1
|
Liu H, Hu J, Tan Y, Zheng Z, Liu M, Lohmann R, Vojta S, Katz S, Liu Y, Li Z, Fang Z, Cai M, Zhao W. Identification of key anthropogenic and land use factors and ecological risk assessment of dissolved polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in an urbanized estuary in China. MARINE POLLUTION BULLETIN 2024; 207:116876. [PMID: 39173474 DOI: 10.1016/j.marpolbul.2024.116876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
This study investigated dissolved PAHs and OCPs in Quanzhou Bay estuaries, assessed their ecological risk, and examined anthropogenic impacts on contaminant distribution. Results showed that dissolved ∑24PAH concentrations ranged from 117 to 709 ng/L (mean: 358 ng/L), with dominance of 2-ring PAHs (Naphthalene, 1-Methylnaphthalene, and 2-Methylnaphthalene). Dissolved DDT levels ranged from 0.06 to 0.49 ng/L (mean: 0.28 ng/L), while HCBz concentrations varied from 0.02 to 0.44 ng/L (mean: 0.20 ng/L). PAHs were higher in the north due to urbanization and transport, while OCPs showed higher levels in the south due to historical agricultural use. Rural areas, water bodies, and wetlands significantly influenced the behavior of PAHs according to Spearman correlation and lasso regression analyses. Quanzhou Bay was categorized as a low to medium risk area based on dispersion simulation and ecological risk assessment, highlighting implications for future sustainable development and policy planning. CAPSULE: The coupled relationship between human activities and the distribution of dissolved PAHs and OCPs in urbanized estuaries was explored using statistical methods and GIS technology, providing valuable insights into environmental processes and pollutant control policies.
Collapse
Affiliation(s)
- Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Jiajie Hu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yan Tan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Zhong Zheng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Mengyang Liu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - Simon Vojta
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - Samuel Katz
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - Yong Liu
- Zhejiang Institute of Hydraulics & Estuary (Zhejiang Institute of Marine Planning and Design), Hangzhou 310020, PR China
| | - Zhiheng Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Zhiguo Fang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Minggang Cai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China.
| | - Wenlu Zhao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
2
|
Peng S, Dong S, Gong C, Chen X, Du H, Zhan Y, Yang Z. Evidence-based identification of breast cancer and associated ovarian and uterus cancer risk components in source waters from high incidence area in the Pearl River Basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166060. [PMID: 37543346 DOI: 10.1016/j.scitotenv.2023.166060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Breast cancer, ovarian cancer, and uterus cancer are among the most common female cancers. They are suspected to associate with exposures to specific environmental pollutants, which remain unidentified in source waters. In this work, we focused on the Pearl River Basin region in China, which experienced a high incidence of breast, ovarian, and uterus cancers. Combining cancer patient data, mammalian cell cytotoxicity analyses, and exhaustive historical and current chemical assessments, we for the first time identified source water components that promoted proliferation of mammalian cells, and confirmed their association with these female cancers via the estrogen receptor mediated pathway. Therefore, the components that have previously been found to enhance the proliferation of estrogen receptor-containing cells through endocrine disruption could be the crucial factor. Based on this, components that matched with this toxicological characteristic (i.e., estrogen-like effect) were further identified in source waters, including (1) organic components: phthalates, bisphenol A, nonylphenols, and per-/polyfluoroalkyls; (2) inorganic components: Sb, Co, As, and nitrate. Moreover, these identified water components were present at levels comparable to other regions with high female cancer prevalence, suggesting that the potential risk of these components may not be exclusive to the study region. Together, multiple levels of evidence suggested that long-term co-exposures to source water estrogenic components may be important to the development of breast, ovarian, and uterus cancers.
Collapse
Affiliation(s)
- Shuhan Peng
- School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Water Cycle and Water Security in Southern China of Guangdong High Education Institute, Sun Yat-sen University, Guangzhou 510275, China
| | - Shengkun Dong
- School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Water Cycle and Water Security in Southern China of Guangdong High Education Institute, Sun Yat-sen University, Guangzhou 510275, China
| | - Chang Gong
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaohong Chen
- School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Water Cycle and Water Security in Southern China of Guangdong High Education Institute, Sun Yat-sen University, Guangzhou 510275, China.
| | - Hongyu Du
- School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuehao Zhan
- School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhifeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Pan Z, Tang C, Cao Y, Xuan Y, Zhou Q. Distribution and source apportionment of phenolic EDCs in rivers in the Pearl River Delta, South China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48248-48259. [PMID: 36752923 DOI: 10.1007/s11356-023-25268-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 01/08/2023] [Indexed: 06/18/2023]
Abstract
The sources and distribution characteristics of three phenolic endocrine-disrupting compounds (EDCs), e.g., alkylphenols (APs) (including nonylphenols (NPs) and 4-t-octylphenol (OP)) and Bisphenol A (BPA), were investigated in the rivers of the Pearl River Delta Region (PRDR) with complex land-use types. The mean concentrations of NPs, OP, and BPA in river water including wet and dry seasons were 87, 6, and 74 ng/L in the agricultural regions (n = 10), 135, 7, and 61 ng/L in the transitional regions (n = 8), and 249, 15, and 152 ng/L in the urban regions (n = 28). Contents of NPs and BPA were high in the river sediments (ranged from 7 to 3048 ng/g and 2 to 271 ng/g, respectively). Equilibrium analysis results suggested that sediment release was not the main source of the river EDCs. Principal component analysis (PCA) showed that sewage was the major source of EDCs in the dry season, while the leaching effect of rainfall on the agricultural soils, urban roads, and commercial products was an important source in the wet season. Furthermore, the ratio of APs and total concentration of phenolic EDCs (ΣEDCs) was used to characterize the agricultural regions and urban regions in the PRDR. The ratio was less than 0.6 in the agricultural regions while the ratio was large than 0.6 in the dry season and less than 0.6 in the wet season in urban regions. BPA and NPs in transitional region and urban region had small/medium potential risk to aquatic organisms.
Collapse
Affiliation(s)
- Zewen Pan
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, People's Republic of China
| | - Changyuan Tang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, People's Republic of China
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Yingjie Cao
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, People's Republic of China.
| | - Yingxue Xuan
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, People's Republic of China
| | - Qianyi Zhou
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
4
|
Ivorra L, Cardoso PG, Chan SK, Cruzeiro C, Tagulao K. Quantification of insecticides in commercial seafood sold in East Asian markets: risk assessment for consumers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34585-34597. [PMID: 36515882 PMCID: PMC10017608 DOI: 10.1007/s11356-022-24413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The extraction of 21 insecticides and 5 metabolites was performed using an optimized and validated QuEChERS protocol that was further used for the quantification (GC-MS/MS) in several seafood matrices (crustaceans, bivalves, and fish-mudskippers). Seven species, acquired from Hong Kong and Macao wet markets (a region so far poorly monitored), were selected based on their commercial importance in the Indo-Pacific region, market abundance, and affordable price. Among them, mussels from Hong Kong, together with mudskippers from Macao, presented the highest insecticide concentrations (median values of 30.33 and 23.90 ng/g WW, respectively). Residual levels of fenobucarb, DDTs, HCHs, and heptachlors were above the established threshold (10 ng/g WW) for human consumption according to the European and Chinese legislations: for example, in fish-mudskippers, DDTs, fenobucarb, and heptachlors (5-, 20- and tenfold, respectively), and in bivalves, HCHs (fourfold) had higher levels than the threshold. Risk assessment revealed potential human health effects (e.g., neurotoxicity), especially through fish and bivalve consumption (non-carcinogenic risk; ΣHQLT > 1), and a potential concern of lifetime cancer risk development through the consumption of fish, bivalves, and crustaceans collected from these markets (carcinogenic risk; ΣTCR > 10-4). Since these results indicate polluted regions, where the seafood is collected/produced, a strict monitoring framework should be implemented in those areas to improve food quality and safety of seafood products.
Collapse
Affiliation(s)
- Lucia Ivorra
- Institute of Science and Environment, ISE—University of Saint Joseph, Macao, SAR China
| | - Patricia G. Cardoso
- CIIMAR/CIMAR—Interdisciplinary Centre for Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Shek Kiu Chan
- Institute of Science and Environment, ISE—University of Saint Joseph, Macao, SAR China
| | - Catarina Cruzeiro
- Helmholtz Zentrum München, German Research Centre for Environmental Health, GmbH, Research Unit Comparative Microbiome Analysis, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Karen Tagulao
- Institute of Science and Environment, ISE—University of Saint Joseph, Macao, SAR China
| |
Collapse
|
5
|
Mohasin P, Chakraborty P, Anand N, Ray S. Risk assessment of persistent pesticide pollution: Development of an indicator integrating site-specific characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160555. [PMID: 36460110 DOI: 10.1016/j.scitotenv.2022.160555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Detection of high pesticide concentrations in sediments and water often leads to prioritizing a site as being 'at risk'. However, the risk does not depend on pesticide concentration alone, but on other site-specific characteristics also. We developed an indicator that identifies the 'Level of Concern' by integrating five such characteristics: (i) pesticide concentrations in surface and groundwater causing risks to ecological health (ii) impacts on human health, (iii) water scarcity, (iv) agricultural production, and (v) biodiversity richness. We applied this framework in an agricultural region of the Lower Ganges Basin in West Bengal, India. We measured concentrations of selected organochlorine pesticides (OCPs) in surface and groundwater within an 8 km2 area in 2019. Of 20 banned and restricted OCPs, 11 were detected as causing high risk to ecological health and 10 at concentrations above the Accepted Carcinogenic Risk Limit (ACRL) for humans. In the pre-monsoon, the mean concentrations of ΣOCPs in groundwater and surface water were 126.9 ng/L and 104 ng/L, in the monsoon they were 144.7 ng/L and 138 ng/L, and in the post-monsoon 122.1 ng/L and 147 ng/L respectively. In groundwater, no significant seasonal difference was observed in most pesticides. In the surface water, 7 pesticides were significantly higher in the monsoon and post-monsoon, which may be attributed to increased runoff as well as post monsoon application of OCPs. In September 2022 we again measured OCP concentrations in surface water and sediment. The mean concentration of 14 of the 20 measured OCPs were found to be significantly lower in the post-pandemic period compared to the pre-pandemic time. These lower pesticide concentrations may indicate a reduced use of OCPs in agricultural practices during the pandemic. This area was identified as being at the highest Level of Concern, even though the OCP concentrations alone conformed to general guidelines.
Collapse
Affiliation(s)
- Piya Mohasin
- Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India.
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Department of Chemical Engineering, SRM Institute of Science and Technology, Kancheepuram district, Tamil Nadu 603203, India.
| | - Niharika Anand
- Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Sujata Ray
- Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India.
| |
Collapse
|
6
|
Shang N, Wang C, Kong J, Yu H, Li J, Hao W, Huang T, Yang H, He H, Huang C. Dissolved polycyclic aromatic hydrocarbons (PAHs-d) in response to hydrology variation and anthropogenic activities in the Yangtze River, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116673. [PMID: 36375425 DOI: 10.1016/j.jenvman.2022.116673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/10/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Owing to their bioavailability and toxicity, the dissolved polycyclic aromatic hydrocarbons (PAHs-d) loaded in rivers are harmful to both inland and marine ecosystems. Thus, exploring the changes in PAHs-d levels and sources is important for controlling PAHs pollution. In this study, the concentration of PAHs-d in the mainstream of the Yangtze River during dry and wet seasons was investigated and the source was analyzed using the positive matrix factorization (PMF) model to assess the response of PAHs-d to hydrological and anthropogenic activities changes. The concentration of PAHs-d in the wet season (166.2 ± 52.51 ng/L) was significantly higher than that in the dry season (89.05 ± 20.89 ng/L) (ANOVA, P < 0.001), and the sampling sites with high pollution were mainly distributed in the downstream urban agglomeration. Herein, 2-3 rings were identified to play a dominant role in the composition of PAHs-d. Compared with the dry season, the proportion of the low molecular weight (LMW) PAHs-d were relatively depleted and the high molecular weight (HMW) PAHs-d were accumulated in the wet season. Coal and coke combustion were identified as the main sources of PAHs-d (65.9% in the dry season and 59.2% in the wet season), followed by vehicle emissions, petroleum sources, and biomass combustion. Owing to the change in energy consumption structure and climate characteristics, the sources of PAHs-d displayed seasonal variation and spatial heterogeneity. Further, flow was identified as the most important factor affecting PAHs-d in the hydrological parameters. Increases of flow, pH, and SPM decreased the proportion of LMW PAHs-d, and increased that of HMW PAHs-d. The increase in anthropogenic activities intensified the residual levels of 2-3rings and 5-6 rings in water, but had no significant impact on the levels of 4 rings.
Collapse
Affiliation(s)
- Nana Shang
- School of Geography, Nanjing Normal University, Nanjing, 210023, PR China
| | - Chuan Wang
- School of Geography, Nanjing Normal University, Nanjing, 210023, PR China
| | - Jijie Kong
- School of Geography, Nanjing Normal University, Nanjing, 210023, PR China; School of Environment, Nanjing Normal University, Nanjing, 210023, PR China; The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Heyu Yu
- School of Geography, Nanjing Normal University, Nanjing, 210023, PR China
| | - Jianhong Li
- School of Geography, Nanjing Normal University, Nanjing, 210023, PR China
| | - Weiyue Hao
- School of Geography, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tao Huang
- School of Geography, Nanjing Normal University, Nanjing, 210023, PR China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, China.
| | - Hao Yang
- School of Geography, Nanjing Normal University, Nanjing, 210023, PR China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China; Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecological and Resource Engineering, Wuyi University, Wuyishan, 354300, China
| | - Changchun Huang
- School of Geography, Nanjing Normal University, Nanjing, 210023, PR China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, 210023, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210023, China
| |
Collapse
|
7
|
Zhang H, Yuan L, Xue J, Wu H. Polycyclic aromatic hydrocarbons in surface water and sediment from Shanghai port, China: spatial distribution, source apportionment, and potential risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7973-7986. [PMID: 36048385 DOI: 10.1007/s11356-022-22706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The spatial distribution, sources, and potential risk of polycyclic aromatic hydrocarbons (PAHs) were systematically investigated in Shanghai port, one of the most important hubs in international trade. The 16 priority PAHs in surface water and sediment were determined. Total concentrations of 16 PAHs (Σ16PAHs) ranged from 140.6 to 647.4 ng/L in surface water and from 12.7 to 573.2 ng/g (dry weight, dw) in sediment, respectively. The 2-ring and 3-ring PAHs with low molecular weight were main components in water, while the 3-ring and 4-ring PAHs were abundant in sediment. Flu was the main component of the Σ16PAHs in water and sediment. According to the source apportionment, the PAHs in water mostly originated from combustion of fossil fuels and petroleum and petroleum combustion were the main contributors to the PAHs in sediment. The results obtained from potential risk assessment indicate that the PAHs in surface water present a moderate ecological risk, whereas the PAHs in sediment show low ecological risk indicating a less possibility of toxic pollution.
Collapse
Affiliation(s)
- Hui Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Centre for Research On the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai, 201306, China
| | - Lin Yuan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Centre for Research On the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai, 201306, China
| | - Junzeng Xue
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Centre for Research On the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai, 201306, China
| | - Huixian Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
- Centre for Research On the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
8
|
Li H, Wang X, Peng S, Lai Z, Mai Y. Seasonal variation of temperature affects HMW-PAH accumulation in fishery species by bacterially mediated LMW-PAH degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158617. [PMID: 36084776 DOI: 10.1016/j.scitotenv.2022.158617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Currently, the specific mechanism generating seasonal variation in polycyclic aromatic hydrocarbons (PAHs) via bacterial biodegradation remains unclear, and whether this alteration affects PAH bioaccumulation is unknown. Therefore, we performed a study between 2015 and 2020 to investigate the effects of seasonal variation on bacterial communities and PAH bioaccumulation in the Pearl River Estuary. Significantly high PAH concentrations in both aquatic and fishery species were determined in dry seasons (the mean ∑16PAH concentration: water, 37.24 ng/L (2015), 30.83 ng/L (2020); fish, 51.01 ng/L (2015) and 72.60 ng/L (2020)) compared to wet seasons (the mean ∑16PAH concentration: water, 22.38 ng/L (2015), 19.40 ng/L(2020); fish, 25.28 ng/L (2015) and 32.59 ng/L (2020)). Distinct differences in taxonomic and functional composition of bacterial communities related to biodegradation of low molecular weight PAHs (LMW-PAHs) were observed between seasons, and the concentrations of PAHs were negatively correlated with seasonal variation in temperature. Temperature-related specific bacterial taxa (e.g., Stenotrophomonas) directly or indirectly participated in LMW-PAH degradation via encoding PAH degradation enzymes (e.g., protocatechuate 4,5-dioxygenase) that subsequently led to bioaccumulation of high molecular weight PAHs (HMW-PAHs) in wild and fishery species due to LMW-PAHs in the water. Based on this alteration, the ecological risk posed by PAHs decreased in wet seasons, and an unbalanced spatio-temporal distribution of PAHs was observed in this estuary. These results suggest that seasonal variation of temperature affects HMW-PAH accumulation in fishery species via bacterially mediated LMW-PAH biodegradation.
Collapse
Affiliation(s)
- Haiyan Li
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Xuesong Wang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China.
| | - Songyao Peng
- Pearl River Water Resources Research Institute, Guangzhou 510611, China
| | - Zini Lai
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yongzhan Mai
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| |
Collapse
|
9
|
Cui Y, Chen J, Wang Z, Wang J, Allen DT. Coupled Dynamic Material Flow, Multimedia Environmental Model, and Ecological Risk Analysis for Chemical Management: A Di(2-ethylhexhyl) Phthalate Case in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11006-11016. [PMID: 35858124 DOI: 10.1021/acs.est.2c03497] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Di(2-ethylhexhyl) phthalate (DEHP) is a widely used plasticizer that has adverse effects on ecosystems and human health. However, data about its stocks, flows, emission rates, as well as ecological risks are generally unknown in China, one of the world's largest producers of chemicals including DEHP, limiting sound management of chemicals. Herein, dynamic material flow analysis, coupled with a multimedia environmental model and ecological risk analysis, was performed to fill the data gap about DEHP in China mainland from 1956 to 2020. Results indicate that the in-use stocks of DEHP increased from 6.54 × 106 kg in 1956 to 8.40 × 109 kg in 2020. With growth in the emission rates, DEHP concentrations in air, soil, water, and sediment kept increasing from 1956 to 2010, which declined after 2010 and regrew after 2015. Sediment was a main sink of DEHP with the highest ecological risk quotient of >10 after 1999, necessitating measures for controlling the risk, for example, technology innovation to reduce DEHP emission rates, and substitution of DEHP with low-toxic alternatives. The coupled models that connect socio-economic data with ecological risk output may provide a systematic methodology for verification of the data necessary for risk control of chemicals.
Collapse
Affiliation(s)
- Yunhan Cui
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhongyu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiayu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - David T Allen
- Center for Energy and Environmental Resources, The University of Texas at Austin, 10100 Burnet Road, Austin, Texas 78758, United States
| |
Collapse
|
10
|
Zhou S, Peng S, Li Z, Zhang D, Zhu Y, Li X, Hong M, Li W, Lu P. Risk assessment of pollutants in flowback and produced waters and sludge in impoundments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152250. [PMID: 34921872 DOI: 10.1016/j.scitotenv.2021.152250] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Due to the growing hydraulic fracturing (HF) practices in China, the environmental risks of pollutants in flowback and produced waters (FPW) and sludge in impoundments for FPW reserves have drawn increasing attention. In this context, we first characterized the comparative geochemical characteristics of the FPW and the sludge in impoundments that collected FPW from 75 shale gas wells, and then the risks associated with the pollutants were assessed. The results demonstrated that four organic compounds detected in the FPW, naphthalene, acenaphthene, dibutyl phthalate, and bis(2-ethylhexyl)phthalate, were potential threats to surface waters. The concentrations of trace metals (copper, cadmium, manganese, chromium, nickel, zinc, arsenic, and lead) in the FPW and sludge were low; however, those of iron, barium, and strontium were high. The accumulation of chromium, nickel, zinc, and lead in the sludge became more evident as the depth increased. The environmental risks from heavy metals in the one-year precipitated sludge were comparable to those reported in the environment. However, the radium equivalent activities were 10-41 times higher than the recommended value for human health safety, indicating potential radiation risks. Although hydrophobic organic compounds, such as high-molecular-weight polycyclic aromatic hydrocarbons (PAHs), phthalate esters (PAEs), benzene, ethylbenzene, toluene, and xylene (BTEX), tended to accumulate in the sludge, their environmental risks were within tolerable ranges after proper treatment. Multiple antibiotic resistance genes (ARGs), such as those for macrolide, lincosamide, streptogramin (MLS), tetracycline, and multidrug resistances, were detected in the shale gas wastewaters and sludge. Therefore, the environmental risks of these emerging pollutants upon being discharged or leaked into surface waters require further attention.
Collapse
Affiliation(s)
- Shangbo Zhou
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Shuchan Peng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Zhiqiang Li
- Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yantao Zhu
- Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xingquan Li
- Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Mingyu Hong
- Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Weichang Li
- Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
11
|
Distribution Dynamics of Phthalate Esters in Surface Water and Sediment of the Middle-Lower Hanjiang River, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052702. [PMID: 35270394 PMCID: PMC8910556 DOI: 10.3390/ijerph19052702] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
Abstract
Phthalate esters (PAEs) are endocrine-disrupting chemicals that pose potential risks to human health. Water and sediments are crucial carriers and storage media for the migration and transformation of PAEs. In this study, six congeners of PAEs were measured in water and sediment samples to elucidate their spatial distribution, congener profiles, and ecological risks in the middle-lower Hanjiang River during the wet and dry seasons. The concentration of the Σ6PAEs ranged from 592 to 2.75 × 103 ng/L with an average of 1.47 × 103 ng/L in surface water, while the concentration of the Σ6PAEs ranged from 1.12 × 103 to 6.61 × 103 ng/g with an average of 2.69 × 103 ng/g in sediments. In general, PAE concentrations were ranked as sediment > water, and dry season > wet season. DEHP and DBP were the dominant PAEs in the middle-lower Hanjiang River in surface water and sediments. SPSS analysis showed that dissolved organic carbon (DOC) in surface water was significantly correlated with the concentration of DBP, DEHP, and the ∑6PAEs, while organic matter (OM) was significantly correlated with the concentration of the ∑6PAEs in sediments. The concentrations of PAEs were irregularly distributed and varied significantly in surface water and sediments. Compared with other regions at home and abroad, the pollution levels of surface water and sediments in the middle-lower Hanjiang River were relatively low and not enough to have a negative impact on the local water’s ecological environment. However, the supervision of land-based discharge should still be strengthened.
Collapse
|
12
|
Taufeeq A, Baqar M, Sharif F, Mumtaz M, Ullah S, Aslam S, Qadir A, Majid M, Jun H. Assessment of organochlorine pesticides and health risk in tobacco farming associated with River Barandu of Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38774-38791. [PMID: 33742378 DOI: 10.1007/s11356-021-13142-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Diffuse pesticide pollution through tobacco fields is a serious threat to both natural integrities and living beings because tobacco is known as a pesticide-intensive crop. Upsurge in the knowledge of detrimental impacts caused by organochlorine pesticides (OCPs) has made them a burning issue particularly in developing countries. Pakistan is a country famous for its agro-based economy and simultaneously is the second most significant pesticide consumer in South Asian countries. The studied area is tobacco hub of the country. Thus, the present work is aimed to investigate the contamination profile that highlights the ecological and health risk posed by OCPs in River Barandu, located in the proximity of tobacco farming region. ΣOCP levels in sediments ranged between 32.918 and 98.810 ng/g and in water between 0.340 and 0.935 μg/L. Hexachlorocyclohexanes (HCHs) and heptachlor were the most prevailing pesticides in both matrices of the river. Isomeric composition of DDTs and HCHs highlighted that the β-HCH and p,p'-DDT were dominant isomers in water, while α-HCH and p,p'-DDT in sediment compartment. Enantiomeric compositions of HCH and DDT indicate both recent and historic uses of these compounds in the area. Indirect contamination through nearby tobacco clusters has been depicted through spatial analysis. Ecological risk assessment based upon the risk quotient (RQ) method revealed that α-endosulfan, dieldrin, heptachlor, and ∑HCHs represent a very high level of ecological risks. The OCPs' lifetime carcinogenic and non-carcinogenic health risks associated with dermal exposure to river's water were considered nominal for surrounding populations. However, detailed ecological and health risk studies are recommended considering the bio-accumulating nature of these contaminants in the food chain.
Collapse
Affiliation(s)
- Ammara Taufeeq
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Mujtaba Baqar
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan.
| | - Faiza Sharif
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan.
| | - Mehvish Mumtaz
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Sami Ullah
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Sadia Aslam
- Allama Iqbal Medical College, Jinnah Hospital, Lahore, 54550, Pakistan
| | - Abdul Qadir
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Muzaffar Majid
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Huang Jun
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
13
|
Liu Y, Huang YH, Lü H, Li H, Li YW, Mo CH, Cai QY. Persistent contamination of polycyclic aromatic hydrocarbons (PAHs) and phthalates linked to the shift of microbial function in urban river sediments. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125416. [PMID: 33662795 DOI: 10.1016/j.jhazmat.2021.125416] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Urban rivers were heavily polluted, which resulted in blackening and odorization (i.e., black-odor rivers). Nevertheless, very limited information is available on sediment contamination levels of black-odor rivers and their linkage to the patterns of microbial functional genes. This study investigated distribution of polycyclic aromatic hydrocarbons (PAHs) and phthalates (PAEs) and their linkages to bacterial community and related functional genes in river sediments. The results demonstrate that higher average levels of ∑16PAHs (1405 μg/kg, dry weight) and ∑6PAEs (7120 μg/kg) were observed in sediments from heavy black-odor rivers than the moderate ones (∑16PAHs: 462 μg/kg; ∑6PAEs: 2470 μg/kg). The taxon composition and diversities of bacterial community in sediments varied with significantly lower diversity indices in heavy black-odor rivers than moderate ones. Sediments from heavy black-odor rivers enriched certain PAH and PAE degrading bacteria and genes. Unfortunately, PAH and PAE contamination demonstrated negative influences on nitrogen and phosphorus metabolism related bacteria and function genes but significant positive influences on certain sulfur metabolism related bacterial taxa and sulfur reduction gene, which might cause nitrogen and phosphorus accumulation and black-odor phenomenon in heavy black-odor rivers. This study highlights PAH and PAE contamination in urban rivers may shift bacterial community and detrimentally affect their ecological functions.
Collapse
Affiliation(s)
- Yue Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Hong Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
14
|
Delove Tegladza I, Qi T, Chen T, Alorku K, Tang S, Shen W, Kong D, Yuan A, Liu J, Lee HK. Direct immersion single-drop microextraction of semi-volatile organic compounds in environmental samples: A review. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122403. [PMID: 32126428 DOI: 10.1016/j.jhazmat.2020.122403] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
Single-drop microextraction (SDME) techniques are efficient approaches to pretreatment of aqueous samples. The main advantage of SDME lies in the miniaturization of the solvent extraction process, minimizing the hazards associated with the use of toxic organic solvents. Thus, SDME techniques are cost-effective, and represent less harm to the environment, subscribing to green analytical chemistry principles. In practice, two main approaches can be used to perform SDME - direct immersion (DI)-SDME and headspace (HS)-SDME. Even though the DI-SDME has been shown to be quite effective for extraction and enrichment of various organic compounds, applications of DI-SDME are normally more suitable for moderately polar and non-polar semi-volatile organic compounds (SVOCs) using organic solvents which are immiscible with water. In this review, we present a historical overview and current advances in DI-SDME, including the common analytical tools which are usually coupled with DI-SDME. The review also focuses on applications concerning SVOCs in environmental samples. Currents trends in DI-SDME and possible future direction of the procedure are discussed.
Collapse
Affiliation(s)
- Isaac Delove Tegladza
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Tong Qi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Tianyu Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Kingdom Alorku
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Jianfeng Liu
- Shanghai Waigaoqiao Shipbuilding Co., Ltd, Shanghai, 200137, PR China
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| |
Collapse
|
15
|
Liang X, Junaid M, Wang Z, Li T, Xu N. Spatiotemporal distribution, source apportionment and ecological risk assessment of PBDEs and PAHs in the Guanlan River from rapidly urbanizing areas of Shenzhen, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:695-707. [PMID: 31035152 DOI: 10.1016/j.envpol.2019.04.107] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
In this study, nine congeners of polybrominated diphenyl ethers (PBDEs) and sixteen congeners of polycyclic aromatic hydrocarbons (PAHs) were measured in water samples to elucidate their spatial distribution, congener profiles, sources and ecological risks in the Guanlan River during both the dry season (DS) and the wet season (WS). The concentration of Σ9PBDE ranged from 58.40 to 186.35 ng/L with an average of 115.72 ng/L in the DS, and from 8.20 to 37.80 ng/L with an average of 22.15 ng/L in the WS. Meanwhile, the concentration of Σ16PAHs was ranged from 121.80 to 8371.70 ng/L with an average of 3271.18 ng/L in the DS and from 1.85 to 7124.25 ng/L with an average of 908.11 ng/L in the WS. The concentrations of PBDEs and PAHs in the DS were significantly higher than those in the WS, probably due to the dilution of the river during the rainy season. Moreover, the spatial distribution of pollutants revealed decreasing trend in the concentration from upstream to downstream and almost identical pattern was observed during both seasons. The source apportionment suggested that penta-BDE and to some extent octa-BDE commercial products were major sources of PBDEs in the study area. However, the sources of PAHs were mainly comprised of fossil fuels and biomass burning, followed by the petroleum products and their mixtures. The results of the ecological risk assessment indicated PBDEs contamination posed high ecological risks, while PAHs exhibited low or no ecological risks in the study area. Consistent with the environmental levels, the ecological risks of pollutants were relatively lower in the WS, compared to that in the DS. The results from this study would provide valuable baseline data and technical support for policy makers to protect the ecological environment of the Guanlan River.
Collapse
Affiliation(s)
- Xinxiu Liang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Muhammad Junaid
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhifen Wang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Tianhong Li
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
16
|
Ullah R, Asghar R, Baqar M, Mahmood A, Ali SN, Sohail M, Schäfer RB, Eqani SAMAS. Assessment of organochlorine pesticides in the Himalayan riverine ecosystems from Pakistan using passive sampling techniques. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:6023-6037. [PMID: 30613874 DOI: 10.1007/s11356-018-3987-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Organochlorine pesticides (OCPs) pose a considerable threat to human and environmental health. Despite most OCPs have been banned, they are still reported to be used in developing countries, including Pakistan. We aimed to identify the distribution, origin, mobility, and potential risks from OCPs in three major environmental compartments, i.e., air, water, and soil, across Azad Jammu and Kashmir valley, Pakistan. The sums of OCPs ranged between 66 and 530 pg/g in soil, 5 and 13 pg/L in surface water, and 14 and 191 pg/m3 in air, respectively. The highest sum of OCPs was observed in the downstream zone of a river that was predominantly influenced by peri-urban and urban areas. The OCP isomers ratios (α-HCH/γ-HCH and o,p'-DDT/p,p'-DDT) indicate use of lindane and technical DDTs mixture as a source of HCH and DDT in the riverine environment. Similarly, the ratios of DDE and DDD/the sum of DDTs, α-endosulfan/β-endosulfan, and cis-chlordane/trans-chlordane indicate recent use of DDTs, endosulfan, and chlordane in the region. The air-water exchange fugacity ratios indicate net volatilization (fw/fa > 1) of α-endosulfan and trans-chlordane, and net deposition (fw/fa < 1) of β-endosulfan, α-HCH, γ-HCH p,p'-DDD, p,p'-DDE, and p,p'-DDT. Based on the risk quotient (RQ) method, we consider the acute ecological risks for fish associated with the levels of OCPs as negligible. However, more studies are recommended to evaluate the chronic ecological risks to other riverine-associated aquatic and terrestrial species as well as human health risks to the POPs exposure through food chain transfer in forthcoming years.
Collapse
Affiliation(s)
- Rizwan Ullah
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur, AJK, 10250, Pakistan
- Department of Zoology, Mirpur University of Science and Technology (MUST), Mirpur, AJK, 10250, Pakistan
| | - Rehana Asghar
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur, AJK, 10250, Pakistan
| | - Mujtaba Baqar
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan.
| | - Adeel Mahmood
- Department of Environmental Sciences, Government College Women University, Sialkot, 51310, Pakistan
| | - Syeda Nazish Ali
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Muhammad Sohail
- Ecohealth and Environment Lab, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Ralf B Schäfer
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau in der Pfalz, Germany
| | | |
Collapse
|