/23/2014] [Indexed: 05/16/2023]
Abstract
The residents health risk of Pb, Cd and Cu exposure to street dust with different particle sizes (<100 and <63 μm) near Huludao Zinc Plant (HZP) was investigated in this study. The average concentrations of Pb, Cd and Cu in the <100-μm and <63-μm dust were 1,559, 178.5, 917.9 and 2,099, 198.4, 1,038 mg kg(-1), respectively. It showed that smaller particles tended to contain higher element concentrations. Metals in dust around HZP decreased gradually from the zinc smelter to west and east directions. There was significantly positive correlation among Pb, Cd and Cu in street dust with different particle sizes. The contents of Pb, Cd and Cu in dust increased with decreasing pH or increasing organic matter. Non-carcinogenic health risk assessment showed that the health index (HI) for children and adult exposed to <63-μm particles were higher than exposed to <100-μm particles, which indicated that smaller particles tend to have higher non-carcinogenic health risk. Non-carcinogenic risk of Pb was the highest in both particle sizes, followed by Cd and Cu. HI for Pb and Cd in both particle sizes for children had exceeded the acceptable value, indicated that children living around HZP were experiencing the non-carcinogenic health risk from Pb and Cd exposure to street dust.
Collapse
Affiliation(s)
- Qiuhong Zhou
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Shengbei Street 4888#, Changchun City, 130102, Jilin, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Fu Z, Li W, Zhang Q, Wang L, Zhang X, Song G, Fu Z, Ding D, Liu Z, Tang J. Quantitative trait loci for mercury accumulation in maize (Zea mays L.) identified using a RIL population. PLoS One 2014; 9:e107243. [PMID: 25210737 PMCID: PMC4161392 DOI: 10.1371/journal.pone.0107243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/28/2014] [Indexed: 02/04/2023] Open
Abstract
To investigate the genetic mechanism of mercury accumulation in maize (Zea mays L.), a population of 194 recombinant inbred lines derived from an elite hybrid Yuyu 22, was used to identify quantitative trait loci (QTLs) for mercury accumulation at two locations. The results showed that the average Hg concentration in the different tissues of maize followed the order: leaves > bracts > stems > axis > kernels. Twenty-three QTLs for mercury accumulation in five tissues were detected on chromosomes 1, 4, 7, 8, 9 and 10, which explained 6.44% to 26.60% of the phenotype variance. The QTLs included five QTLs for Hg concentration in kernels, three QTLs for Hg concentration in the axis, six QTLs for Hg concentration in stems, four QTLs for Hg concentration in bracts and five QTLs for Hg concentration in leaves. Interestingly, three QTLs, qKHC9a, qKHC9b, and qBHC9 were in linkage with two QTLs for drought tolerance. In addition, qLHC1 was in linkage with two QTLs for arsenic accumulation. The study demonstrated the concentration of Hg in Hg-contaminated paddy soil could be reduced, and maize production maintained simultaneously by selecting and breeding maize Hg pollution-safe cultivars (PSCs).
Collapse
Affiliation(s)
- Zhongjun Fu
- National Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Maize Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Weihua Li
- National Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Qinbin Zhang
- National Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Long Wang
- National Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xiaoxiang Zhang
- National Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Guiliang Song
- National Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zhiyuan Fu
- National Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zonghua Liu
- National Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- * E-mail: (ZL); (JT)
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- * E-mail: (ZL); (JT)
| |
Collapse
|
10
|
Luo XJ, Ruan W, Zeng YH, Liu HY, Chen SJ, Wu JP, Mai BX. Trophic dynamics of hexabromocyclododecane diastereomers and enantiomers in fish in a laboratory feeding study. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:831-40. [PMID: 23893604 DOI: 10.1002/etc.2136] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/12/2012] [Accepted: 12/02/2012] [Indexed: 05/03/2023]
Abstract
The laboratory trophic transfer of hexabromocyclododecanes (HBCDs) was studied using predatory (oscar) fish and a prey species (tiger barb) exposed to a technical HBCD. Gut absorption, dynamic changes of diastereomer pattern and enantiomer fractions, and potential metabolism of HBCDs were examined. Compared with β- or γ-HBCD, α-HBCD showed lower absorption efficiency in the gut of oscar fish. A predominance of γ-HBCD was observed in the tiger barb after 5 d HBCD-exposed and oscar feeding on the tiger barb for 16 d. After 20 d of depuration, 41.1% γ-HBCD and 42.7% β-HBCD disappeared, and α-HBCD exceeded the initial amount. The transformation from γ-HBCD predominance in the food to α-HBCD predominance in the oscar was attributed mainly to the isomerization of γ-HBCD (at least 3% and up to 22.7%) to α-HBCD. Selective enrichment of the (+) α- and (-) β-enantiomers and no enantioselective enrichment of γ-HBCD were observed in the tiger barbs. No enantioselective uptake of the 3 diasteromers was found in the oscar gut. The enantiomer fractions of α- and γ-diastereomers were significantly higher, but that of β-diastereomer were significantly lower in the oscars than in the tiger barbs, indicating enantioselective metabolism of the 3 diastereomers. Two HBCD monohydroxylated metabolites were detected in the 2 fish species, but their composition patterns differed, indicating a species-specific metabolism of HBCD in the studied fish species.
Collapse
Affiliation(s)
- Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Li Y. Environmental contamination and risk assessment of mercury from a historic mercury mine located in southwestern China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2013; 35:27-36. [PMID: 22722913 DOI: 10.1007/s10653-012-9470-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/06/2012] [Indexed: 06/01/2023]
Abstract
A field survey of mercury pollution in environmental media and human hair samples obtained from residents living in the area surrounding the Chatian mercury mine (CMM) of southwestern China was conducted to evaluate the health risks of mercury to local residents. The results showed that mine waste, and tailings in particular, contained high levels of mercury and that the maximum mercury concentration was 88.50 μg g(-1). Elevated mercury levels were also found in local surface water, paddy soil, and paddy grain, which may cause severe health problems. The mercury concentration of hair samples from the inhabitants of the CMM exceeded 1.0 μg g(-1), which is the limit recommended by the US EPA. Mercury concentrations in paddy soil were positively correlated with mercury concentrations in paddy roots, stalks, and paddy grains, which suggested that paddy soil was the major source of mercury in paddy plant tissue. The average daily dose (ADD) of mercury for local adults and preschool children via oral exposure reached 0.241 and 0.624 μg kg(-1) body weight per day, respectively, which is approaching or exceeds the provisional tolerable daily intake. Among the three oral exposure routes, the greatest contributor to the ADD of mercury was the ingestion of rice grain. Open-stacked mine tailings have resulted in heavy mercury contamination in the surrounding soil, and the depth of appreciable soil mercury concentrations exceeded 100 cm.
Collapse
Affiliation(s)
- Yonghua Li
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
12
|
Luo W, Wang T, Jiao W, Hu W, Naile JE, Khim JS, Giesy JP, Lu Y. Mercury in coastal watersheds along the Chinese Northern Bohai and Yellow Seas. JOURNAL OF HAZARDOUS MATERIALS 2012; 215-216:199-207. [PMID: 22421344 DOI: 10.1016/j.jhazmat.2012.02.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 02/18/2012] [Accepted: 02/20/2012] [Indexed: 05/31/2023]
Abstract
The concentration of total mercury [Hg] in waters, sediments and biota (carp and crabs) as well as the concentration of methyl mercury [MeHg] in biota from upstream (surface water systems) and downstream (coastal and estuarine systems) areas within coastal watersheds along the Chinese Northern Bohai and Yellow Seas were investigated. In most waters tested, the [Hg] could have adverse effects on coastal wildlife. Based on the Chinese water quality standards for mercury, 67% of upstream waters cannot be used for agriculture or recreation. Furthermore, 53% of downstream waters cannot be used as harbors or for industrial development. The [Hg] in 3% of sediments from the Wuli and Luanhe Rivers were sufficient to cause adverse effects on ecosystems. The [Hg] in 41% of downstream crabs and the [MeHg] in 29% of downstream crabs were higher than the limits for human consumption set by the Chinese government. In all abiotic and biotic samples, only the downstream carp from the Northern Yellow Sea had a [Hg] or [MeHg] higher than those from the Northern Bohai Sea. Industrialization and urbanization were the primary sources of mercury contamination in the aquatic ecosystems studied.
Collapse
Affiliation(s)
- Wei Luo
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang X, Yang L, Li Y, Li H, Wang W, Ye B. Impacts of lead/zinc mining and smelting on the environment and human health in China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2012; 184:2261-73. [PMID: 21573711 DOI: 10.1007/s10661-011-2115-6] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 04/26/2011] [Indexed: 05/04/2023]
Abstract
Mining and smelting are important economic activities. However, mining-related industries are also some of the largest sources of environmental pollution from heavy metals. China is one of the largest producers and consumers of lead and zinc in the world. A large amount of lead, zinc, and related elements, such as cadmium, have been released into the environment due to mineral processing activities and have impacted water resources, soils, vegetables, and crops. In some areas, this pollution is hazardous to human health. This article reviews studies published in the past 10 years (2000-2009), on the environmental and human health consequences of lead/zinc mineral exploitation in China. Polluted areas are concentrated in the following areas: the junction of Yunnan, Guizhou and Sichuan provinces, west-central Hunan province, central Guangxi province, northern Guangdong, northwestern Henan province, the border between Shanxi and Gansu provinces, and the region of Liaoning province near Bohai. Lead (Pb) and cadmium (Cd) are the main pollutants and are associated with human health effects such as high lead blood levels in children, arthralgia, osteomalacia, and excessive cadmium in urine.
Collapse
Affiliation(s)
- Xiuwu Zhang
- Department of Environmental Geography and Human Health, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China.
| | | | | | | | | | | |
Collapse
|
14
|
Olivero-Verbel J, Caballero-Gallardo K, Marrugo Negrete J. Relationship between localization of gold mining areas and hair mercury levels in people from Bolivar, north of Colombia. Biol Trace Elem Res 2011; 144:118-32. [PMID: 21476008 DOI: 10.1007/s12011-011-9046-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/21/2011] [Indexed: 11/27/2022]
Abstract
Mercury (Hg) is a heavy metal that, once in the environment, is bioaccumulated and biomagnified through food chain impacting ecosystems. The aim of this study was to evaluate total Hg (T-Hg) concentrations in individuals along Cauca and Magdalena Rivers in Colombia, where most gold mining activities take place. A total of 1,328 hair samples were collected and analyzed for T-Hg using atomic absorption spectroscopy. T-Hg concentrations ranged from 0.01 to 20.14 μg/g. Greatest levels were detected in La Raya (5.27 ± 0.32 μg/g), Achi (2.44 ± 0.22 μg/g), and Montecristo (2.20 ± 0.20 μg/g), places that are located near gold mines. Concentrations decreased with the distance from main mining areas. Only 0.75% of the individuals had T-Hg levels above 10 μg/g. Men had significantly higher T-Hg levels than women, and correlation analysis revealed moderately weak but significant relationships between T-Hg and weight (R = 0.111, P < 0.001), stature (R = 0.111, P < 0.001), and age (R = 0.073, P = 0.007). However, T-Hg concentrations did not vary according to fish consumption frequency. Subjective health survey showed no Hg-related signs or symptoms within studied sample. However, studies are necessary to detect neurological damage linked to the metal. Changing technologies to Hg-free mining, monitoring, and educational programs are necessary to protect health of people living near Colombian rivers.
Collapse
Affiliation(s)
- Jesús Olivero-Verbel
- Environmental and Computational Chemistry Group, Faculty of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia.
| | | | | |
Collapse
|
15
|
Abstract
Acute or chronic mercury exposure can cause adverse effects during any period of development. Mercury is a highly toxic element; there is no known safe level of exposure. Ideally, neither children nor adults should have any mercury in their bodies because it provides no physiological benefit. Prenatal and postnatal mercury exposures occur frequently in many different ways. Pediatricians, nurses, and other health care providers should understand the scope of mercury exposures and health problems among children and be prepared to handle mercury exposures in medical practice. Prevention is the key to reducing mercury poisoning. Mercury exists in different chemical forms: elemental (or metallic), inorganic, and organic (methylmercury and ethyl mercury). Mercury exposure can cause acute and chronic intoxication at low levels of exposure. Mercury is neuro-, nephro-, and immunotoxic. The development of the child in utero and early in life is at particular risk. Mercury is ubiquitous and persistent. Mercury is a global pollutant, bio-accumulating, mainly through the aquatic food chain, resulting in a serious health hazard for children. This article provides an extensive review of mercury exposure and children's health.
Collapse
Affiliation(s)
- Stephan Bose-O'Reilly
- Institute of Public Health, Medical Decision Making and Health Technology Assessment, Department of Public Health, Information Systems and Health Technology Assessment, UMIT-University for Health Sciences, Medical Informatics and Technology, Hall i.T, Austria
| | | | | | | |
Collapse
|
16
|
Zheng N, Liu J, Wang Q, Liang Z. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 35:89-99. [PMID: 19926116 DOI: 10.1007/s10653-012-9463-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 05/18/2012] [Indexed: 05/05/2023]
Abstract
Heavy metal contamination in the street dust due to metal smelting in the industrial district of Huludao city was investigated. Spatial distribution of Hg, Pb, Cd, Zn and Cu in the street dust was elucidated. Meanwhile, noncancer effect and cancer effect of children and adults due to exposure to the street dust were estimated. The maximum Hg, Pb, Cd, Zn and Cu contents in the street dust are 5.212, 3903, 726.2, 79,869, and 1532 mg kg(-1), and respectively 141, 181, 6724, 1257 and 77.4 times as high as the background values in soil. The trends for Hg, Pb, Cd, Zn and Cu are similar with higher concentrations trending Huludao zinc plant (HZP). The exponential equation fits quite well for the variations of Pb, Cd, Zn and Cu contents with distance from the pollution sources, but not for Hg. The biggest contribution to street dust is atmospheric deposition due to metal smelting, but traffic density makes slight contribution to heavy metal contamination. According to the calculation on Hazard Index (HI), in the case of noncancer effect, the ingestion of dust particles of children and adults in Huludao city appears to be the route of exposure to street dust that results in a higher risk for heavy metals, followed by dermal contact. The inhalation of resuspended particles through the mouth and nose is almost negligible. The inhalation of Hg vapour as the fourth exposure pathway to street dust is accounting for the main exposure. Children are experiencing the potential health risk due to HI for Pb larger than safe level (1) and Cd close to 1. Besides, cancer risk of Cd due to inhalation exposure is low.
Collapse
Affiliation(s)
- Na Zheng
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin 130012, China.
| | | | | | | |
Collapse
|
17
|
Li P, Feng XB, Qiu GL, Shang LH, Li ZG. Mercury pollution in Asia: a review of the contaminated sites. JOURNAL OF HAZARDOUS MATERIALS 2009; 168:591-601. [PMID: 19345013 DOI: 10.1016/j.jhazmat.2009.03.031] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/10/2009] [Accepted: 03/10/2009] [Indexed: 05/20/2023]
Abstract
This article describes the mercury contaminated sites in Asia. Among the various regions, Asia has become the largest contributor of anthropogenic atmospheric mercury (Hg), responsible for over half of the global emission. Based on different emission source categories, the mercury contaminated sites in Asia were divided into various types, such as Hg pollution from Hg mining, gold mining, chemical industry, metal smelting, coal combustion, metropolitan cities, natural resources and agricultural sources. By the review of a large number of studies, serious Hg pollutions to the local environment were found in the area influenced by chemical industry, mercury mining and gold mining. With the probable effects of a unique combination of climatic (e.g. subtropical climate), environmental (e.g. acid rain), economic (e.g. swift growth) and social factors (e.g. high population density), more effort is still needed to understand the biogeochemistry cycle of Hg and associated health effects in Asia. Safer alternatives and cleaner technologies must be developed and effectively implemented to reduce mercury emission; remedial techniques are also required to restore the historical mercury pollution in Asia.
Collapse
Affiliation(s)
- P Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China.
| | | | | | | | | |
Collapse
|
18
|
Olivero-Verbel J, Johnson-Restrepo B, Baldiris-Avila R, Güette-Fernández J, Magallanes-Carreazo E, Vanegas-Ramírez L, Kunihiko N. Human and crab exposure to mercury in the Caribbean coastal shoreline of Colombia: impact from an abandoned chlor-alkali plant. ENVIRONMENT INTERNATIONAL 2008; 34:476-82. [PMID: 18155151 DOI: 10.1016/j.envint.2007.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/26/2007] [Accepted: 10/29/2007] [Indexed: 05/21/2023]
Abstract
Human hair samples from male and female people aged 6-85 years, as well as muscle of crabs (Callinectes sapidus and Callinectes bocourti) were collected from different fishing places along the Caribbean coastal shoreline of Colombia and analyzed for total mercury (T-Hg) in order to establish the impact of mercury-polluted sediments in Cartagena bay on the ecosystem. Hair T-Hg in inhabitants varied between 0.1 and 21.8 microg/g, with average and median of 1.52 microg/g and 1.1 microg/g, respectively. Differences between sampling locations were significant (P<0.01) and median values decreased in the order: Caño del Oro (1.5 microg/g)<Bocachica (1.4 microg/g) (both located in Cartagena Bay)<Coveñas (1.2 microg/g)<Lomarena (0.7 microg/g)=Tasajera (0.7 microg/g). A similar trend was observed for T-Hg in muscle of crabs, however, along Cartagena bay, T-Hg distribution in these organisms varied widely, with highest values detected in samples collected in front of the extinct chlor-alkali plant. Although the T-Hg median for these people is equal to the threshold risk level recommended by U.S. EPA, this study highlights the fact that contaminated sediments are still driving the distribution of mercury through the food chain, allowing its accumulation in fishermen whose diet includes marine products as sources of protein.
Collapse
Affiliation(s)
- Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, Faculty of Pharmaceutical Sciences, Universidad de Cartagena, Cartagena, Colombia.
| | | | | | | | | | | | | |
Collapse
|