1
|
Temizer İK. Elemental composition and evaluation of noncarcinogenic risks of bee pollen from different Turkish areas. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1575-1585. [PMID: 38155591 DOI: 10.1002/ieam.4887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/30/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Bee pollen is a complex compound formed by the honey bee through a mixture pollen, nectar, and bee saliva. It contains many elements that have importance for the human biochemical process. However, when the content of minerals in the pollen exceeds the biological limit, it can be toxic to health. This study aimed to assess and identify the presence of 16 essential (potassium [K], phosphorus [P], calcium [Ca], magnesium [Mg], sodium [Na], iron [Fe], silicon [Si], manganese [Mn], zinc [Zn], boron [B], copper [Cu], molybdenum [Mo], nickel [Ni], chromium [Cr], selenium [Se], and cobalt [Co]) and 16 nonessential elements (aluminum [Al], beryllium [Be], barium [Ba], arsenic [As], cadmium [Cd], mercury [Hg], thallium [Tl], lithium [Li], antimony [Sb], vanadium [V], lead [Pb], rubidium [Rb], strontium [Sr], cesium [Cs], titanium [Ti], and uranium [U]) in bee pollen samples from different floral sources in Turkey, while also evaluating the noncarcinogenic risks associated with bee pollen. A melissopalynological investigation was conducted to identify the plant origins of the bee pollen samples. Thereafter, the levels of 32 elements in bee pollen samples were quantified using inductively coupled plasma-mass spectrometry (ICP-MS). Finally, calculations were performed to determine the recommended dietary allowance percentage (RDA%), estimated daily intake (EDI), target hazard quotient (THQ), and hazard index (HI). The bee pollen samples had varying levels of macro, trace, and ultratrace elements, with K, P, Ca, Mg, and Na being the most abundant macro elements and Ti, Ba, Ni, Cr, and V being the least abundant ultratrace elements. The RDA% values for essential elements in bee pollen were found to vary, with Cu, Zn, Fe, and Cr having the highest levels. The results of the THQ and HI calculations demonstrated that consuming bee pollen at recommended rates did not pose a risk to the health of adults or children. Integr Environ Assess Manag 2024;20:1575-1585. © 2023 SETAC.
Collapse
Affiliation(s)
- İlginç Kızılpınar Temizer
- Department of Medical Services and Techniques, Vocational School of Health Services, Giresun University, Giresun, Turkey
| |
Collapse
|
2
|
Zhao M, Wang H, Sun J, Cai B, Tang R, Song X, Huang X, Liu Y, Fan Z. Human health risks of heavy metal(loid)s mediated through crop ingestion in a coal mining area in Eastern China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116305. [PMID: 38599158 DOI: 10.1016/j.ecoenv.2024.116305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
The heavy metal(loid)s (HMs) in soils can be accumulated by crops grown, which is accompanied by crop ingestion into the human body and then causes harm to human health. Hence, the health risks posed by HMs in three crops for different populations were assessed using Health risk assessment (HRA) model coupled with Monte Carlo simulation. Results revealed that Zn had the highest concentration among three crops; while Ni was the main polluting element in maize and soybean, and As in rice. Non-carcinogenic risk for all populations through rice ingestion was at an "unacceptable" level, and teenagers suffered higher risk than adults and children. All populations through ingestion of three crops might suffer Carcinogenic risk, with the similar order of Total carcinogenic risk (TCR): TCRAdults > TCRTeenagers > TCRChildren. As and Ni were identified as priority control HMs in this study area due to their high contribution rates to health risks. According to the HRA results, the human health risk was associated with crop varieties, HM species, and age groups. Our findings suggest that only limiting the Maximum allowable intake rate is not sufficient to prevent health risks caused by crop HMs, thus more risk precautions are needed.
Collapse
Affiliation(s)
- Menglu Zhao
- School of Resoureces and Environment, Anqing Normal University, Anqing 246133, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Huijuan Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jiaxun Sun
- Department of Geographical Sciences, University of Maryland, College Park 20742, United States
| | - Boya Cai
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Rui Tang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiaoyong Song
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xinmiao Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yafeng Liu
- School of Resoureces and Environment, Anqing Normal University, Anqing 246133, China.
| | - Zhengqiu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
3
|
de Souza VB, Hollas CE, Bortoli M, Manosso FC, de Souza DZ. Heavy metal contamination in soils of a decommissioned landfill southern Brazil: Ecological and health risk assessment. CHEMOSPHERE 2023; 339:139689. [PMID: 37543230 DOI: 10.1016/j.chemosphere.2023.139689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
The incorrect disposal of waste negatively influences the population's quality of life and harms the environment. In Brazil, waste disposal in the open air is still a reality, which generates concerns about the contamination of the areas surrounding these dumpsites. The present work evaluated the possible environmental risks of a deactivated dumpsite in southern Brazil. The soil was characterized by physical and chemical tests, emphasizing the analysis of heavy metals Al, Fe, Cu, Mn, and Zn. Using geostatistical tools, it was possible to determine the distribution of these heavy metals in the influence of the landfill, since the metals Mn, Fe, and Zn showed a significant difference about the reference soil, indicating that they came from leaching from the landfill. The dispersion of the metals along the slope showed a tendency towards mobility since the highest concentrations were at elevations below the landfill. The area was considered contaminated due to the high scores of the evaluated indexes pollution, as the Improved Nemerow Pollution Index, which considers pollutant concentration, toxicity, and environmental impact to provide a measure of contamination, and was equivalent to 6.44, indicating that the area is contaminated. However, it presented low ecological risks, with a potential ecological risk of 18.55. As well as low risks to human health, with hazard index below the limit considered critical to health (HI < 1). Thus, the results of this study showed that the metals are released around the deactivated deposit, which compromises the environmental safety of the site, mainly due to its proximity to bodies of water that supply the region. Thus, the permanent control and monitoring of the areas of deactivated dumpsites are essential to avoid further pollution and should be included in the management plans for deactivating these deposits throughout the country.
Collapse
Affiliation(s)
| | - Camila Ester Hollas
- Federal University of Technology - Paraná, 85602-863, Francisco Beltrão, PR, Brazil
| | - Marcelo Bortoli
- Federal University of Technology - Paraná, 85602-863, Francisco Beltrão, PR, Brazil
| | - Fernando C Manosso
- Federal University of Technology - Paraná, 85602-863, Francisco Beltrão, PR, Brazil
| | - Davi Z de Souza
- Federal University of Technology - Paraná, 85602-863, Francisco Beltrão, PR, Brazil.
| |
Collapse
|
4
|
Lyu K, Lyu Z, Zhang X, Hao D, Yang Z, Liu Y, Liu D, Wang X. Effect of cerium on the production of reactive oxygen species in the root of Arabidopsis thaliana: An in vitro study. Microsc Res Tech 2023; 86:137-143. [PMID: 36056697 DOI: 10.1002/jemt.24226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/15/2022] [Accepted: 08/16/2022] [Indexed: 01/21/2023]
Abstract
In the current study, the effect of trivalent cerium (Ce3+ ) on the production of reactive oxygen species (ROS) was investigated in the root of Arabidopsis thaliana by an in vitro study. The roots of A. thaliana were exposed with 0, 1, and 5 μmol/L Ce3+ for 12 h in vitro. It was found that the level of H2 O2 , O2 .- , and ·OH was enhanced by 5 μmol/L Ce3+ , but reduced by 1 μmol/L Ce3+ . The activities of peroxidase (POD), catalase (CAT), and superoxidase dismutase (SOD) were enhanced by 1 μmol/L Ce3+ , but reduced by 5 μmol/L Ce3+ . Moreover, we used a laser-scanning confocal microscopy to detect the changes of ROS in the root cells of A. thaliana by using a fluorochrome 2',7'-dichlorofluorescein diacetate (H2 DCF-DA). It showed that the level of ROS was declined in the root cells treated by 1 μmol/L Ce3+ , but the oscillation of ROS was found in the root cells treated with 5 μmol/L Ce3+ . In addition, REEs affect the uptake of mineral elements, which may be related to the oxidative stress in the cells of roots. In all, the data of our study indicated that the appropriate concentration of Ce3+ exhibited an anti-oxidation property and improved the defense system in the root cells of A. thaliana.
Collapse
Affiliation(s)
- Keliang Lyu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Zhiwen Lyu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xinran Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Donghao Hao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Zhonghuang Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Yumeng Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Dongwu Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xue Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
5
|
Zhou S, Xiong C, Su Y, Wang Y, Gao Y, Tang Z, Liu B, Wu Y, Duan Y. Antibiotic-resistant bacteria and antibiotic resistance genes in uranium mine: Distribution and influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119158. [PMID: 35304179 DOI: 10.1016/j.envpol.2022.119158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/19/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Both heavy metals and radiation could affect the proliferation and dissemination of emerging antibiotic resistance pollutants. As an environmental medium rich in radioactive metals, the profile of antibiotic resistance in uranium mine remains largely unknown. A uranium mine in Guangdong province, China was selected to investigate the distribution and influencing factors of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) including intracellular ARGs (iARGs), adsorbed-extracellular ARGs (aeARGs), and free extracellular ARGs (feARGs). The result indicated that sulfonamide and tetracycline ARB could be generally detected in mining area with the absolute concentrations of 7.70 × 102-5.18 × 105 colony forming unit/g. The abundances of aeARGs in mine soil were significantly higher than those of iARGs (p < 0.05), highlighting the critical contribution of aeARGs to ARGs spread. The feARGs in mine drainage and its receiving river were abundant (3.38 × 104-1.86 × 107 copies/mL). ARB, aeARGs, and iARGs may correlate with nitrogen species and heavy metals (e.g., U and Mn), and feARGs presented a significant correlation with chemical oxygen demand (p < 0.05). These findings demonstrate the occurrence of ARB and ARGs in uranium mine for the first time, thereby contributing to the assessment and control of the ecological risk of antibiotic resistance in radioactive environments.
Collapse
Affiliation(s)
- Shuai Zhou
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China; School of Civil Engineering, University of South China, Hengyang, 421001, China; Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, University of South China, Hengyang, 421001, China
| | - Cong Xiong
- School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Yinglong Su
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Yuanyuan Gao
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, University of South China, Hengyang, 421001, China
| | - Zhenping Tang
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, University of South China, Hengyang, 421001, China
| | - Boyang Liu
- School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Yueyue Wu
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yi Duan
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China; School of Civil Engineering, University of South China, Hengyang, 421001, China.
| |
Collapse
|
6
|
Ren W, Cao Q, Yang L, Huang S. Uranium in Chinese coals: Concentration, spatial distribution, and modes of occurrence. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2022; 246:106848. [PMID: 35219123 DOI: 10.1016/j.jenvrad.2022.106848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Uranium in coals is an environmental radionuclide with resource utilization value. To comprehensively understand the prevalence of uranium in Chinese coals, the concentration, spatial distribution, and modes of occurrence were analyzed based on the data acquired from 1326 coal samples. Chinese coals are relatively rich in uranium, with the arithmetic and weighted average concentrations of 3.08 and 2.38 mg/kg, respectively. The regions with high uranium enrichment in coals are Guizhou, Guangxi, Yunnan, Sichuan and Chongqing, which are mainly located in southwestern China. The uranium was more enriched in Late Permian coal and medium-to-high metamorphic coal. Organic matter is the main carrier of uranium in coals, followed by silicates and sulfides. The factors affecting uranium enrichment in coal at the national scale include magma intrusions, volcanic ash, seawater influence, low-temperature hydrothermal fluids, and paleoclimate. This paper provides a reference for further research on environmental management and resource utilization of uranium in Chinese coals.
Collapse
Affiliation(s)
- Wenying Ren
- College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Qingyi Cao
- College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Liu Yang
- College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Siyan Huang
- College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| |
Collapse
|
7
|
Chen L, Wang J, Beiyuan J, Guo X, Wu H, Fang L. Environmental and health risk assessment of potentially toxic trace elements in soils near uranium (U) mines: A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151556. [PMID: 34752878 DOI: 10.1016/j.scitotenv.2021.151556] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Soil pollution by potentially toxic trace elements (PTEs) near uranium (U) mines arouses a growing interest worldwide. However, nearly all studies have focused on a single site or only a few sites, which may not fully represent the soil pollution status at the global scale. In this study, data of U, Cd, Cr, Pb, Cu, Zn, As, Mn, and Ni contents in U mine-associated soils were collected and screened from published articles (2006-2021). Assessments of pollution levels, distributions, ecological, and human health risks of the nine PTEs were analysed. The results revealed that the average contents of the U, Cd, Cr, Pb, Cu, Zn, As, Mn, and Ni were 39.88-, 55.33-, 0.88-, 3.81-, 3.12-, 3.07-, 9.26-, 1.83-, and 1.17-fold greater than those in the upper continental crust, respectively. The pollution assessment showed that most of the studied soils were heavily polluted by U and Cd. Among them, the U mine-associated soils in France, Portugal, and Bulgaria exhibited significantly higher pollution levels of U and Cd when compared to other regions. The average potential ecological risk value for all PTEs was 3358.83, which indicated the presence of remarkably high risks. Among the PTEs, Cd and U contributed more to the potential ecological risk than the other elements. The health risk assessment showed that oral ingestion was the main exposure route for soil PTEs; and the hazard index (HI) values for children were higher than those for adult males and females. For adult males and females, all hazard index values for the noncarcinogenic risks were below the safe level of 1.00. For children, none of the HI values exceeded the safe level, with the exception of U (HI = 3.56) and As (HI = 1.83), but Cu presented unacceptable carcinogenic risks. This study provides a comprehensive analysis that demonstrates the urgent necessity for treating PTE pollution in U mine-associated soils worldwide.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Jingzhe Wang
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Guangdong Key Laboratory of Urban Informatics & Shenzhen Key Laboratory of Spatial Smart Sensing and Services, Shenzhen University, Shenzhen 518060, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hao Wu
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan 420100, China
| | - Linchuan Fang
- State Key Laboratory of soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| |
Collapse
|
8
|
Cheng C, Chen L, Guo K, Xie J, Shu Y, He S, Xiao F. Progress of uranium-contaminated soil bioremediation technology. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2022; 241:106773. [PMID: 34781090 DOI: 10.1016/j.jenvrad.2021.106773] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
With the extensive exploitation of nuclear energy and uranium, the problem of uranium-contaminated soil is becoming increasingly prominent. In recent years, various technologies for remediation of uranium-contaminated soil have emerged, such as bioremediation, physical remediation and chemical remediation. Bioremediation technology has the widespread attention because of its environmental friendliness, low cost and high economic benefits. This paper mainly reviews the evaluation index of uranium-contaminated soil, soil remediation technology and its advantages and disadvantages, introduces especially the research status of soil bioremediation technology in detail, and puts forward some suggestions and prospects for bioremediation of uranium-contaminated soil.
Collapse
Affiliation(s)
- Conghui Cheng
- School of Public Health, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Luyao Chen
- School of Public Health, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Kexin Guo
- School of Public Health, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Jingxi Xie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Yangzhen Shu
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Shuya He
- School of Public Health, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| | - Fangzhu Xiao
- School of Public Health, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
9
|
Meng F, Huang Q, Larson SL, Han FX. The Adsorption Characteristics of Uranium(VI) from Aqueous Solution on Leonardite and Leonardite-Derived Humic Acid: A Comparative Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12557-12567. [PMID: 34661416 DOI: 10.1021/acs.langmuir.1c01838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The humic substance is a low-cost and effective adsorbent with abundant functional groups in remediating uranium (U) (VI)-contaminated water. In this research study, leonardite together with leonardite-derived humic acid (L-HA) was used to eliminate U(VI) from water under diverse temperatures (298, 308, and 318 K). L-HA showed a higher adsorption volume for U(VI) than leonardite. U adsorption was varied with pH and increased with temperature. The adsorption kinetics of L-HA had a higher determination coefficient (R2) for pseudo-second-order (R2 > 0.993) and Elovich (R2 > 0.987) models, indicating possible chemisorption-assisted adsorption. This was further supported with the activation energies (15.9 and 13.2 kJ/mol for leonardite and L-HA, respectively). Moreover, U(VI) equilibrium adsorption on leonardite was better depicted with the Freundlich model (R2 > 0.970), suggesting heterogeneous U(VI) adsorption onto the leonardite surface. However, U(VI) adsorption onto L-HA followed the Langmuir equation (R2 > 0.971), which implied the dominant role of monolayer adsorption in controlling the adsorption process. Thermodynamic parameters, including standard entropy change (ΔS0 > 0), Gibbs free energy (ΔG0 < 0), and standard enthalpy change (ΔH0 > 0), suggested a spontaneous and endothermal adsorption process. In addition, ionic species negatively affected U(VI) adsorption by leonardite and L-HA.
Collapse
Affiliation(s)
- Fande Meng
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, Anhui 233100, China
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Qiuxiang Huang
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, Anhui 233100, China
| | - Steven L Larson
- U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Rd, Vicksburg, Mississippi 39180, United States
| | - Fengxiang X Han
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
10
|
Punia A, Bharti R, Kumar P. Hydrogeochemical Processes Governing Uranium Mobility: Inferences from the Anthropogenically Disturbed, Semi-arid Region of India. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 81:386-396. [PMID: 34347119 DOI: 10.1007/s00244-021-00879-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Khetri Copper Belt, Rajasthan, is anthropogenically active and geologically belongs to the Delhi super-group. A study was designed to understand the geochemical processes controlling the elemental mobility in the groundwater. Sampling sites were divided into three zones, i.e. copper, quartzite and granite mine zones depending on the type of mineral excavated. A total of 32 representative groundwater samples were collected and analysed for heavy metals and radionuclide (U) using ICP-MS. A maximum U concentration (average 87 µgL-1) is observed in the quartzite mine zone, and minimum (average 13 µgL-1) is found in the copper mine zone samples. A high concentration of U (maximum of 430 µgL-1) in groundwater is attributed to mineral dissolution due to geogenic and anthropogenic activities. Despite the presence of Jaspura and Gothra granitoid in the copper mine zone, the abundance of U is low suggesting the scavenging of U by sulphides or iron oxides. Additionally, at the confluence of two geological groups, Fe concentration is found high with a low concentration of U which further confirms scavenging of U. It is evident from the results that in the absence of iron-bearing sulphides, U concentration in groundwater would be very high compared to the current concentration. It also indicates low concentration of U in the copper mine zone is due to dissolution of Fe sulphide-rich waste. The present study recommends further research to understand the feasibility of mining waste for the removal of U contamination from groundwater.
Collapse
Affiliation(s)
- Anita Punia
- Department of Civil Engineering, Indian Institute of Technology, Guwahati, India.
| | - Rishikesh Bharti
- Department of Civil Engineering, Indian Institute of Technology, Guwahati, India.
| | - Pankaj Kumar
- Inter-University Accelerator Centre (IUAC), New Delhi, India
| |
Collapse
|