1
|
Floeder A, Jones RM, Arnold SF. Risk assessment methods in occupational health and hygiene: a scoping review. Ann Work Expo Health 2025; 69:120-131. [PMID: 39705502 PMCID: PMC11858558 DOI: 10.1093/annweh/wxae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/18/2024] [Indexed: 12/22/2024] Open
Abstract
BACKGROUND There are a variety of risk assessment methods to evaluate occupational hazards in the field of industrial hygiene. With the development of emerging technologies in the workforce, the previously established risk assessment methods may need to be adapted or new methods developed to address the risk of new hazards. METHODS A scoping review was conducted consistent with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Data was extracted and analyzed using a matrix method before undergoing a narrative synthesis. Risk assessment methods were classified as traditional and nontraditional. RESULTS Seventy-nine articles were included in this scoping review, with 81% using traditional risk assessment methods and 19% using nontraditional methods. DISCUSSION Among the nontraditional methods was control banding, with the most recent applications focused on nanomaterials. This approach, which was borne out of the need for a systematic approach for identifying potential health risks that required the use of engineering controls to be used safely, may have an important role in the area of emerging technologies, where the pace of technological innovation outstrips the rate at which health risks can be assessed and characterized. Risk assessment methods with the capacity to look at groups of similar chemicals and chemical mixtures are needed to address emerging hazards associated with emerging technologies.
Collapse
Affiliation(s)
- Andrew Floeder
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, United States
| | - Rachael M Jones
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA 90095, United States
| | - Susan F Arnold
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
2
|
Mu R, Cui K, Chen Y, Tang Y, Wang K, Sun S. Distribution characteristics and risk assessment of fluoride in surface water of urban typical rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175548. [PMID: 39151624 DOI: 10.1016/j.scitotenv.2024.175548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Recent research on fluoride in water primarily focuses on groundwater; however, the potential environmental risks of fluoride in urban rivers should not be overlooked. In 2023, this study collected 135 surface water samples from the Ershibu River in Hefei, China, during various flood periods. Through descriptive statistical analysis, correlation analysis, principal component analysis-multiple linear regression (PCA-MLR) modeling, hazard quotient (HQ) assessment, and Monte Carlo simulation analysis, the spatial and temporal distribution, potential sources, and health risks of fluoride were investigated. The results showed that fluoride concentrations in the Ershibu River ranged from 0 to 1.38 mg/L. According to the PCA-MLR calculations, industrial pollution (73.92 %) was identified as the main source, followed by hydrogeochemical evolution (16.10 %) and agricultural activities (9.98 %). The HQ analysis revealed that the average exceedance rates of HQ for the five exposed populations were as follows: infants (64.45 %) > young children (2.22 %) = adults (2.22 %) > children (0) = teenagers (0). Therefore, relevant authorities should improve defluoridation facilities to reduce fluoride levels in industrial and agricultural wastewater and implement measures to protect public health. Future research should investigate the migration processes and toxicity mechanisms of fluoride more thoroughly.
Collapse
Affiliation(s)
- Ruixue Mu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Yihan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yuchao Tang
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230601, China
| | - Kun Wang
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230601, China
| | - Shijie Sun
- Wancho Environmental-Protection Co., Ltd, Suzhou 234000, China
| |
Collapse
|
3
|
Menegaki S, Kelepertzis E, Kypritidou Z, Lampropoulou A, Chrastný V, Aidona E, Bourliva A, Komárek M. Characterization of the inhalable fraction (< 10 μm) of soil from highly urbanized and industrial environments: magnetic measurements, bioaccessibility, Pb isotopes and health risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:230. [PMID: 38849623 PMCID: PMC11161548 DOI: 10.1007/s10653-024-02009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/22/2024] [Indexed: 06/09/2024]
Abstract
Soil in urban and industrial areas is one of the main sinks of pollutants. It is well known that there is a strong link between metal(loid)s bioaccessibility by inhalation pathway and human health. The critical size fraction is < 10 μm (inhalable fraction) since these particles can approach to the tracheobronchial region. Here, soil samples (< 10 μm) from a highly urbanized area and an industrialized city were characterized by combining magnetic measurements, bioaccessibility of metal(loids) and Pb isotope analyses. Thermomagnetic analysis indicated that the main magnetic mineral is impure magnetite. In vitro inhalation analysis showed that Cd, Mn, Pb and Zn were the elements with the highest bioaccessibility rates (%) for both settings. Anthropogenic sources that are responsible for Pb accumulation in < 10 μm fraction are traffic emissions for the highly urbanized environment, and Pb related to steel emissions and coal combustion in cement plant for the industrial setting. We did not establish differences in the Pb isotope composition between pseudo-total and bioaccessible Pb. The health risk assessment via the inhalation pathway showed limited non-carcinogenic risks for adults and children. The calculated risks based on pseudo-total and lung bioaccessible concentrations were identical for the two areas of contrasting anthropogenic pressures. Carcinogenic risks were under the threshold levels (CR < 10-4), with Ni being the dominant contributor to risk. This research contributes valuable insights into the lung bioaccessibility of metal(loids) in urban and industrial soils, incorporating advanced analytical techniques and health risk assessments for a comprehensive understanding.
Collapse
Affiliation(s)
- Stavroula Menegaki
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784, Panepistimiopolis, ZographouAthens, Greece
| | - Efstratios Kelepertzis
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784, Panepistimiopolis, ZographouAthens, Greece.
| | - Zacharenia Kypritidou
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784, Panepistimiopolis, ZographouAthens, Greece
| | - Anastasia Lampropoulou
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784, Panepistimiopolis, ZographouAthens, Greece
| | - Vladislav Chrastný
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague-Suchdol, Czech Republic
| | - Elina Aidona
- Department of Geophysics, Faculty of Geology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anna Bourliva
- Directorate of Secondary Education of Western Thessaloniki, 56430, Thessaloniki, Greece
| | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague-Suchdol, Czech Republic
| |
Collapse
|
4
|
Pongpiachan S, Wang Q, Apiratikul R, Tipmanee D, Li L, Xing L, Mao X, Li G, Han Y, Cao J, Surapipith V, Aekakkararungroj A, Poshyachinda S. Combined use of principal component analysis/multiple linear regression analysis and artificial neural network to assess the impact of meteorological parameters on fluctuation of selected PM2.5-bound elements. PLoS One 2024; 19:e0287187. [PMID: 38507443 PMCID: PMC10954151 DOI: 10.1371/journal.pone.0287187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/01/2023] [Indexed: 03/22/2024] Open
Abstract
Based on the data of the State of Global Air (2020), air quality deterioration in Thailand has caused ~32,000 premature deaths, while the World Health Organization evaluated that air pollutants can decrease the life expectancy in the country by two years. PM2.5 was collected at three air quality observatory sites in Chiang-Mai, Bangkok, and Phuket, Thailand, from July 2020 to June 2021. The concentrations of 25 elements (Na, Mg, Al, Si, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Br, Sr, Ba, and Pb) were quantitatively characterised using energy-dispersive X-ray fluorescence spectrometry. Potential adverse health impacts of some element exposures from inhaling PM2.5 were estimated by employing the hazard quotient and excess lifetime cancer risk. Higher cancer risks were detected in PM2.5 samples collected at the sampling site in Bangkok, indicating that vehicle exhaust adversely impacts human health. Principal component analysis suggests that traffic emissions, crustal inputs coupled with maritime aerosols, and construction dust were the three main potential sources of PM2.5. Artificial neural networks underlined agricultural waste burning and relative humidity as two major factors controlling the air quality of Thailand.
Collapse
Affiliation(s)
- Siwatt Pongpiachan
- NIDA Center for Research & Development of Disaster Prevention & Management, School of Social and Environmental Development, National Institute of Development Administration (NIDA), Bangkok, Thailand
| | - Qiyuan Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences (IEECAS), Xi’an, China
| | | | - Danai Tipmanee
- Faculty of Technology and Environment, Prince of Songkla University, Phuket, Thailand
| | - Li Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences (IEECAS), Xi’an, China
| | - Li Xing
- School of Geography and Tourism, Shaanxi Normal University, Xi’an, China
| | - Xingli Mao
- School of Geography and Tourism, Shaanxi Normal University, Xi’an, China
| | - Guohui Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences (IEECAS), Xi’an, China
| | - Yongming Han
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences (IEECAS), Xi’an, China
| | - Junji Cao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences (IEECAS), Xi’an, China
| | - Vanisa Surapipith
- National Astronomical Research Institute of Thailand (Public Organization), Chiangmai, Thailand
| | | | - Saran Poshyachinda
- National Astronomical Research Institute of Thailand (Public Organization), Chiangmai, Thailand
| |
Collapse
|
5
|
Vahabi Shekarloo M, Panjali Z, Mehrifar Y, Ramezanifar S, Naziri SH, Ghasemi Koozekonan A, Moradpour Z, Zendehdel R. Application of a novel exposure limit approach for co-exposure of chemicals: a field study by in-vitro design. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1269-1277. [PMID: 35674128 DOI: 10.1080/09603123.2022.2084513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
This study has suggested an occupational exposure limit (OEL) based on the co-exposure approach in an iron-foundry industry. Respirable dust was collected in an iron casting industry using the NIOSH 0600 method. The DNA damage was obtained by comet assay. The lower confidence interval of the benchmark dose (BMDL) was employed for exposure limit evaluation. The estimated BMDL of the cell line was extrapolated to human subjects. Based on the Hill model, a BMDL 1.65 µg for chemical mixture has been estimated for the A549 cell line. According to uncertainty factors, permitted daily exposure (PDE) was predicted in humans. However, PDE of 3.9 μg/m3 was specified as the time-weighted average limit for toxic respirable dust in the casting industry. In this study, OEL for active respirable dust in the casting industry has been proposed. The industry-based standard for active respirable dust has been proposed for better management of co-exposure.
Collapse
Affiliation(s)
- Masoomeh Vahabi Shekarloo
- Student Research Committee, Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Panjali
- Department of Occupational Health Engineering, Faculty of Health and Medical Engineering, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Younes Mehrifar
- Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soleiman Ramezanifar
- Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Husein Naziri
- Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aysa Ghasemi Koozekonan
- Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Moradpour
- Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rezvan Zendehdel
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Khoshakhlagh AH, Yazdanirad S, Saberi HR, Liao PC. Health risk assessment of exposure to various vapors and fumes in a factory of automobile manufacturing. Heliyon 2023; 9:e18583. [PMID: 37576203 PMCID: PMC10413063 DOI: 10.1016/j.heliyon.2023.e18583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023] Open
Abstract
This study aimed to comprehensively evaluate the health risk of exposure to various vapors and fumes in a factory of automobile manufacturing. This study was performed in 2021 on 115 workers. Vapors and fumes were gathered by the adsorbent tubes of activated charcoal and mixed cellulose esters (MCE) membrane filter, respectively. The flow rate for vapors and fumes were between 0.05 and 0.20 L per min and 1 to 4 L per min, respectively. After preparing, samples were analyzed. To assess the non-cancer and cancer risk of the pollutants, the method proposed environmental protection agency (EPA) was applied. The total concentration of copper (1.031 ppm), manganese (0.114), and 2-butoxyethanol (91.767 ppm) were found to be higher than The threshold limit values (TLVs). The values of non-cancer risk (HQ) due to exposure to vapors of benzene (6.583), toluene (1.396), ethyl benzene (1.212), xylene (31.148), 2-butoxyethanol (89.302), 2-propanol (4.695), 1,2,3-trimethylbenzene (1.923), copper (2.336), manganese (715.82), aluminum (3.772), and chromium (107.066) were higher than the acceptable limit. Moreover, the estimated LCR for benzene (2.15 × 10-4), ethyl benzene (3.97 × 10-4), vinyl chloride (1.25 × 10-4), and chromium (2.11 × 10-2) were higher than the threshold risk level set by EPA. It is emphasized that preventive measures are performed.
Collapse
Affiliation(s)
- Amir Hossein Khoshakhlagh
- Department of Occupational Health, School of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Saeid Yazdanirad
- Social Determinants of Health Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
- School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hamid Reza Saberi
- Occupational Health & Safety Department, Kashan University of Medical Sciences, Kashan, Iran
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 704, Taiwan
| |
Collapse
|
7
|
Jafari A, Asadyari S, Moutab Sahihazar Z, Hajaghazadeh M. Monte Carlo-based probabilistic risk assessment for cement workers exposed to heavy metals in cement dust. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5961-5979. [PMID: 37195567 DOI: 10.1007/s10653-023-01611-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
This study assessed the carcinogenic and non-carcinogenic health risks of cement plant workers exposed to chromium (Cr), arsenic (As), cadmium (Cd), and lead (Pb) in cement dust using a probabilistic approach. Air samples were collected according to NIOSH 7900 and OSHA ID-121 methods and analyzed by an graphite furnace atomic absorption spectrometer. The EPA inhalation risk assessment model and Monte Carlo simulation were utilized to assess the health risks. Sensitivity analysis was used to determine the influencing parameters on health risk. The average concentrations of As and Pb exceeded the occupational exposure limit (OEL), reaching a maximum of 3.4 and 1.7 times the OEL, respectively, in the cement mill. Individual metals' cancer risk exceeded the 1E-4 threshold in ascending order of Cd < As < Cr. The mean cancer risk of Cr ranged from 835E-4 (in raw mill) to 2870E-4 (in pre-heater and kiln). Except for Cd, the non-cancer risk of metals exceeded the standard (hazard index, HQ = 1) in the ascending order of Pb < As < Cr. The mean HQ of Cr ranged from 162.13 (in raw mill) to 558.73 (in pre-heater and kiln). After adjusting for control factors, the cancer and non-cancer risks remained over the respective recommended levels. Sensitivity analysis revealed that the concentration of Cr was the most influential parameter on both carcinogenic (78.5%) and non-carcinogenic (88.06%) risks. To protect the health of cement factory employees, it is recommended to minimize cement dust emissions, implement job rotation, and use raw materials with low levels of heavy metals.
Collapse
Affiliation(s)
- Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Somayeh Asadyari
- Department of Occupational Health, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Moutab Sahihazar
- Department of Occupational Health, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Hajaghazadeh
- Department of Occupational Health, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
8
|
Tian W, Li K, Jiang Z, Guo P, Chai Q. Health damage assessment of reconstruction dust from old industrial buildings under multi-process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58716-58730. [PMID: 36995506 DOI: 10.1007/s11356-023-26535-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 03/14/2023] [Indexed: 05/10/2023]
Abstract
The regeneration of old industrial buildings produces considerable construction dust, thereby seriously threatening the occupational health of construction workers. The existing articles concerning the exposure and health impacts of reconstruction dust in enclosed spaces are limited, but this research field has received increasing attention. In this study, multi-process during the demolition and reinforcement stages of a reconstruction project were monitored to determine the respirable dust concentration distribution. A questionnaire survey was conducted to obtain the exposure parameters of reconstruction workers. Moreover, a health damage assessment system for the reconstruction process of old industrial buildings was established by applying the disability-adjusted life year and human capital method to explore the health damage caused by the generated dust at different stages to the construction personnel. The assessment system was applied to the reconstruction stage of an old industrial building regeneration project in Beijing to obtain dust health damage values for different work types and to conduct comparative analysis. The results indicate that there are significant differences in the dust concentration and health damage at different stages. During the demolition stage, the manual demolition of concrete structures has the highest dust concentration, reaching 0.96 mg/m3. This exceeds the acceptable concentration by 37%, and the health damage cost is 0.58 yuan per person per day. In the reinforcement stage, the dust concentration generated by mortar/concrete mixing is the highest, but the risk level is acceptable. The health damage cost of concrete grinding, which is 0.98 yuan per person per day, is the highest. Therefore, it is necessary to strengthen the protective facilities and improve the reconstruction technology to reduce dust pollution. The results of this study can help in improving the existing dust pollution control measures at construction sites to reduce the risk of dust hazards during reconstruction.
Collapse
Affiliation(s)
- Wei Tian
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Keyun Li
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhihao Jiang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ping Guo
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Qing Chai
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
9
|
Zeverdegani SK, Ordudari Z, Karimi A, Esmaeili R, Khorvash MK. Comparison of the chemical health risk assessment of exposure to metal fumes for the furnace operator of a foundry industry using quantitative and semi-quantitative methods. Heliyon 2023; 9:e12913. [PMID: 36691532 PMCID: PMC9860271 DOI: 10.1016/j.heliyon.2023.e12913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Heavy metals have several adverse effects on the workers' bodies due to their accumulation in the vital organs. Besides that, the current study aimed to assess the health risk of exposure to metal fumes for furnace operators working in a foundry industry based on the three different methods. The current sectional descriptive-analytical research conducted on a foundry industry in Isfahan (Iran) in 2022. Three common methods currently available, including the Semi-Quantitative Risk Assessment Method (SQRCA) and two methods provided based on the US-EPA provided technique, were used in this study. At first, the extent of people's exposure to metal fumes of Fe, Ni, Cr, and Mn was measured. Then, the chemical risk assessment of exposure to these metals' fumes was done using the three methods, and their results were compared. The SPSS Ver.25 has been used for data analysis and comparison in the current study. Results indicated that the furnace operator's exposure to all four metals was above the allowed limit of occupational exposure. The chemical risk assessment results also showed that in the first method (US-EPA-based), the risk of exposure for all workers was acceptable, while in the second method (SQCRA), the risk level of a majority of workers was medium, and in the third method (US-EPA-based), the risk level of a majority of workers was not acceptable. Comparing the methods showed that average risk scores in the first and second methods were significant compared to the exposure to fumes with equivalent concentration (Pvalue<0.05). The average score of carcinogenicity risk in method 3 was significant compared to the concentration of chromium and nickel (P-value < 0.05), but it was not significant for iron and manganese and the non-carcinogenic risk of chromium and nickel. Chemical exposure risk level for the furnace operator was approximately moderate in all three methods. In terms of complexity and information required to implement the method, all three methods were almost the same, with the difference that the results of the first method cannot be generalized to other people who have the same job conditions because individual information such as a person's weight is used to calculate its score.
Collapse
Affiliation(s)
- Sara Karimi Zeverdegani
- Department of Occupational Health and Safety Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Ordudari
- Student Research Committee, Department of Occupational Health and Safety Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azim Karimi
- Student Research Committee, Department of Occupational Health and Safety Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Esmaeili
- Student Research Committee, Department of Occupational Health and Safety Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Corresponding author. Student Research Committee, Department of Occupational Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Kazem Khorvash
- Faculty of Health, Safety and Environmental Engineering, Najafabad Branch, Islamic Azad University, Iran
| |
Collapse
|
10
|
Zhou L, Xue P, Zhang Y, Wei F, Zhou J, Wang S, Hu Y, Lou X, Zou H. Occupational health risk assessment methods in China: A scoping review. Front Public Health 2022; 10:1035996. [PMID: 36466494 PMCID: PMC9714297 DOI: 10.3389/fpubh.2022.1035996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Background Over the decades, many assessment methods have been developed around the world and used for occupational health risk assessment (OHRA). This scoping review integrated the literature on methodological studies of OHRA in China and aimed to identifies the research hot-spots and methodological research perspectives on OHRA in China. Methods A scoping review of literature was undertaken to explore the research progress on OHRA methods in China. Focusing on OHRA methods, the authors systematically searched Chinese and English databases and relevant guideline websites from the date of establishment to June 30, 2022. Databases included Web of Science, PubMed, Scopus, the China National Knowledge Internet, WanFang Database. Some other websites were also searched to obtain gray literature. The extracted information included the author, year, region of first author, the target industry, risk assessment model, study type, the main results and conclusions. Results Finally, 145 of 9,081 studies were included in this review. There were 108 applied studies, 30 comparative studies and 7 optimization studies on OHRA in China. The OHRA methods studied included: (1) qualitative methods such as Romanian model, Australian model, International Council on Mining and Metals model, and Control of Substances Hazardous to Health Essentials; (2) quantitative methods such as the U. S. Environmental Protection Agency inhalation risk assessment model, Physiologically Based Pharmacokinetic, and Monte Carlo simulation; (3) semi-quantitative methods such as Singapore model, Fuzzy mathematical risk assessment model, Likelihood Exposure Consequence method and Occupational Hazard Risk Index assessment method; (4) comprehensive method (Chinese OHRA standard GBZ/T 298-2017). Each of the OHRA methods had its own strengths and limitations. In order to improve the applicability of OHRA methods, some of them have been optimized by researchers. Conclusions There is a wide range of OHRA methods studied in China, including applied, comparative, and optimization studies. Their applicability needs to be further tested through further application in different industries. Furthermore, quantitative comparative studies, optimization studies, and modeling studies are also needed.
Collapse
Affiliation(s)
- Lifang Zhou
- Institute of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Panqi Xue
- Institute of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yixin Zhang
- School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Fang Wei
- Institute of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jiena Zhou
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Shasha Wang
- Shaoxing Center for Disease Control and Prevention, Shaoxing, China
| | - Yong Hu
- Institute of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Xiaoming Lou
- Institute of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Hua Zou
- Institute of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
11
|
Sahihazar ZM, Ghahramani A, Galvani S, Hajaghazadeh M. Probabilistic health risk assessment of occupational exposure to crystalline silica in an iron foundry in Urmia, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82014-82029. [PMID: 35748987 DOI: 10.1007/s11356-022-21487-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to quantify the exposure of foundry workers to crystalline silica and associated cancer and non-cancer health risks using a probabilistic approach. Breathing zone air samples were collected according to the NIOSH 7602 method and analyzed using Fourier transform infrared spectroscopy. The health risks posed by crystalline silica were then assessed using the EPA-developed inhalation risk assessment model and Monte Carlo simulation. The sensitivity analysis was also conducted to determine the contribution of input parameters to the health risks. The mean concentration of crystalline silica in six foundry stations ranged from 0.029 to 0.064 mg m-3, exceeding the occupational exposure limits. The average values of cancer risks were greater than the USEPA level, i.e., 1E - 6 in all workstations of the foundry. Workers in sand preparation and molding stations suffered the greatest cancer risks, with the mean value of 2.35E - 5 and 2.10E - 5, respectively. Non-cancer hazard quotient exceeded 1 in all foundry stations ranging from 1.56 (in melting and pouring) to 3.37 (in sand preparation). The 95% upper-bound values of the health risks decreased by 77.52% and 56.77%, assuming the use of engineering controls and wearing respirators by workers, respectively. Sensitivity analyses indicate that concentration was the most sensitive factor contributing to the carcinogenic (46.13%) and non-carcinogenic (67.08%) risks. These findings can aid managers in gaining a better understanding of the silica risks faced by foundry workers and the role of engineering controls and respirators in protecting workers' health.
Collapse
Affiliation(s)
- Zahra Moutab Sahihazar
- Department of Occupational Health, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Abolfazl Ghahramani
- Department of Occupational Health, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Sadjad Galvani
- Department of Power Engineering, Faculty of Electrical, and Computer Engineering, Urmia University, Urmia, Iran
| | - Mohammad Hajaghazadeh
- Department of Occupational Health, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
12
|
Levels, Sources, and Health Damage of Dust in Grain Transportation and Storage: A Case Study of Chinese Grain Storage Companies. ATMOSPHERE 2021. [DOI: 10.3390/atmos12081025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A large amount of mixed dust exists in grain, which can easily stimulate the respiratory system and cause diseases. This study explored contamination levels and health effects of this grain dust. A total of 616 dust samples from different stages and types of grain were collected in China—in Hefei (Anhui), Shenzhen (Guangdong), Chengdu (Sichuan), Changchun (Jilin), and Shunyi (Beijing)—and analyzed using the filter membrane method and a laser particle size analyzer. A probabilistic risk assessment model was developed to explore the health effects of grain dust on workers in the grain storage industry based on the United States Environmental Protection Agency risk assessment model and the Monte Carlo simulation method. Sensitivity analysis methods were used to analyze the various exposure parameters and influencing factors that affect the health risk assessment results. This assessment model was applied to translate health risks into disability-adjusted life years (DALY). The results revealed that the concentration of dust ranged from 25 to 70 mg/m3, which followed normal distribution and the proportion of dust with a particle size of less than 10 μm exceeded 10%. Workers in the transporting stage were exposed to the largest health risk, which followed a lognormal distribution. The average health risks for workers in the entering and exiting zones were slightly below 2.5 × 10−5. The sensitivity analysis indicated that average time, exposure duration, inhalation rate, and dust concentration made great contributions to dust health risk. Workers in the grain storage and transportation stage had the health damage, and the average DALY exceeded 0.4 years.
Collapse
|
13
|
Boim AGF, Patinha C, Wragg J, Cave M, Alleoni LRF. Respiratory bioaccessibility and solid phase partitioning of potentially harmful elements in urban environmental matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142791. [PMID: 33097248 DOI: 10.1016/j.scitotenv.2020.142791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Studies regarding the role of geochemical processes in urban environmental matrices (UEM) and their influence on respiratory bioaccessibility in humans are scarce in humid tropical regions, especially in Brazil. Contaminated UEM are potentially hazardous to humans if particles <10 μm in diameter are inhaled and reach the tracheobronchial region. In this study, we evaluated samples collected in Brazilian UEMs with a large environmental liability left by former mining industries and in a city with strong industrial expansion. UEM samples were classified into soil, sediment and mine tailings according to the characteristics of the collection sites. The respiratory bioaccessibility of potentially harmful elements (PHE) was evaluated using artificial lysosomal fluid (ALF, pH 4.5), and the BCR-sequential extraction was performed to evaluate how the respiratory bioaccessibility of the PHE was related to the solid phase partitioning. The bioaccessible fraction (BAF) ranged from 54 to 98% for Cd; 21-89% for Cu; 46-140% for Pb, 35-88% for Mn and; 41-84% for Zn. The average BAF of the elements decreased in the following order: Soil: Cd > Pb > Mn > Zn > Cu; Tailing: Pb > Cd > Zn > Mn > Cu; and Sediments: Pb > Mn > Cd > Zn > Cu. BCR-fractions were useful to predict the PHE bioaccessibility (R2 = 0.79-0.98), thus suggesting that particle geochemistry and mineralogy can influence PHE behaviour in the pulmonary fluid. Therefore, this approach provides a combination of quantitative and qualitative data, which allows us to carry out a more realistic assessment of the current situation of the potentially contaminated site and possible alternatives for decision making by the stakeholders.
Collapse
Affiliation(s)
- Alexys Giorgia Friol Boim
- Department of Soil Science, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), 13418-900 Piracicaba, São Paulo, Brazil.
| | - Carla Patinha
- GEOBIOTEC, Geosciences Department, Aveiro University, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Joanna Wragg
- British Geological Survey, Environmental Science Centre, Nicker Hill, Keyworth, Nottingham NG12 5GG, UK
| | - Mark Cave
- British Geological Survey, Environmental Science Centre, Nicker Hill, Keyworth, Nottingham NG12 5GG, UK
| | - Luís Reynaldo Ferracciú Alleoni
- Department of Soil Science, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), 13418-900 Piracicaba, São Paulo, Brazil
| |
Collapse
|
14
|
Khamraev K, Cheriyan D, Choi JH. A review on health risk assessment of PM in the construction industry - Current situation and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143716. [PMID: 33223176 DOI: 10.1016/j.scitotenv.2020.143716] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Particulate matter (PM) is one of the primary pollutants of the environment. The amount of PM discharged from construction projects is considerably high; it generates 70-80% of the overall PM. The composition of PM is complex and may contain various toxic substances that have severe health effects on human health. Existing health risk assessment in the construction industry lacks the efficiency to reduce the risk level of PM exposure. This study systematically reviews literature in this research area to understand the primary reasons which generates PM health risk assessments. The authors reviewed health risk assessment studies in the construction industry to analyze the current situation, and then reviewed health risk assessment studies from four different industries to compare the advancement of research and outcomes in all the five industries. From the study it is understood that the area of research related to ambient air were more developed compared to those in other areas due to their sampling methods and the size of the PM studied. From the findings of the systematic review, it is understood that majority of the risk assessment studies still rely on a two decade-old system and neglect recent research findings pertaining inhalation rate and size of PM. To overcome this, the level of risk involved in various common construction activities needs to be explored using real-time location-based PM monitoring and real-time inhalation monitoring methods. The findings of this review will help researchers gain a better perspective while conducting occupational health risk studies in the construction industry.
Collapse
Affiliation(s)
- Khusniddin Khamraev
- Dong-A Univ., Dept. of Civil Engrg., P4401-1, 550 Bungil 37, Nakdong-Daero, Saha-Gu, Busan 49315, Republic of Korea.
| | - Daniel Cheriyan
- Dong-A Univ., Dept. of Civil Engrg., P4401-1, 550 Bungil 37, Nakdong-Daero, Saha-Gu, Busan 49315, Republic of Korea.
| | - Jae-Ho Choi
- Dong-A Univ., Dept. of Civil Engrg., P4401-1, 550 Bungil 37, Nakdong-Daero, Saha-Gu, Busan 49315, Republic of Korea.
| |
Collapse
|
15
|
Sabouhi M, Ali-Taleshi MS, Bourliva A, Nejadkoorki F, Squizzato S. Insights into the anthropogenic load and occupational health risk of heavy metals in floor dust of selected workplaces in an industrial city of Iran. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140762. [PMID: 32712416 DOI: 10.1016/j.scitotenv.2020.140762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
The levels of Cd, Cr, Cu, Fe, Mn, Pb and Zn were determined in floor dusts from mechanical (MRWs) and battery repairing workshops (BRWs) in Yazd, Iran. The study aimed to evaluate the anthropogenic contribution to the presence of heavy metals (HMs), the possible sources and the related risks that could arise from occupational exposure in the studied workplace microenvironments. Among the analyzed heavy metals, Cu, Pb and Zn exhibited enhanced concentrations in the floor dusts. The EF calculations showed an extremely severe enrichment of HMs, especially for Cd, Cu and Pb, while floor dusts were characterized as "extremely polluted" with regards to those metals. In any case, both EF and Igeo values were significantly higher in the BRWs. These results were also supported by NIPI and PLI values, while contour maps of PLI values in both MRWs and BRWs outlined workshops in N-NE part of Yazd as more impacted compared to other spatial locations. Principal component analysis (PCA) and Pearson's correlation outscored workshops activities as the principal sources of heavy metals. The health risk assessment suggested considerable non-carcinogenic risks regarding Pb in the BRWs which exhibited HQing (mean 2.91) and HI (mean 3.03) values higher than safe level. Regarding carcinogenic risks, CR values for both Cd and Cr were below the safe level (1.0 × 10-6). The occupational exposure to Pb was evaluated through the predicted BLL values, where with averages of 3.33 μg/dl and 21.4 μg/dl for MRWs and BRWs workers, respectively, indicated a severe Pb exposure for BRWs workers.
Collapse
Affiliation(s)
- Morteza Sabouhi
- Department of Environment, Faculty of Natural Resources, Yazd University, Yazd, Iran
| | | | - Anna Bourliva
- Department of Geophysics, School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Farhad Nejadkoorki
- Department of Environment, Faculty of Natural Resources, Yazd University, Yazd, Iran
| | - Stefania Squizzato
- Department of Public Health Sciences, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
16
|
Nazarparvar-Noshadi M, Ezzati Nazhad Dolatabadi J, Rasoulzadeh Y, Mohammadian Y, Shanehbandi D. Apoptosis and DNA damage induced by silica nanoparticles and formaldehyde in human lung epithelial cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18592-18601. [PMID: 32198691 DOI: 10.1007/s11356-020-08191-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Human exposure to silica nanoparticles (SNPs) and formaldehyde (FA) is increasing and this has raised some concerns over their possible toxic effects on the exposed working populations. Notwithstanding several studies in this area, the combined toxicological effects of these contaminants have not been yet studied. Therefore, this in vitro study was designed to evaluate the SNPs and FA combined toxicity on human lung epithelial cells (A549 cells). The cells were exposed to SNPs and FA separately and in combined form and the single and combined toxicity of SNPs and FA were evaluated by focusing on cellular viability, DNA damage, and apoptosis via MTT, DAPI staining, DNA ladder, and Annexin V-FITC apoptosis assays. The results showed a significant increase in cytotoxicity, DNA damage, and chromatin fragmentation and late apoptotic\necrotic rates in combined treated cells compared with SNPs and FA-treated cells (P value < 0.05). Two-factorial analysis showed an additive toxic interaction between SNPs and FA. Eventually, this can be deduced that workers exposed simultaneously to SNPs and FA may be at high risk compared with exposure to each other.
Collapse
Affiliation(s)
- Mehran Nazarparvar-Noshadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Yahya Rasoulzadeh
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Yousef Mohammadian
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|