1
|
Xu B, Qiu X, Bao Y, Xu X, Pan C, Zhang H, Pu M. Occurrence, variation in the cold season, and correlation analysis of semivolatile organic compounds at typical sites on the eastern coast of China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 297:118223. [PMID: 40286737 DOI: 10.1016/j.ecoenv.2025.118223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 04/09/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
Semivolatile organic compounds (SVOCs) are of global concern due to their ability to travel long distances, form secondary organic aerosols, and adversely affect both human health and the environment. In this study, 95 SVOC species are analyzed in air samples collected from three representative sites along the eastern coast of China: PD Station (urban), HN Station (rural), and HNI Station (island). Air samples are collected seasonally and the target compounds are quantified by high-resolution gas chromatography-mass spectrometry (HRGC-MS) following standard protocols. Our results indicate that SVOC concentrations range from 0.09 to 18839 pg m-3. The urban and rural sites show significantly higher average SVOC concentrations (PD Station: 277 pg m-3, HN Station: 277 pg m-3) compared to the island site (HNI Station: 202 pg m-3). Variation in the cold season is also evident that phenols are significantly higher in winter than those in autumn and spring in all the three stations. While PCBs are significantly higher in autumn than winter and spring, which are mainly related to the wind conditions during different seasons. Correlation analyses further reveal strong positive relationships among compounds within the same SVOC groups, suggesting common source origins-either from historical contamination or new emissions. These findings provide robust numerical evidence for spatial and seasonal variations in SVOC levels and highlight the critical need for ongoing monitoring. Such efforts are essential for developing effective regulatory strategies to mitigate the potential health risks associated with chronic SVOC exposure.
Collapse
Affiliation(s)
- Bentuo Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xiaojian Qiu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yangyang Bao
- Shanghai Pudong New Area Environmental Monitoring Station, Shanghai 200135, China
| | - Xiao Xu
- Zhejiang Police College, Hangzhou 310053, China
| | - Chenyuan Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Haowen Zhang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Mengjie Pu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
2
|
Jiang L, Yang J, Yang H, Kong L, Ma H, Zhu Y, Zhao X, Yang T, Liu W. Advanced understanding of the polybrominated diphenyl ethers (PBDEs): Insights from total environment to intoxication. Toxicology 2024; 509:153959. [PMID: 39341352 DOI: 10.1016/j.tox.2024.153959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are brominated compounds connected by ester bonds between two benzene rings. There are 209 congeners of PBDEs, classified according to the number and position of the bromine atoms. Due to their low cost and superior flame retardant properties, PBDEs have been extensively used as flame retardants in electronic products, plastics, textiles, and other materials since the 1970s. PBDEs are classified as persistent organic pollutants (POPs) under the Stockholm Convention because of their environmental persistence, bioaccumulation, and toxicity to both humans and wildlife. Due to their extensive use and significant quantities, PBDEs have been detected across a range of environments and biological organisms. These compounds are known to cause damage to the metabolic system, exhibit neurotoxicity, and pose reproductive hazards. This review investigates the environmental distribution and human exposure pathways of PBDEs. Using China-a country with significant PBDE use-as an example, it highlights substantial regional and temporal variations in PBDE concentrations and notes that certain environmental levels may pose risks to human health. The article then examines the toxic effects and mechanisms of PBDEs on several major target organs, summarizing recent research and the specific mechanisms underlying these toxic effects from multiple toxicological perspectives. This review enhances our understanding of PBDEs' environmental distribution, exposure pathways, and toxic mechanisms, offering valuable insights for further research and management strategies.
Collapse
Affiliation(s)
- Liujiangshan Jiang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Jing Yang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Huajie Yang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Lingxu Kong
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Haonan Ma
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Yapei Zhu
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Xuan Zhao
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Tianyao Yang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China.
| | - Wei Liu
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China.
| |
Collapse
|
3
|
Zhu T, Zhu Y, Liu Y, Deng C, Qi X, Wang J, Shen Z, Yin D, Liu Y, Sun R, Sun W, Xu N. Polybrominated diphenyl ethers in water, suspended particulate matter, and sediment of reservoirs and their tributaries in Shenzhen, a mega city in South China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53524-53537. [PMID: 36857003 DOI: 10.1007/s11356-023-26066-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Urban reservoirs serve many purposes including recreation and drinking water, and larger bodies of water can alter the surrounding air temperatures, making urban areas cooler in summer and warmer in winter. However, reservoirs may also be sinks for contaminants. One such group of contaminants, the polybrominated diphenyl ethers (PBDEs), are persistent organic pollutants known to accumulate in sediments and suspended particulate matter (SPM). Few studies have been conducted on PBDEs in water, SPM, and sediment from reservoirs of Shenzhen which is a mega city in South China. To this end, 12 PBDEs were measured in water, SPM, and sediment samples during the dry season (DS) and wet season (WS), to explain the spatiotemporal distribution, congener profiles, sources, and risks of pollutants in four reservoirs (A-D) and their tributaries in the study region. The concentration of ∑12PBDEs during the DS was found to be significantly higher than that during the WS. Source apportionment suggested that commercial penta-, octa-, and deca-BDEs are the major components of PBDEs, resulting mainly from atmospheric deposition, wastewater discharge, and external water-diversion projects. Further, attention should be paid to electronic equipment manufacturing factories in the study area. Risk assessment indicated risk of PBDEs (especially BDE-209) in sediment and SPM to be of concern. This study provides important data support for the control of PBDEs in natural drinking water sources.
Collapse
Affiliation(s)
- Tingting Zhu
- State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Key Laboratory of Emerging Contaminants Detection and Control in Water Environment, Guangdong Engineering Research Center of Low Energy Sewage Treatment, Shenzhen Academy of Environmental Sciences, Shenzhen, 518001, People's Republic of China
| | - Youchang Zhu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China
| | - Yunlang Liu
- School of Environmental Studies, China University of Geoscience (Wuhan), Wuhan, 430074, People's Republic of China
| | - Chen Deng
- State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Key Laboratory of Emerging Contaminants Detection and Control in Water Environment, Guangdong Engineering Research Center of Low Energy Sewage Treatment, Shenzhen Academy of Environmental Sciences, Shenzhen, 518001, People's Republic of China
| | - Xiujuan Qi
- State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Key Laboratory of Emerging Contaminants Detection and Control in Water Environment, Guangdong Engineering Research Center of Low Energy Sewage Treatment, Shenzhen Academy of Environmental Sciences, Shenzhen, 518001, People's Republic of China
| | - Jinling Wang
- State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Key Laboratory of Emerging Contaminants Detection and Control in Water Environment, Guangdong Engineering Research Center of Low Energy Sewage Treatment, Shenzhen Academy of Environmental Sciences, Shenzhen, 518001, People's Republic of China
| | - Zhizhi Shen
- State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Key Laboratory of Emerging Contaminants Detection and Control in Water Environment, Guangdong Engineering Research Center of Low Energy Sewage Treatment, Shenzhen Academy of Environmental Sciences, Shenzhen, 518001, People's Republic of China
| | - Donggao Yin
- State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Key Laboratory of Emerging Contaminants Detection and Control in Water Environment, Guangdong Engineering Research Center of Low Energy Sewage Treatment, Shenzhen Academy of Environmental Sciences, Shenzhen, 518001, People's Republic of China
| | - Yihong Liu
- State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Key Laboratory of Emerging Contaminants Detection and Control in Water Environment, Guangdong Engineering Research Center of Low Energy Sewage Treatment, Shenzhen Academy of Environmental Sciences, Shenzhen, 518001, People's Republic of China
| | - Ruohan Sun
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, People's Republic of China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
4
|
Ohoro CR, Adeniji AO, Okoh AI, Okoh OO. Spatial monitoring and health risk assessment of polybrominated diphenyl ethers in environmental matrices from an industrialized impacted canal in South Africa. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3409-3424. [PMID: 34609624 DOI: 10.1007/s10653-021-01114-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
This study investigates the pollution of Markman stormwater runoff, which is a tributary to Swartkops River Estuary. Solid-phase and ultrasonic extraction methods were utilized in the extraction of water and sediment samples, respectively. The pH of the sampling sites was above the EU guideline. The ranges of concentration of [Formula: see text]PBDE obtained in water and sediment samples for all the seasons were 58.47-1357 ng/L and 175-408 ng/g, respectively. Results also showed that BDE-66 was the dominant congener, specifically in the industrial zone, where its concentrations ranged from 2 to 407 ng/g in sediment. Consequently, the high concentration of BDE- 66 in the sediment of stormwater calls for concern. Penta-BDE suggests potential moderate eco-toxicological risk, as evident in the calculated risk assessment. The result showed possible photodegradation along the contaminant's travel time, as only 7% of the PBDE was detected at the point of entry into the Swartkops River Estuary. Markman stormwater may be contributing heavily to the pollution load of Swartkops River, as evident in the alarming concentrations of PBDEs obtained. The industries at this zone should eliminate the contaminants before discharging their effluents into the canal.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa.
| | - Abiodun Olagoke Adeniji
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa
- Department of Chemistry and Chemical Technology, National University of Lesotho, P.O. Roma, 180, Lesotho
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Omobola Oluranti Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
5
|
Critical review of analytical methods for the determination of flame retardants in human matrices. Anal Chim Acta 2022; 1193:338828. [PMID: 35058002 DOI: 10.1016/j.aca.2021.338828] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 11/21/2022]
Abstract
Human biomonitoring is a powerful approach in assessing exposure to environmental pollutants. Flame retardants (FRs) are of particular concern due to their wide distribution in the environment and adverse health effects. This article reviews studies published in 2009-2020 on the chemical analysis of FRs in a variety of human samples and discusses the characteristics of the analytical methods applied to different FR biomarkers of exposure, including polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), novel halogenated flame retardants (NHFRs), bromophenols, incl. tetrabromobisphenol A (TBBPA), and organophosphorous flame retardants (PFRs). Among the extraction techniques, liquid-liquid extraction (LLE) and solid phase extraction (SPE) were used most frequently due to the good efficiencies in the isolation of the majority of the FR biomarkers, but with challenges for highly lipophilic FRs. Gas chromatography-mass spectrometry (GC-MS) is mainly applied in the instrumental analysis of PBDEs and most NHFRs, with recent inclusions of GC-MS/MS and high resolution MS techniques. Liquid chromatography-MS/MS is mainly applied to HBCD, bromophenols, incl. TBBPA, and PFRs (including metabolites), however, GC-based analysis following derivatization has also been used for phenolic compounds and PFR metabolites. Developments are noticed towards more universal analytical methods, which enable widening method scopes in the human biomonitoring of FRs. Challenges exist with regard to sensitivity required for the low concentrations of FRs in the general population and limited sample material for some human matrices. A strong focus on quality assurance/quality control (QA/QC) measures is required in the analysis of FR biomarkers in human samples, related to their variety of physical-chemical properties, low levels in most human samples and the risk of contamination.
Collapse
|
6
|
Ohoro CR, Adeniji AO, Semerjian L, Okoh AI, Okoh OO. Occurrence and Risk Assessment of Polybrominated Diphenyl Ethers in Surface Water and Sediment of Nahoon River Estuary, South Africa. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030832. [PMID: 35164097 PMCID: PMC8839697 DOI: 10.3390/molecules27030832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
Abstract
The concentrations, potential sources, and compositional profile of PBDEs in the surface water and sediment of Nahoon Estuary, East London, South Africa, were investigated with solid-phase extraction and ultra-sonication, respectively, followed by gas-chromatography-electron capture detection. The seasonal range of the contaminants’ concentrations in water and sediment samples in spring season were ∑PBDE 329 ± 48.3 ng/L (25.32–785 ng/L) and ∑PBDE 4.19 ± 0.35 ng/g dw (1.91–6.57 ng/g), but ∑PBDE 62.1 ± 1.50 ng/L (30.1–110 ng/L) and ∑PBDE 65.4 ± 15.9 ng/g dw (1.98–235 ng/g) in summer, respectively. NH1 (first sampling point) was the most contaminated site with PBDE in the Estuary. The potential source of pollution is attributed to the stormwater runoff from a creek emptying directly into the Estuary. This study’s dominant PBDE congener is BDE-17, ranging from below detection limit to 247 ng/L and 0.14–32.1 ng/g in water and sediment samples, respectively. Most detected at all the sites were BDE-17, 47, 66, and 100. Most BDE-153 and 183 are found in sediment in agreement with the fact that higher brominated congeners of PBDE adsorb to solid materials. There was no correlation between the congeners and organic carbon and organic matter. However, the human health risk assessment conducted revealed that the PBDE concentration detected in the estuary poses a low eco-toxicological risk. Nevertheless, constant monitoring should be ensured to see that the river remains safe for the users, as it serves as a form of recreation to the public and a catchment to some neighbourhoods.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; (A.O.A.); (A.I.O.); (O.O.O.)
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice 5700, South Africa
- Correspondence:
| | - Abiodun Olagoke Adeniji
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; (A.O.A.); (A.I.O.); (O.O.O.)
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice 5700, South Africa
- Department of Chemistry and Chemical Technology, National University of Lesotho, Roma P.O. Box 180, Lesotho
| | - Lucy Semerjian
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; (A.O.A.); (A.I.O.); (O.O.O.)
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Omobola Oluranti Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; (A.O.A.); (A.I.O.); (O.O.O.)
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
7
|
Jiang Y, Yuan L, Lin Q, Ma S, Yu Y. Polybrominated diphenyl ethers in the environment and human external and internal exposure in China: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133902. [PMID: 31470322 DOI: 10.1016/j.scitotenv.2019.133902] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 05/12/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used as brominated flame retardants. Because of their toxicity and persistence, some PBDEs were restricted under the Stockholm Convention in 2009. Since then, many studies have been carried out on PBDEs in China and in many other countries. In the present review, the occurrences and contamination of PBDEs in air, water, sediment, soil, biota and daily food, human blood, hair, and other human tissues in China are comprehensively reviewed and described. The human exposure pathways and associated health risks of PBDEs are summarized. The data showed no obvious differences between North and South China, but concentrations from West China were generally lower than in East China, which can be mainly attributed to the production and widespread use of PBDEs in eastern regions. High levels of PBDEs were generally observed in the PBDE production facilities (e.g., Jiangsu Province and Shandong Province, East China) and e-waste recycling sites (Taizhou City, Zhejiang Province, East China, and Guiyu City and Qingyuan City, both located in Guangdong Province, South China) and large cities, whereas low levels were detected in rural and less-developed areas, especially in remote regions such as the Tibetan Plateau. Deca-BDE is generally the major congener. Existing problems for PBDE investigations in China are revealed, and further studies are also discussed and anticipated. In particular, non-invasive matrices such as hair should be more thoroughly studied; more accurate estimations of human exposure and health risks should be performed, such as adding bioaccessibility or bioavailability to human exposure assessments; and the degradation products and metabolites of PBDEs in human bodies should receive more attention. More investigations should be carried out to evaluate the quantitative relationships between internal and external exposure so as to provide a scientific basis for ensuring human health.
Collapse
Affiliation(s)
- Yufeng Jiang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Longmiao Yuan
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Qinhao Lin
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shentao Ma
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515100, China
| | - Yingxin Yu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
8
|
Sardiña P, Leahy P, Metzeling L, Stevenson G, Hinwood A. Emerging and legacy contaminants across land-use gradients and the risk to aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133842. [PMID: 31426001 DOI: 10.1016/j.scitotenv.2019.133842] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 05/22/2023]
Abstract
Information on potentially harmful emerging and legacy chemicals is essential to understand the risks to the environment and inform regulatory actions. The objective of this study was to assess the occurrence, concentration, and distribution of emerging and legacy contaminants across a gradient of land-use intensity and determine the risk posed to aquatic ecosystems. The land-use intensity gradient considered was: background/undeveloped < low-intensity agriculture < high-intensity agriculture < urban residential < urban industrial. Twenty-five sites were sampled for surface water, sediment, and soil. A total of 218 chemicals were analyzed: pesticides, per- and poly-fluoroalkyl substances (PFAS), polybrominated biphenyls and polybrominated diphenyl ethers (PBDEs), phthalates, and short-chain chlorinated paraffins (SCCPs). The risk posed by the analyzed chemicals to the aquatic environment was measured using hazard quotients (HQs), which were calculated by dividing the maximum measured environmental concentration by a predicted no-effect concentration for each chemical. A HQ > 1 was considered to indicate a high risk of adverse effects from the given chemical. A total of 68 chemicals were detected: 19 pesticides, 18 PFAS, 28 PBDEs, two phthalates, and SCCPs (as total SCCPs). There were no significant differences in the overall chemical composition between land uses. However, the insecticide bifenthrin, PFAS, PBDEs, and phthalates were more frequently found in samples from residential and/or industrial sites, suggesting urban land uses are hotspots and potential large-scale sources of these chemicals. Nineteen chemicals had a HQ > 1; most had a restricted spatial distribution limited to high-intensity agriculture and industrial sites in Melbourne. Bifenthrin and the perfluorooctanesulfonic acid (PFOS) had the highest HQs in residential and industrial sites, suggesting an increased risk to aquatic ecosystems in urban settings. The results of this study will enhance future research, predictive methods, and effective targeting of monitoring, and will help guide regulatory management actions and mitigation solutions.
Collapse
Affiliation(s)
- Paula Sardiña
- Environment Protection Authority Victoria, Ernest Jones Drive, Macleod, Victoria 3085, Australia.
| | - Paul Leahy
- Environment Protection Authority Victoria, Ernest Jones Drive, Macleod, Victoria 3085, Australia.
| | - Leon Metzeling
- Environment Protection Authority Victoria, Ernest Jones Drive, Macleod, Victoria 3085, Australia.
| | - Gavin Stevenson
- National Measurement Institute, 105 Delhi Road, North Ryde, NSW 2113, Australia.
| | - Andrea Hinwood
- Environment Protection Authority Victoria, Ernest Jones Drive, Macleod, Victoria 3085, Australia.
| |
Collapse
|
9
|
Drage DS, Heffernan AL, Cunningham TK, Aylward LL, Mueller JF, Sathyapalan T, Atkin SL. Serum measures of hexabromocyclododecane (HBCDD) and polybrominated diphenyl ethers (PBDEs) in reproductive-aged women in the United Kingdom. ENVIRONMENTAL RESEARCH 2019; 177:108631. [PMID: 31404810 DOI: 10.1016/j.envres.2019.108631] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/31/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
We investigated the serum concentrations of two brominated flame retardants (BFRs) - polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDD) -in 59 women aged between 23 and 42 from the United Kingdom. We also collected demographic data, including age, bodyweight and height in order to test for associations with BFR levels. Temporal and global differences were also assessed using previously published data. HBCDD was detected in 68% of samples with a mean concentration of 2.2 ng/g lipid (range = <0.3-13 ng/g lipid). The dominant stereoisomer was α-HBCDD with an average contribution of 82% (0-100%) towards ΣHBCDD, was followed by γ-HBCDD (average contribution = 17%). PBDEs were detected in 95% of samples with a mean ∑PBDE (sum of BDEs -28, -47, -99, -100, -153, -154 and -183) concentration of 2.4 ng/g lipid (range = <0.4-15 ng/g lipid). BDEs -153 and -47 were the dominant congeners, contributing an average of 40% and 37% respectively, to the average ΣPBDE congener profile. Data from this study suggests that HBCDD levels decrease with age, it also suggests a positive association between bodyweight and HBCDD levels, which likewise requires a large-scale study to confirm this. The data also show that 10 years after their European ban, PBDE body burden has begun to decrease in the UK. Whilst it is too early to draw any firm conclusions for HBCDDs, they appear to be following a similar pattern to PBDEs, with levels decreasing by a factor of >2.5 since 2010. Whilst the human body burden appear to be decreasing, both PBDEs and HBCDD are still consistently detected in human serum, despite legislative action limiting their production and use. This highlights the need to continuously assess human exposure and the effectiveness of policy aimed at reducing exposure.
Collapse
Affiliation(s)
- Daniel S Drage
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK; Queensland Alliance for Environmental Health Sciences, The University of Queensland, 39 Kessels Road, Coopers Plains, Qld, 4108, Australia.
| | - Amy L Heffernan
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 39 Kessels Road, Coopers Plains, Qld, 4108, Australia
| | - Thomas K Cunningham
- Academic Endocrinology, Diabetes and Metabolism, University of Hull/Hull and East Yorkshire Hospitals NHS Trust, Hull IVF Unit. The Women and Children's Hospital, Hull Royal Infirmary, Anlaby Road, Hull, HU3 2JZ, UK
| | - Lesa L Aylward
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 39 Kessels Road, Coopers Plains, Qld, 4108, Australia; Summit Toxicology, LLP, Falls Church, VA 22044, USA
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 39 Kessels Road, Coopers Plains, Qld, 4108, Australia
| | - Thozhukat Sathyapalan
- Academic Endocrinology, Diabetes and Metabolism, University of Hull/Hull and East Yorkshire Hospitals NHS Trust, Hull IVF Unit. The Women and Children's Hospital, Hull Royal Infirmary, Anlaby Road, Hull, HU3 2JZ, UK
| | - Stephen L Atkin
- Academic Endocrinology, Diabetes and Metabolism, University of Hull/Hull and East Yorkshire Hospitals NHS Trust, Hull IVF Unit. The Women and Children's Hospital, Hull Royal Infirmary, Anlaby Road, Hull, HU3 2JZ, UK; Royal College of Surgeons Bahrain, Manama, Bahrain
| |
Collapse
|
10
|
Da C, Wu K, Ye J, Wang R, Liu R, Sun R. Temporal trends of polybrominated diphenyl ethers in the sediment cores from different areas in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:222-230. [PMID: 30611040 DOI: 10.1016/j.ecoenv.2018.12.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
This paper presented the historical data on the temporal trends of polybrominated diphenyl ethers (PBDEs) in the sediment cores collected from the Huaihe River, Yellow River and Chaohu Lake, China. Among the 40 targeted PBDE congeners, only 10, 6, and 9 of them were detected respectively in the samples from the Huaihe River, Yellow River and Chaohu Lake. On average, the total PBDEs concentrations in sediments were highest in Chaohu Lake followed by the Huaihe River and the Yellow River. As compared to other PBDE congeners, BDE-209 had higher concentrations and detection rates. The similar down core variation between PBDEs and total organic carbon (TOC) suggests that TOC is an important factor influencing PBDEs distribution in the sediments. The total PBDEs concentrations showed an increasing trend from bottom to upper sediments before a decreasing trend in the topmost sediments. The rapid urbanization and industrialization of these regions in recent decades may cause the historically increasing concentrations of sedimentary PBDEs, especially BDE-209. The decreasing PBDEs concentrations in topmost sediments was probably related to the strict environmental policies at present.
Collapse
Affiliation(s)
- Chunnian Da
- Department of Biology and Environment Engineering, Hefei University, Hefei, Anhui 230022,China; Key Laboratory for Ecological Environment in Coastal Areas(SOA), Dalian 116023, China
| | - Ke Wu
- Department of Biology and Environment Engineering, Hefei University, Hefei, Anhui 230022,China
| | - Jingsong Ye
- Department of Biology and Environment Engineering, Hefei University, Hefei, Anhui 230022,China
| | - Ruwei Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Rongqiong Liu
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu, Anhui 241003, China
| | - Ruoyu Sun
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Tiwari M, Sahu SK, Bhangare RC, Ajmal PY, Pandit GG. Polybrominated diphenyl ethers (PBDEs) in core sediments from creek ecosystem: occurrence, geochronology, and source contribution. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:2587-2601. [PMID: 29790055 DOI: 10.1007/s10653-018-0125-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
The levels of 15 polybrominated diphenyl ether (PBDE) congeners in grab sediment and sediment cores from the Thane creek were monitored for their spatial and temporal distribution. Total PBDE (ΣPBDE) concentrations in grab sediments were ranging from 15.98 to 132.72 ng g-1 dry weight. BDE-209 was the most abundant congener with percentage contribution in the range of 19-35% to total PBDEs. Total PBDE show multimode concentration with depth in sediment, among which mode at a depth of 10 cm is predominant. Results of sediment core also indicates PBDEs were enormously used in last two decades in surrounding area. Sedimentation rate at the creek was also evaluated using Pb210 dating technique. Average percentage contribution of commercial penta-BDE (fP), octa-BDE (fO), and deca-BDE (fD) to the profile found in sediments collected across Thane creek were 24 ± 5, 5 ± 1 and 69 ± 7% (p < 0.001) respectively. Levels of all measured PBDEs in sediment met with guideline values except for the penta-BDE (total, BDE-99 and BDE-100) at few locations.
Collapse
Affiliation(s)
- Mahesh Tiwari
- Environmental Monitoring and Assessment Section, Health Safety and Environment Group, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Sanjay Kumar Sahu
- Environmental Monitoring and Assessment Section, Health Safety and Environment Group, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Rahul C Bhangare
- Environmental Monitoring and Assessment Section, Health Safety and Environment Group, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - P Y Ajmal
- Environmental Monitoring and Assessment Section, Health Safety and Environment Group, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Gauri Girish Pandit
- Environmental Monitoring and Assessment Section, Health Safety and Environment Group, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
12
|
Xu B, Ahmed MB, Zhou JL, Altaee A, Xu G, Wu M. Graphitic carbon nitride based nanocomposites for the photocatalysis of organic contaminants under visible irradiation: Progress, limitations and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:546-559. [PMID: 29579666 DOI: 10.1016/j.scitotenv.2018.03.206] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 06/08/2023]
Abstract
Graphitic carbon nitride (g-C3N4) has drawn great attention recently because of its visible light response, suitable energy band gap, good redox ability, and metal-free nature. g-C3N4 can absorb visible light directly, therefore has better photocatalytic ability under solar irradiation and is more energy-efficient than TiO2. However, pure g-C3N4 still has the drawbacks of insufficient light absorption, small surface area and fast recombination of photogenerated electron and hole pairs. This review summarizes the recent progress in the development of g-C3N4 nanocomposites to photodegrade organic contaminants in water. Element doping especially by potassium has been reported to be an efficient method to promote the degradation efficacy. In addition, compound doping improves photodegradation performance of g-C3N4, especially Ag3PO4-g-C3N4 which can completely degrade 10mgL-1 of methyl orange under visible light irradiation in 5min, with the rate constant (k) as high as 0.236min-1. Moreover, co-doping enhances the photodegradation rate of multiple contaminants while immobilization significantly improves catalyst stability. Most of g-C3N4 composites possess high reusability enabling their practical applications in wastewater treatment. Furthermore, environmental conditions such as solution pH, reaction temperature, dissolved oxygen, and dissolved organic matter all have important effects on the photocatalytic ability of g-C3N4 photocatalyst. Future work should focus on the synthesis of innovative g-C3N4 nanocomposites for the efficient removal of organic contaminants in water and wastewater.
Collapse
Affiliation(s)
- Bentuo Xu
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia; School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Mohammad Boshir Ahmed
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - John L Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia.
| | - Ali Altaee
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
13
|
Xu B, Wu M, Wang M, Pan C, Qiu W, Tang L, Xu G. Polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDEs in human serum from Shanghai, China: a study on their presence and correlations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3518-3526. [PMID: 29159438 DOI: 10.1007/s11356-017-0709-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are becoming a public health concern because of their potential toxicity, from endocrine disruption system to neurodevelopmental impairments. Nonetheless, information on their levels in human blood is scarce. In this study, human serum samples collected in Shanghai, China, were analyzed for the concentrations of PBDEs and their hydroxylated metabolites (OH-PBDEs). Eight PBDE congeners and six OH-PBDE congeners were quantified in serum samples by gas chromatography with mass spectrometry (GC-MS) and high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). As a result, total PBDE concentration ranged from 0.280 to 12.330 ng g-1 on a lipid weight basis lw (median: 1.100 ng g-1 lw) and the total OH-PBDE level ranged from 0.045 to 0.363 ng g-1 (lw) (median: 0.187 ng g-1 lw). Among them, BDE-47 and 6-OH-BDE-47 were the predominant PBDEs and OH-PBDEs, respectively. In addition, based on the results of the Bartelett X 2 test, BDE-47 significantly (p < 0.05) correlated with BDE-28, BDE-100, BDE-85, and BDE-154, whereas 3'-OH-BDE-7 significantly (p < 0.01) correlated with 3-OH-BDE-47, 2-OH-BDE-68, and 6'-OH-BDE-99. Among all donors, no significant association between age and PBDEs (or OH-PBDEs) was found. Further research on the exposure routes in the environment and metabolic processing of PBDEs in human blood is necessary.
Collapse
Affiliation(s)
- Bentuo Xu
- Institute of Applied Radiation, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Minghong Wu
- Institute of Applied Radiation, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Mingnan Wang
- Yinyuan Hospital, Jiading District, Shanghai, 201800, People's Republic of China
| | - Chenyuan Pan
- Institute of Applied Radiation, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Wenhui Qiu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, People's Republic of China
| | - Liang Tang
- Institute of Applied Radiation, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Gang Xu
- Institute of Applied Radiation, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
14
|
Xu B, Wu M, Pan C, Sun Y, Yuan D, Tang L, Xu G. Aquatic photolysis of hydroxylated polybromodiphenyl ethers under direct UV irradiation: a case study of 2'-HO-BDE-68. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:14409-14416. [PMID: 28432629 DOI: 10.1007/s11356-017-8726-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/28/2017] [Indexed: 06/07/2023]
Abstract
Hydroxylated polyhalodiphenyl ethers (HO-PXDEs) have attracted considerable scientific interest as examples of emerging aquatic pollutants. However, a comprehensive assessment of disposal methods for this particular pollutant was seldom investigated. This study examined the UV light degradation of HO-PXDEs, using 2'-HO-2, 3', 4, 5'-tetrabromodiphenyl ether (2'-HO-BDE-68) as a case study. The results showed that UV light was superior to visible light and electron beam irradiation for producing a high degradation rate of 2'-HO-BDE-68. At low concentrations of HO-BDE, the degradation rate was not obviously improved with decreasing initial concentration. The degradation efficiency was also found to be better in alkaline solutions. In a UV/H2O2 system, the hydroxyl radical provided by H2O2 was shown to enhance the degradation efficiency. The main photolysis products of 2'-HO-BDE-68 were identified, and the possible photodegradation pathways were proposed. 1, 3, 8-Tribromodibenzo-p-dioxin was one of the photoproducts, which indicates that secondary pollution must also be considered with the UV photolysis process.
Collapse
Affiliation(s)
- Bentuo Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Chenyuan Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yan Sun
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Debao Yuan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Liang Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
- Institute of Applied Radiation, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
15
|
Abstract
The global prevalence of obesity has been increasing at a staggering pace, with few indications of any decline, and is now one of the major public health challenges worldwide. While obesity and metabolic syndrome (MetS) have historically thought to be largely driven by increased caloric intake and lack of exercise, this is insufficient to account for the observed changes in disease trends. There is now increasing evidence to suggest that exposure to synthetic chemicals in our environment may also play a key role in the etiology and pathophysiology of metabolic diseases. Importantly, exposures occurring in early life (in utero and early childhood) may have a more profound effect on life-long risk of obesity and MetS. This narrative review explores the evidence linking early-life exposure to a suite of chemicals that are common contaminants associated with food production (pesticides; imidacloprid, chlorpyrifos, and glyphosate) and processing (acrylamide), in addition to chemicals ubiquitously found in our household goods (brominated flame retardants) and drinking water (heavy metals) and changes in key pathways important for the development of MetS and obesity.
Collapse
Affiliation(s)
- Nicole E De Long
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Alison C Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
- Correspondence: Alison C Holloway, Department of Obstetrics and Gynecology, McMaster University, RM HSC-3N52, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada, Tel +1 905 525 9140 ext 22130, Fax +1 905 524 2911, Email
| |
Collapse
|