1
|
Sulistiawan SS, Sadeghi K, Kumar R, Kim D, Seo J. In Situ Reactive Extrusion of LDPE Films with Methacrylated Pyrogallol for Antimicrobial and Antioxidant Active Packaging. Polymers (Basel) 2025; 17:325. [PMID: 39940527 PMCID: PMC11820962 DOI: 10.3390/polym17030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Reactive extrusion is a scalable technology for active packaging that promotes food quality and safety. This study investigated the grafting of a methacrylate pyrogallol (PGMC) active agent onto low-density polyethylene (LDPE) through an in situ reactive extrusion process with varying concentrations of PGMC (1, 3, and 5 wt.%). The addition of 5% PGMC increased the tensile strength of pure LDPE from 17.94 MPa to 22.04 MPa. The thermal stability of the samples remained unaffected after PGMC addition, and the grafting process did not interfere with the barrier properties of the LDPE films. Furthermore, 5% PGMC exhibited significant antimicrobial properties, showing 100% and 99.11% reductions in the microbial activity of Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive), respectively. Moreover, the LDPE film with 5% PGMC demonstrated the highest DPPH scavenging effect, reaching up to 85.71%. Therefore, LDPE-g-PGMC films (5%), with antimicrobial and antioxidant properties, have potential applications in non-migratory active packaging.
Collapse
Affiliation(s)
- Sharifa Salma Sulistiawan
- Department of Packaging & Logistics, Yonsei University, 1 Yonseidae-gil, Wonju-si 26493, Republic of Korea;
| | - Kambiz Sadeghi
- School for Engineering of Matter, Transport, and Energy, Arizona State University, 11 501 E Tyler Mall, Tempe, AZ 85287, USA;
| | - Ritesh Kumar
- Sri Guru Gobind Singh College of Commerce, Unversity of Delhi, Opposite TV Tower, Pitampura, Delhi 110034, India;
| | - Dowan Kim
- Department of Food Processing and Distribution, College of Life Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung-si 25457, Republic of Korea;
| | - Jongchul Seo
- Department of Packaging & Logistics, Yonsei University, 1 Yonseidae-gil, Wonju-si 26493, Republic of Korea;
| |
Collapse
|
2
|
Sarmin M, Gurung S, Sarkar S, Das S, Hoda M. Photocatalysis-enhanced synthesis and stabilization of silver nanoparticles by methanol-based phytochemicals extract of Trigonella foenum-graecum seeds. JCIS OPEN 2024; 15:100116. [DOI: 10.1016/j.jciso.2024.100116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Abirami G, Alexpandi R, Jayaprakash E, Roshni PS, Ravi AV. Pyrogallol loaded chitosan-based polymeric hydrogel for controlling Acinetobacter baumannii wound infections: Synthesis, characterization, and topical application. Int J Biol Macromol 2024; 259:129161. [PMID: 38181925 DOI: 10.1016/j.ijbiomac.2023.129161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Antibacterial hydrogels have emerged as a promising approach for wound healing, owing to their ability to integrate antibacterial agents into the hydrogel matrix. Benefiting from its remarkable antibacterial and wound-healing attributes, pyrogallol has been introduced into chitosan-gelatin for the inaugural development of an innovative antibacterial polymeric hydrogel tailored for applications in wound healing. Hence, we observed the effectiveness of pyrogallol in inhibiting the growth of A. baumannii, disrupting mature biofilms, and showcasing robust antioxidant activity both in vitro and in vivo. In addition, pyrogallol promoted the migration of human epidermal keratinocytes and exhibited wound healing activity in zebrafish. These findings suggest that pyrogallol holds promise as a therapeutic agent for wound healing. Interestingly, the pyrogallol-loaded chitosan-gelatin (Pyro-CG) hydrogel exhibited enhanced mechanical strength, stability, controlled drug release, biodegradability, antibacterial activity, and biocompatibility. In vivo results established that Pyro-CG hydrogel promotes wound closure and re-epithelialization in A. baumannii-induced wounds in molly fish. Therefore, the prepared Pyro-CG polymeric hydrogel stands poised as a potent and promising agent for wound healing with antibacterial properties. This holds considerable promise for the development of effective therapeutic interventions to address the increasing menace of A. baumannii-induced wound infections.
Collapse
Affiliation(s)
- Gurusamy Abirami
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Rajaiah Alexpandi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India; The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Erusappan Jayaprakash
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Prithiviraj Swasthikka Roshni
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Arumugam Veera Ravi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India.
| |
Collapse
|
4
|
Jin L, Yun D, Zhang W, Lee J, Shin H, Kim D, Kang TB, Won HS, Jang H, Kim W. Polyphenols Coordinated with Cu (II) in an Aqueous System Build Ion-Channel Coatings on Hair Surfaces. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1333. [PMID: 36836964 PMCID: PMC9967149 DOI: 10.3390/ma16041333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Recently, developments in the field of cosmetics have led to a renewed interest in hair dyeing. However, damage to the hair during the dyeing process has increased hesitation in attempting hair dyeing. As a result, hair dyes with minimal side effects have been in constant demand, and are being developed. In this study, natural-extract polyphenols, pyrogallol, and gallic acid are coordinated by CuCl2 in a NaCl aqueous solution to form an oligomer, which creates an ion-channel coating on the hair surface to protect it. This work attempts to develop fast, simple, and damage-free hair-dye ingredients based on pyrogallol and gallic acid. The morphology and elements of polyphenols coated on hair are characterized. The results reveal that the hair is dyed with the polyphenol-based dye reagent successfully. Moreover, the thickness of the dyed hair continuously rises ten times after dyeing. The tensile strength of the dyed hair is also measured, showing an upward and downward trend. These results reflect the fact that pyrogallol and gallic acid are considered to be the essential and functional polyphenols, and can build ion blocks on hair, which can create new multifunctional coating materials.
Collapse
Affiliation(s)
- Lei Jin
- Department of Applied Chemistry, Konkuk University, Chungju 27478, Republic of Korea
| | - Daemyoung Yun
- Department of Applied Chemistry, Konkuk University, Chungju 27478, Republic of Korea
| | - Wei Zhang
- Department of Applied Chemistry, Konkuk University, Chungju 27478, Republic of Korea
| | - Jinsung Lee
- Suan Hyangjang Co., Ltd., Suan bd 204, Jungwon-gu, Seongnam 13204, Republic of Korea
| | - Hongchul Shin
- Suan Hyangjang Co., Ltd., Suan bd 204, Jungwon-gu, Seongnam 13204, Republic of Korea
| | - Donghyuk Kim
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Tae-Bong Kang
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju 27487, Republic of Korea
| | - Hyung-Sik Won
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju 27487, Republic of Korea
| | - Hohyoun Jang
- Department of Applied Chemistry, Konkuk University, Chungju 27478, Republic of Korea
| | - Whangi Kim
- Department of Applied Chemistry, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
5
|
Zhang R, Deng Z, Li J, Zhang Y, Wei Z, Cao H. Effect of leaching time on phytotoxicity of dissolved organic matter derived from black carbon based on spectroscopy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119595. [PMID: 35688387 DOI: 10.1016/j.envpol.2022.119595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Black carbon (BC) exports huge amounts of its derived DOM from terrestrial ecosystems annually through a variety of ways (i.e., erosion or runoff migration). The pyrolytic feedstock type and temperature resulted in DOM derived from highly condensed aromatic and non-aromatic BC. However, the behaviors of low aromatic BC-derived DOM at diverse leaching time are poorly understood. In this work, low aromatic BCs were prepared by pyrolysis corn straws at 250 °C, 350 °C and 450 °C. Extraction experiments for four leaching time (6 h, 10 h, 15 h and 21 h) were set up to simulate BC-derived DOM generative process in nature. The phytotoxicity of BC-derived DOM was evaluated via germination index (GI). Spectral characteristics were discussed to analyze the phytotoxicity variations of fluorescence components composition at different time, including the excitation-emission matrix-parallel factor, two-dimensional correlation spectra and Fourier transform infrared spectroscopy. The results suggested that low aromatic BC-derived DOM might contain aromatic phenolic compounds. A longer time contributed to accumulate the complex, hard-to-use organic matters, leading to lower GI. These results would supplement the dynamic spectral characteristics of low aromatic BC-derived DOM and its environmental risks during the leaching process.
Collapse
Affiliation(s)
- Ruju Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Ze Deng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiulong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunxian Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Huan Cao
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
6
|
Abstract
Plants when exposed to toxic levels of metals can suffer morphological or physiological damage because toxic metals can interact with several vital molecules in the plant. One possibility to remove these contaminants from the environment is through the phytoremediation technique, since secondary metabolites produced by plants can reverse these damages. To evaluate the cytoprotective activity, the dry mass and possible damage to the membranes of Lactuca sativa (lettuce) seedlings subjected to different concentrations of mercury chloride in association with catechin and quercetin in suballelopathic concentration were determined. The coordination of mercury chloride with substances was also evaluated using vibrational spectroscopy (Raman and FTIR). The interaction of the mentioned flavonoids with mercury chloride was evidenced through vibrational spectroscopy. When the metal was associated with catechin and quercetin, there was an increase in dry mass of almost 3 times when compared with the HgCl2 alone, demonstrating that these flavonoids act as cytoprotective agents. However, in the presence of catechin and quercetin, membrane damage caused by mercury chloride has a level similar to that observed in control plants, demonstrating none statistical difference. Comparing the highest concentration with the lowest concentration of the metal associated with quercetin, it can be seen that the intensity of the peaks in this region decreases when the concentration of the metal increases, indicating an interaction between the metallic compound and the flavonoid. In this context, the use of secondary metabolites can be an alternative in the process of remediation of areas contaminated by mercury chloride, as they mitigate the effects of mercury chloride on lettuce seedlings.
Collapse
|
7
|
Köktürk M, Atalar MN, Odunkıran A, Bulut M, Alwazeer D. Evaluation of the hydrogen-rich water alleviation potential on mercury toxicity in earthworms using ATR-FTIR and LC-ESI-MS/MS spectroscopy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19642-19656. [PMID: 34718956 DOI: 10.1007/s11356-021-17230-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
The toxic effects of mercury in earthworms and the potential alleviation effect of hydrogen-rich water (HRW) using ATR-FTIR and LC-MS analysis methods were investigated. Different concentrations of mercury chloride (H1: 5 µg/mL, H2: 10 µg/mL, H3: 20 µg/mL, H4: 40 µg/mL, and C1: control) and mercury chloride prepared in hydrogen-rich water (H5: 5 µg/mL, H6: 10 µg/mL, H7: 20 µg/mL, H8: 40 µg/mL, and C2: control) were injected into earthworms. The changes and reductions in some bands representing proteins, lipids, and polysaccharides (3280 cm-1, 2922 cm-1, 2855 cm-1, 1170 cm-1, and 1047 cm-1) showed that protective effects could occur in groups prepared with hydrogen-rich water. In the FTIR results, it was found that these bands in the H3 group were more affected and decreased by the influence of mercury on earthworms than the H7 group prepared with hydrogen. LC-MS analysis showed that the changes in some ions of the highest dose groups (H4 and H8) were different, and mercury caused oxidative DNA damage in earthworms. When the high-level application groups of mercury, i.e., H4 and H8 were compared with the controls, the ion exchange ([M + H] + ; m/z 283.1) representing the 8-Oxo-dG level in earthworms was higher in the H4 group than the H8 group. This reveals that HRW exhibited the potential ability to alleviate the toxic effects of mercury; however, a longer period of HRW treatment may be necessary to distinguish an obvious effect. The ATR-FTIR spectroscopy provided a rapid and precise method for monitoring the changes in biological tissues caused by a toxic compound at the molecular level.
Collapse
Affiliation(s)
- Mine Köktürk
- Department of Organic Agriculture Management, College of Applied Sciences, Igdir University, 76000, Igdir, Turkey
- Research Laboratory Application and Research Center (ALUM), Iğdır University, 76000, Iğdır, Turkey
| | - Mehmet Nuri Atalar
- Department of Nutrition and Dietetic, Faculty of Health Sciences, Iğdır University, 76000, Iğdır, Turkey
| | - Arzu Odunkıran
- Department of Hotel, Restaurant and Catering Services, Igdir University, 76000, Igdir, Turkey
| | - Menekşe Bulut
- Department of Food Engineering, Faculty of Engineering, Iğdır University, 76000, Iğdır, Turkey
- Research Center for Redox Applications in Foods (RCRAF), Iğdır University, 76000, Iğdır, Turkey
- Innovative Food Technologies Development, Application and Research Center, Igdir University, 76000, Iğdır, Turkey
| | - Duried Alwazeer
- Department of Nutrition and Dietetic, Faculty of Health Sciences, Iğdır University, 76000, Iğdır, Turkey.
- Research Center for Redox Applications in Foods (RCRAF), Iğdır University, 76000, Iğdır, Turkey.
- Innovative Food Technologies Development, Application and Research Center, Igdir University, 76000, Iğdır, Turkey.
| |
Collapse
|
8
|
Bech J. Special Issue "Reclamation of polluted soils for food production and human health: part 1". ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:2207-2212. [PMID: 33948782 DOI: 10.1007/s10653-021-00897-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Jaume Bech
- University of Barcelona (UB), Barcelona, Spain
| |
Collapse
|