1
|
Priyadarshini A, Dash JR. Heavy Metal Residues in Raw Cow Milk Collected from Three Major Cities of Odisha, India. Biol Trace Elem Res 2025:10.1007/s12011-025-04575-4. [PMID: 40102355 DOI: 10.1007/s12011-025-04575-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Environmental pollution, particularly that caused by heavy metals, is a significant global concern in the current period of globalisation and possess a substantial risk to human and animal health through food chain. There have also been reports of heavy metal contamination of cattle and buffalo milk from various parts of India, including Tamilnadu, the Mumbai suburbs, and Northern Gujarat. However, no research has been done to determine whether cow milk from the study area in the state of Odisha contains heavy metal residues. Residue of heavy metals (arsenic, lead, cadmium, mercury and cobalt) in raw cow milk samples collected from three major cities of Odisha was studied. Arsenic was not detected in any of the milk samples. In the milk samples from Bhubaneswar, lead was detected higher than the permissible limit recommended by Codex standard and FSSAI, cadmium was detected close to the permissible limit recommended by Codex standard but below the limit recommended by FSSAI, cobalt and mercury were detected below the permissible limit recommended by Codex standard and FSSAI. In Cuttack and Puri, lead was detected close to the recommended permissible limit but other metals (viz. cadmium, cobalt and mercury) were below the recommended permissible limit. Among the three cities, heavy metals were detected highest in the milk samples from Bhubaneswar than Cuttack and Puri. Three of Odisha's largest cities-Bhubaneswar, Cuttack, and Puri-are rapidly becoming more urbanized and industrialized, with populations and automobiles increasing. This might contaminate water and soil, which would then poison the food chain. This could be the primary way that heavy metals enter the animal body, which would then contaminate milk and animal food. The Pb and Cd residues detected in cow milk from the study areas were alarming. It suggested that the cows reared by Goalas in these study areas do not produce environmentally safe and suitable milk for human consumption.
Collapse
Affiliation(s)
- Anisha Priyadarshini
- Department of Veterinary Pharmacology and Toxicology, CVSc and AH, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| | - Jeevan Ranjan Dash
- Department of Veterinary Pharmacology and Toxicology, CVSc and AH, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India.
| |
Collapse
|
2
|
Ljubojević Pelić D, Popov N, Gardić E, Vidaković Knežević S, Žekić M, Gajdov V, Živkov Baloš M. Seasonal Variation in Essential Minerals, Trace Elements, and Potentially Toxic Elements in Donkey Milk from Banat and Balkan Breeds in the Zasavica Nature Reserve. Animals (Basel) 2025; 15:791. [PMID: 40150320 PMCID: PMC11939533 DOI: 10.3390/ani15060791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
Donkey milk is highly valued for its unique nutritional characteristics and hypoallergenic properties. However, limited data exist on its mineral composition and potential contaminants. This study aimed to comprehensively analyze the concentration of selected essential and toxic elements from Banat and Balkan donkey breeds reared under extensive organic conditions (free-range) across different seasons. The focus was on determining the concentrations of essential minerals and trace elements (Ca, P, Na, K, Mg, Zn, Cu, Se), and potentially toxic elements (As, Pb, Hg, Cd). Samples were collected monthly over one year, with nine pooled samples per season. Mineral elements were determined using a validated ICP-MS method. The mineral content ranges (mg/kg) were Ca (588.9-744.4), P (355.6-533.3), Mg (71.1-84.4), K (444.4-711.1), Na (355.6-444.4), with trace elements (mg/kg) including Zn (2.06-2.21), Cu (0.31-0.68), and Se (0.02-0.05). Potentially toxic elements were within safe limits, with the exception that Pb levels exceeded permissible limits in two samples. Statistically significant seasonal variations were observed for Ca, P, K, As, and Cu. Donkey milk from both breeds was rich in minerals and low in contaminants. This research highlights the need for further studies on the nutritional and safety aspects of donkey milk.
Collapse
Affiliation(s)
- Dragana Ljubojević Pelić
- Scientific Veterinary Institute “Novi Sad”, 21000 Novi Sad, Serbia; (N.P.); (E.G.); (S.V.K.); (M.Ž.); (V.G.)
| | | | | | | | | | | | - Milica Živkov Baloš
- Scientific Veterinary Institute “Novi Sad”, 21000 Novi Sad, Serbia; (N.P.); (E.G.); (S.V.K.); (M.Ž.); (V.G.)
| |
Collapse
|
3
|
Sharma A, Gupta S, Shrivas K, Chakradhari S, Pervez S, Deb MK. Heavy metal contamination in cow and buffalo milk from industrial and residential areas of raipur, India: A health risk assessment. Food Chem Toxicol 2025; 196:115178. [PMID: 39645020 DOI: 10.1016/j.fct.2024.115178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
This study investigated heavy metal contamination in cow and buffalo milk from industrial and residential areas of Raipur, India, assessing health risks and identifying contamination sources. Milk samples were collected from seven sites and analyzed for Zn, Ni, Fe, Mn, Cu, Cr, Cd, Pb, and As using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and atomic absorption spectroscopy (AAS). Results revealed higher contamination in industrial areas, with fodder being a primary source for Zn, Ni, Fe, and Cu, while water contributed to Mn, Cr, and As. Estimated daily intake (EDI), target hazard quotient (THQ), and carcinogenic risk (CR) determination highlighted non-carcinogenic risks for Ni, Fe, and Pb, and significant carcinogenic risks for Pb and As. The concentrations of Zn, Ni, Fe, Mn, Cu, Cr, Cd, Pb, and As in milk samples were ranged from 1.708 to 3.243, 0.078-0.295, 1.480-4.450, 0.119-0.472, 0.032-0.461, 0.007-0.040, 0.006-0.032, 0.040-0.204, and 0.006-0.023 mg/kg, respectively. The principal component analysis (PCA) identified fodder as a source of Zn, Ni, Fe, Cu, and Cd, while water contributed to Mn, Cr, and As. This study needed monitoring and regulation to mitigate health risks from contaminated milk in Raipur.
Collapse
Affiliation(s)
- Anuradha Sharma
- Department of Zoology, Govt. Nagarjuna P.G. College of Science, Raipur, 492010, CG, India
| | - Shashi Gupta
- Department of Zoology, Govt. Nagarjuna P.G. College of Science, Raipur, 492010, CG, India.
| | - Kamlesh Shrivas
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, CG, India.
| | - Suryakant Chakradhari
- Research and Development, The Waxpol Industries Ltd. Urla, Raipur, 492003, CG, India
| | - Shamsh Pervez
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, CG, India
| | - Manas Kanti Deb
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, CG, India
| |
Collapse
|
4
|
Fereja WM, Muda C, Labena AA. Assessment of heavy metal levels in cow's milk and associated health risks in the vicinity of the MIDROC Laga Dambi gold mine in Ethiopia. J Trace Elem Med Biol 2024; 86:127529. [PMID: 39303547 DOI: 10.1016/j.jtemb.2024.127529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/31/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
INTRODUCTION The possible health effects of consuming milk contaminated with heavy metals have been the subject of considerable concern worldwide. OBJECTIVE The aim of this study was to determine the level of heavy metals in cow's milk in the vicinity of MIDROC Laga Dambi gold mine and to assess their possible health risks for consumers. METHODS Nine composite samples were formed by aggregating 243 milk samples obtained in triplicates from 81 domestic milk-producing households. Inductively coupled plasma-optical emission spectroscopy was used to measure the amount of heavy metals after samples digestion under optimal conditions. RESULTS The heavy metals concentrations obtained were 13.913-7.843, 9.505-3.589, 5.972-3.147, 2.288-1.851, 0.403-0.143, 0.436-0.128, 0.26-0.153, 0.143-0.048, 0.160-ND (not detected), and 0.140-ND mgkg-1for Fe, Zn, Pb, Mn, Hg, Cr, Cd, As, Ni, and Co, respectively. Of the heavy metals identified, the levels of Pb, As, Cd, and Hg exceeded the recommended value. Based on the estimated daily intake (EDI), the total health quotient (THQ) is higher than unity even for Pb alone. It has been found that the consumption of cow milk increases the health index (HI) by 2.972. Ninety five percent of the HI in the study area was explained by the toxic heavy metals (Pb, Cd, As, and Hg) in the cow milk, which were found to be beyond the safe limit. CONCLUSION This demonstrates that there is a health risk to the population who consume cow's milk sourced from the vicinity of MIDROC Laga Dambi gold mine. To safeguard the public's health, we advised strict monitoring and legislative control for the safety of cow's milk originating from study area.
Collapse
Affiliation(s)
- Workineh Mengesha Fereja
- Department of Chemistry, College of Natural and Computational Sciences, Energy and Environment Research Center, Dilla University, 419, Dilla, Ethiopia.
| | - Chuluke Muda
- Department of Chemistry, College of Natural and Computational Sciences, Dilla University, 419, Dilla, Ethiopia.
| | - Abraham Alemayehu Labena
- Department of Chemistry, College of Natural and Computational Sciences, Dilla University, 419, Dilla, Ethiopia.
| |
Collapse
|
5
|
Tola AT, Geleta GS, Feyissa GR. Assessment of essential and potentially toxic metals in raw cow milk from Mukaturi town, Oromia Regional State, Ethiopia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171987. [PMID: 38537815 DOI: 10.1016/j.scitotenv.2024.171987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/14/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Cow milk is a complete and highly nutritious source of food for humans. However, the quality of milk products has become a significant health concern for consumers, particularly infants and children, in many developing nations, including Ethiopia. The objective of this study was to determine the heavy metal levels in raw cow milk collected from dairy producers and collection centers in Mukaturi town, Ethiopia. Sixty raw cow milk samples (40.0 milk samples from dairy farms and 20.0 milk samples from collection centers) were randomly collected and digested using a mixture of nitric acid (HNO3), hydrogen peroxide (H2O2) and perchloric acid (HClO4) on a hot plate. The amounts of heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in the milk samples were determined using inductively coupled plasma atomic emission spectroscopy (ICP-OES). The findings showed that the average concentrations of Pb (2.31 ± 0.127), Fe (0.566 ± 0.130), Ni (0.210 ± 0.0189), Cd (0.0372 ± 0.0230), Cr (0.369 ± 0.0162), and Co (0.225 ± 0.0150) in mgL-1 were higher than the allowable limits. This could pose a health risk to the public. However, the concentrations of Mn (0.044 ± 0.0369), Cu (0.195 ± 0.0450) and Zn (2.90 ± 0.0570) in mg L-1 were lower than or within the recommended limits and cannot pose any threat to consumers. The validity of the digestion processes was checked by the recovery test. The percentage recoveries of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were found to be in the range of 80.7-122 %, which is within the acceptable range. Therefore, special attention should be given to the continuous monitoring of heavy metal levels in raw milk among dairy producers and collection centers to minimize economic losses and the risk to consumer safety.
Collapse
Affiliation(s)
- Abreham Tadese Tola
- Salale University, College of Natural Sciences, Department of Chemistry, P.O. Box 245, Oromia, Fiche, Ethiopia
| | - Girma Salale Geleta
- Salale University, College of Natural Sciences, Department of Chemistry, P.O. Box 245, Oromia, Fiche, Ethiopia.
| | - Girma Regassa Feyissa
- Salale University, College of Natural Sciences, Department of Chemistry, P.O. Box 245, Oromia, Fiche, Ethiopia
| |
Collapse
|
6
|
Velayudhan SM, Alam S, Yin T, Brügemann K, Buerkert A, Sejian V, Bhatta R, Schlecht E, König S. Selective Sweeps in Cattle Genomes in Response to the Influence of Urbanization and Environmental Contamination. Genes (Basel) 2023; 14:2083. [PMID: 38003026 PMCID: PMC10671461 DOI: 10.3390/genes14112083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
A genomic study was conducted to identify the effects of urbanization and environmental contaminants with heavy metals on selection footprints in dairy cattle populations reared in the megacity of Bengaluru, South India. Dairy cattle reared along the rural-urban interface of Bengaluru with/without access to roughage from public lakeshores were selected. The genotyped animals were subjected to the cross-population-extended haplotype homozygosity (XP-EHH) methodology to infer selection sweeps caused by urbanization (rural, mixed, and urban) and environmental contamination with cadmium and lead. We postulated that social-ecological challenges contribute to mechanisms of natural selection. A number of selection sweeps were identified when comparing the genomes of cattle located in rural, mixed, or urban regions. The largest effects were identified on BTA21, displaying pronounced peaks for selection sweeps for all three urbanization levels (urban_vs_rural, urban_vs_mixed and rural_vs_mixed). Selection sweeps are located in chromosomal segments in close proximity to the genes lrand rab interactor 3 (RIN3), solute carrier family 24 member 4 (SLC24A4), tetraspanin 3 (TSPAN3), and proline-serine-threonine phosphatase interacting protein 1 (PSTPIP1). Functional enrichment analyses of the selection sweeps for all three comparisons revealed a number of gene ontology (GO) and KEGG terms, which were associated with reproduction, metabolism, and cell signaling-related functional mechanisms. Likewise, a number of the chromosomal segments under selection were observed when creating cattle groups according to cadmium and lead contaminations. Stronger and more intense positive selection sweeps were observed for the cadmium contaminated group, i.e., signals of selection on BTA 16 and BTA19 in close proximity to genes regulating the somatotropic axis (growth factor receptor bound protein 2 (GRB2) and cell ion exchange (chloride voltage-gated channel 6 (CLCN6)). A few novel, so far uncharacterized genes, mostly with effects on immune physiology, were identified. The lead contaminated group revealed sweeps which were annotated with genes involved in carcass traits (TNNC2, SLC12A5, and GABRA4), milk yield (HTR1D, SLCO3A1, TEK, and OPCML), reproduction (GABRA4), hypoxia/stress response (OPRD1 and KDR), cell adhesion (PCDHGC3), inflammatory response (ADORA2A), and immune defense mechanism (ALCAM). Thus, the findings from this study provide a deeper insight into the genomic regions under selection under the effects of urbanization and environmental contamination.
Collapse
Affiliation(s)
| | - Shahin Alam
- Animal Husbandry in the Tropics and Subtropics, University of Kassel and Georg-August-Universität Göttingen, Steinstr. 19, 37213 Witzenhausen, Germany
| | - Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Ludwigstraße 21 b, 35390 Giessen, Germany
| | - Kerstin Brügemann
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Ludwigstraße 21 b, 35390 Giessen, Germany
| | - Andreas Buerkert
- Organic Plant Production and Agroecosystems Research in the Tropics and Subtropics, University of Kassel, 37213 Witzenhausen, Germany
| | - Veerasamy Sejian
- National Institute of Animal Nutrition and Physiology (NIANP), Hosur Rd, Chennakeshava Nagar, Adugodi, Bengaluru 560030, India
| | - Raghavendra Bhatta
- National Institute of Animal Nutrition and Physiology (NIANP), Hosur Rd, Chennakeshava Nagar, Adugodi, Bengaluru 560030, India
| | - Eva Schlecht
- Animal Husbandry in the Tropics and Subtropics, University of Kassel and Georg-August-Universität Göttingen, Steinstr. 19, 37213 Witzenhausen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Ludwigstraße 21 b, 35390 Giessen, Germany
| |
Collapse
|
7
|
Alam MS, Velayudhan SM, Dey DK, Adilieme C, Malik PK, Bhatta R, König S, Schlecht E. Urbanisation threats to dairy cattle health: Insights from Greater Bengaluru, India. Trop Anim Health Prod 2023; 55:350. [PMID: 37796345 PMCID: PMC10556117 DOI: 10.1007/s11250-023-03737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023]
Abstract
Complex urbanisation dynamics, on the one hand, create a high demand for animal products, and on the other hand put enormous pressure on arable land with negative consequences for animal feed production. To explore the impact of accelerated urbanisation on dairy cattle health in urban farming systems, 151 farmers from different parts of the Greater Bengaluru metropolitan area in India were individually interviewed on aspects addressing cattle management and cattle health. In addition, 97 samples of forages from the shores of 10 different lakes, and vegetable leftovers used in cattle feeding were collected for nutritional analysis. Along with the use of cultivated forages, crop residues, and concentrate feed, 47% and 77% of the farmers occasionally or frequently used lake fodder and food leftovers, respectively. Nutritionally, lake fodder corresponded to high-quality pasture vegetation, but 43% of the samples contained toxic heavy metals such as arsenic, cadmium, chromium, and lead above official critical threshold levels. Therefore, lake fodder may affect cows' health if consumed regularly; however, heavy metal concentrations varied between lakes (P < 0.05), but not between fodder types (P > 0.05). Although 60% of the interviewed farmers believed that their cows were in good health, logit model applications revealed that insufficient drinking water supply and the use of lake fodder negatively impacted cattle health (P < 0.05). While it remains unknown if regular feeding of lake fodder results in heavy metal accumulation in animal products, farmers and farm advisors must address this and other urbanization-related challenges to protect cattle health.
Collapse
Affiliation(s)
- Md Shahin Alam
- Animal Husbandry in the Tropics and Subtropics, University of Kassel and Georg-August-Universität Göttingen, Steinstraße 19, 37213, Witzenhausen, Germany
| | | | - Debpriyo Kumar Dey
- ICAR-National Institute of Animal Nutrition and Physiology (NIANP), Hosur Road, Adugodi, Bengaluru, Karnataka, 560030, India
| | - Chiamaka Adilieme
- Animal Husbandry in the Tropics and Subtropics, University of Kassel and Georg-August-Universität Göttingen, Steinstraße 19, 37213, Witzenhausen, Germany
| | - Pradeep Kumar Malik
- ICAR-National Institute of Animal Nutrition and Physiology (NIANP), Hosur Road, Adugodi, Bengaluru, Karnataka, 560030, India
| | - Raghavendra Bhatta
- ICAR-National Institute of Animal Nutrition and Physiology (NIANP), Hosur Road, Adugodi, Bengaluru, Karnataka, 560030, India
| | - Sven König
- Institute of Animal Breeding and Genetics, University of Gießen, Ludwigstraße 21B, 35390, Gießen, Germany
| | - Eva Schlecht
- Animal Husbandry in the Tropics and Subtropics, University of Kassel and Georg-August-Universität Göttingen, Steinstraße 19, 37213, Witzenhausen, Germany.
| |
Collapse
|
8
|
Forcada S, Menéndez Miranda M, Stevens F, Royo LJ, Fernández Pierna JA, Baeten V, Soldado A. Industrial impact on sustainable dairy farms: Essential elements, hazardous metals and polycyclic aromatic hydrocarbons in forage and cow's milk. Heliyon 2023; 9:e20977. [PMID: 37886788 PMCID: PMC10597811 DOI: 10.1016/j.heliyon.2023.e20977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Sustainable dairy farms are characterised by the self-production of forage for animal feed. These farms are sometimes located near industrial areas, entailing a risk of food chain contamination with hazardous metals and polycyclic aromatic hydrocarbons (PAHs). Accordingly, evaluating the impact of pollution on forage and milk is of great interest. In this study, the effects of industrial factors on sustainable forage from 43 dairy farms and possible correlations between inorganic elements and PAHs were studied. Spearman's correlation and principal component analysis (PCA) were performed for the forage and milk. Most of the inorganic elements in the forage were below the maximum residual limits for cadmium (Cd) and lead (Pb), established in EU 2013/1275 and EU 2019/1869, respectively. However, arsenic (As) and mercury (Hg) levels were above their respective limits in the forage (EU 2019/1869). No milk samples exceeded the maximum residual limits for Pb (EU 488/2014) or Cd (EU 1881/2006) in dairy products. Heavy-weight PAHs (HW-PAHs, four or more aromatic rings) were detected in forage but not in milk. In the forage samples, HW-PAHs were positively correlated with Zn and Cd. In addition, some hazardous metals (chromium (Cr), iron (Fe), As, Hg, and Pb) also were positively correlated with Zn and Cd. Interestingly, no correlations were found between forage pollutants and milk, suggesting that these pollutants have a low transfer rate to milk. The PCA results highlighted the predominant contribution of PAHs to the global variance in forage samples collected at different distances from industrial areas. In milk, the contributions of hazardous metals and PAHs were more balanced than in forages. Finally, when distances to potential pollution sources were included in the PCA of forage samples, a negative correlation was observed between the former and the concentrations of HW-PAHs, Cd, and Zn, suggesting that thermal power plants and steel factory emissions were the main sources of polluting forage in this area.
Collapse
Affiliation(s)
- Sergio Forcada
- Regional Service for Agrofood Research and Development (SERIDA), PO Box 13, 33300, Asturias, Spain
| | - Mario Menéndez Miranda
- Regional Service for Agrofood Research and Development (SERIDA), PO Box 13, 33300, Asturias, Spain
| | - François Stevens
- Department of Knowledge and Valorization of Agricultural Products, Walloon Agricultural Research Centre (CRA-W), Chaussée de Namur 24, 5030, Gembloux, Belgium
| | - Luis J. Royo
- Regional Service for Agrofood Research and Development (SERIDA), PO Box 13, 33300, Asturias, Spain
| | - Juan Antonio Fernández Pierna
- Department of Knowledge and Valorization of Agricultural Products, Walloon Agricultural Research Centre (CRA-W), Chaussée de Namur 24, 5030, Gembloux, Belgium
| | - Vincent Baeten
- Department of Knowledge and Valorization of Agricultural Products, Walloon Agricultural Research Centre (CRA-W), Chaussée de Namur 24, 5030, Gembloux, Belgium
| | - Ana Soldado
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Asturias, Spain
| |
Collapse
|
9
|
de Oliveira Filho EF, López-Alonso M, Vieira Marcolino G, Castro Soares P, Herrero-Latorre C, Lopes de Mendonça C, de Azevedo Costa N, Miranda M. Factors Affecting Toxic and Essential Trace Element Concentrations in Cow's Milk Produced in the State of Pernambuco, Brazil. Animals (Basel) 2023; 13:2465. [PMID: 37570274 PMCID: PMC10417244 DOI: 10.3390/ani13152465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The aim of this study was to provide information on the levels of toxic (Cd and Pb) and essential (Cu, Fe, and Zn) elements in cow's milk produced in the State of Pernambuco (Brazil). A total of 142 samples of raw milk were collected, and the concentrations of essential and toxic elements were determined using inductively coupled plasma-optical emission spectrometry. In almost 30% of the samples analyzed, the Pb content exceeded the maximum level established in the Brazilian legislation (0.05 mg/L). By contrast, in all the samples, the Cd content was below the maximum allowable level (0.02 mg/L). The essential trace elements Cu, Fe, and Zn were generally present at lower concentrations than reported in other studies and can be considered within the deficient range for cow's milk. Statistical and chemometric procedures were used to evaluate the main factors influencing the metal concentrations (proximity to major roads, presence of effluents, and milking method). The study findings demonstrate that the proximity of the farms to major roads influences the concentrations of Cd, Pb, and Cu and that this is the main factor explaining the Pb content of milk. In addition, the presence of effluents influenced the concentrations of Cu, while no relationship between the metal content and the milking method was observed. Thus, in accordance with the study findings, the consumption of cow's milk produced in the region can be considered a risk to public health due to the high concentrations of Pb and the low concentrations of other essential minerals such as Cu, Zn, and Fe in some of the milk samples.
Collapse
Affiliation(s)
- Emanuel Felipe de Oliveira Filho
- Department of Veterinary Medicine, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife 52171-900, Brazil; (E.F.d.O.F.); (P.C.S.)
- Department of Animal Pathology, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Marta López-Alonso
- Department of Animal Pathology, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002 Lugo, Spain;
| | | | - Pierre Castro Soares
- Department of Veterinary Medicine, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife 52171-900, Brazil; (E.F.d.O.F.); (P.C.S.)
| | - Carlos Herrero-Latorre
- Research Institute on Chemical and Biological Analysis, Analytical Chemistry, Nutrition and Bromatology Department, Faculty of Sciences, Campus Terra, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Carla Lopes de Mendonça
- Clinic of Cattle of Garanhuns/UFRPE, Campus Garanhuns, Av. Bom Pastor–Boa Vista, Garanhuns 55292-270, Brazil; (C.L.d.M.); (N.d.A.C.)
| | - Nivaldo de Azevedo Costa
- Clinic of Cattle of Garanhuns/UFRPE, Campus Garanhuns, Av. Bom Pastor–Boa Vista, Garanhuns 55292-270, Brazil; (C.L.d.M.); (N.d.A.C.)
| | - Marta Miranda
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
10
|
Kharkwal V, Bains K, Bishnoi M, Devi K. Health risk assessment of arsenic, lead and cadmium from milk consumption in Punjab, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:723. [PMID: 37225915 DOI: 10.1007/s10661-023-11256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/17/2023] [Indexed: 05/26/2023]
Abstract
Milk is an integral part of the human diet and its contamination with heavy metals may alter the health of its consumers. The study was conducted to assess the health risk associated with the heavy metals in milk samples collected from urban and rural households of Ludhiana and Bathinda districts of Punjab, India. One hundred and fifty milk samples were analyzed for heavy metals i.e. arsenic, cadmium, lead and mercury using Inductively Coupled Plasma Mass Spectrometry ICP-MS. The health risks, such as non-carcinogenic and carcinogenic risks from heavy metals in milk samples, were calculated for selected males and females of adults, children and elderly subjects. The results indicated that the arsenic, cadmium and lead content in milk samples were within permissible limit whereas mercury was not detected in any sample. The mean values showed that the selected urban and rural population of both districts was safe from non-carcinogenic risk associated with heavy metal content of milk. However, urban (50% males and 86% females) and rural (25% males) children of Bathinda district were at risk of cancer from arsenic and cadmium present in milk samples, respectively. It was also observed that the selected population of both districts were safe from carcinogenic risk due to the combined effects of heavy metals. It was concluded that even with a small amount of heavy metal in milk samples, the rural adults, rural male children and urban female children of Bathinda district had carcinogenic risk due to milk consumption. Hence, regular monitoring and testing of milk samples must be done as a public health measure to prevent heavy metal contamination in milk to safeguard the health of consumers.
Collapse
Affiliation(s)
- Vineeta Kharkwal
- Department of Food and Nutrition, College of Community Science, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Kiran Bains
- Department of Food and Nutrition, College of Community Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Mahendra Bishnoi
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Kirti Devi
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| |
Collapse
|
11
|
Forcada S, Menéndez-Miranda M, Boente C, Rodríguez Gallego JL, Costa-Fernández JM, Royo LJ, Soldado A. Impact of Potentially Toxic Compounds in Cow Milk: How Industrial Activities Affect Animal Primary Productions. Foods 2023; 12:foods12081718. [PMID: 37107514 PMCID: PMC10138093 DOI: 10.3390/foods12081718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs) frequently coexist in soils near industrial areas and sometimes in environmental compartments directly linked to feed (forage) and food (milk) production. However, the distribution of these pollutants along the dairy farm production chain is unclear. Here, we analyzed soil, forage, and milk samples from 16 livestock farms in Spain: several PTEs and PAHs were quantified. Farms were compared in terms of whether they were close to (<5 km) or far away from (>5 km) industrial areas. The results showed that PTEs and PAHs were enriched in the soils and forages from farms close to industrial areas, but not in the milk. In the soil, the maximum concentrations of PTEs reached 141, 46.1, 3.67, 6.11, and 138 mg kg-1 for chromium, arsenic, cadmium, mercury, and lead, respectively, while fluoranthene (172.8 µg kg-1) and benzo(b)fluoranthene (177.4 µg kg-1) were the most abundant PAHs. Principal component analysis of the soil PTEs suggested common pollution sources for iron, arsenic, and lead. In the forage, the maximum contents of chromium, arsenic, cadmium, mercury, and lead were 32.8, 7.87, 1.31, 0.47, and 7.85 mg kg-1, respectively. The PAH found in the highest concentration in the feed forage was pyrene (120 µg kg-1). In the milk, the maximum PTE levels were much lower than in the soil or the feed forages: 74.1, 16.1, 0.12, 0.28, and 2.7 µg kg-1 for chromium, arsenic, cadmium, mercury, and lead, respectively. Neither of the two milk samples exceeded the 20 µg kg-1 limit for lead set in EU 1881/2006. Pyrene was the most abundant PAH found in the milk (39.4 µg kg-1), while high molecular weight PAHs were not detected. For PTEs, the results showed that soil-forage transfer factors were higher than forage-milk ratios. Our results suggest that soils and forages around farms near industries, as well as the milk produced from those farms, have generally low levels of PTE and PAH contaminants.
Collapse
Affiliation(s)
- Sergio Forcada
- Regional Service for Agrofood Research and Development (SERIDA), P.O. Box 13, 33300 Villaviciosa, Asturias, Spain
| | - Mario Menéndez-Miranda
- Regional Service for Agrofood Research and Development (SERIDA), P.O. Box 13, 33300 Villaviciosa, Asturias, Spain
| | - Carlos Boente
- Atmospheric Pollution Laboratory, CIQSO-Center for Research in Sustainable Chemistry, Associate Unit CSIC-University of Huelva, Campus El Carmen s/n, 21071 Huelva, Huelva, Spain
| | - José Luis Rodríguez Gallego
- Environmental Biogeochemistry & Raw Materials Group and INDUROT, Campus de Mieres, University of Oviedo, C/Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Asturias, Spain
| | - José M Costa-Fernández
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006 Oviedo, Asturias, Spain
| | - Luis J Royo
- Regional Service for Agrofood Research and Development (SERIDA), P.O. Box 13, 33300 Villaviciosa, Asturias, Spain
- Department of Functional Biology, Genetics, University of Oviedo, Avda. Julián Clavería 6, 33006 Oviedo, Asturias, Spain
| | - Ana Soldado
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006 Oviedo, Asturias, Spain
| |
Collapse
|
12
|
Khan ZI, Liu W, Mubeen I, Alrefaei AF, Alharbi SN, Muhammad FG, Ejaz A, Ahmad K, Nadeem M, Shoukat J, Ashfaq A, Mahpara S, Siddique K, Ashraf MA, Memona H, Batool AI, Munir M, Malik IS, Noorka IR, Ugulu I. Cobalt availability in the soil plant and animal food chain: a study under a peri-urban environment. BRAZ J BIOL 2023; 83:e270256. [PMID: 37018800 DOI: 10.1590/1519-6984.270256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/27/2023] [Indexed: 04/07/2023] Open
Abstract
Cobalt metal is considered as an essential trace element for the animals. Present investigation was undertaken in the peri-urban area to analyze the cobalt availability in animal food chain by using different indices. Cow, buffalo and sheep samples along with forage and soil samples were collected from the three different sites of District Jhang and analyzed through atomic absorption spectrophotometer. Cobalt values differed in soil samples as 0.315-0.535 mg/kg, forages as 0.127-0.333 mg/kg and animal samples as 0.364-0.504 mg/kg. Analyzed cobalt concentration in soil, forage and animal samples was found to be deficient in concentration with respect to standard limits. Soil showed the minimum cobalt level in Z. mays while maximum concentration was examined in the forage C. decidua samples. All indices examined in this study has values lesser than 1, representing the safer limits of the cobalt concentration in these samples. Enrichment factor (0.071-0.161 mg/kg) showed the highly deficient amount of cobalt enrichment in this area. Bio-concentration factor (0.392-0.883) and pollution load index (0.035-0.059 mg/kg) values were also lesser than 1 explains that plant and soil samples are not contaminated with cobalt metal. The daily intake and health risk index ranged from 0.00019-0.00064 mg/kg/day and 0.0044-0.0150 mg/kg/day respectively. Among the animals, cobalt availability was maximum (0.0150 mg/kg/day) in the buffaloes that grazed on the C. decidua fodder. Results of this study concluded that cobalt containing fertilizers must be applied on the soil and forages. Animal feed derived from the cobalt containing supplements are supplied to the animals, to fulfill the nutritional requirements of livestock.
Collapse
Affiliation(s)
- Z I Khan
- University of Sargodha, Department of Botany, Sargodha, Pakistan
| | - W Liu
- Fuyang Normal University, Department of Biological Sciences, Fuyang, Anhui, China
| | - I Mubeen
- Zhejiang University, Institute of Biotechnology, State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Hangzhou, China
| | - A F Alrefaei
- King Saud University, College of Science, Department of Zoology, Riyadh, Saudi Arabia
| | - S N Alharbi
- Imperial College London, Department of Surgery and Cancer, London, United Kingdom
| | - F G Muhammad
- University of Sargodha, Department of Botany, Sargodha, Pakistan
| | - A Ejaz
- University of Sargodha, Department of Botany, Sargodha, Pakistan
| | - K Ahmad
- University of Sargodha, Department of Botany, Sargodha, Pakistan
| | - M Nadeem
- University of Sargodha, Institute of Food Science and Nutrition, Sargodha, Pakistan
| | - J Shoukat
- University of Sargodha, Institute of Food Science and Nutrition, Sargodha, Pakistan
| | - A Ashfaq
- University of Sargodha, Department of Botany, Sargodha, Pakistan
| | - S Mahpara
- University of Sargodha, Department of Botany, Sargodha, Pakistan
| | - K Siddique
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - M A Ashraf
- School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - H Memona
- Queen Mary College, Lahore, Pakistan
| | - A I Batool
- University of Sargodha, Department of Zoology, Sargodha, Pakistan
| | - M Munir
- University of Sargodha, Department of Botany, Sargodha, Pakistan
| | - I S Malik
- University of Sargodha, Department of Botany, Sargodha, Pakistan
| | - I R Noorka
- University of Sargodha, College of Agriculture, Sargodha, Pakistan
| | - I Ugulu
- Usak University, Faculty of Education, Usak, Turkey
| |
Collapse
|
13
|
Mohammadpour A, Emadi Z, Keshtkar M, Mohammadi L, Motamed-Jahromi M, Samaei MR, Zarei AA, Berizi E, Mousavi Khaneghah A. Assessment of potentially toxic elements (PTEs) in fruits from Iranian market (Shiraz): A health risk assessment study. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
González-Morales M, Fernández-Pozo L, Rodríguez-González MÁ. Threats of metal mining on ecosystem services. Conservation proposals. ENVIRONMENTAL RESEARCH 2022; 214:114036. [PMID: 35995221 DOI: 10.1016/j.envres.2022.114036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
We have studied, in a protected area with intense hunting activity, the consequences of the abandonment of facilities and tailings of a metal mine. The area studied has the peculiarity of having a steep slope and containing a water reservoir for irrigation and human consumption. Soil, sludge, vegetation, and water samples were analyzed, in which many metal(loid)s exceeded the generic reference levels (NGR) established for the health of the ecosystem. The concentration of Tl in the soils ranged between 300 and 700 mg kg-1, because of continuous diffuse pollution, produced both by the alteration of sphalerite and the combustion products of a coal-fired power plant near the study area. Soil concentrations of Pb (250-1500 mg kg-1) and Zn (350-700 mg kg-1) from the tailings indicate extreme contamination in the areas adjacent to them and in the reservoir. The contamination affects the water quality of the stream running through the study area, with 64 μg L-1 of Tl and 9.1 μg L-1 of Zn having been detected in the reservoir water. To ensure protection of human and ecosystem health, the following is proposed: (i) soil stabilization for erosion control and reduction of diffuse pollution, (ii) monitoring of soils for agricultural use and water quality, and (iii) study the impact of contamination on wildlife, both hunting and non-game species. Given their capacity to accumulate heavy metals it is proposed to use Cistus ladanifer, Lavandula stoechas and Retama sphaerocarpa as phytoremedial species. The novelty of this research lies in two considerations. First, a proposal for the analysis of environmental compartments as an interconnected and interdependent network in terms of impacts and their repercussions on the ES. Secondly, the application of the model DPSIR, which assumes that anthropogenic activities have an impact on the environment.
Collapse
Affiliation(s)
- María González-Morales
- Environmental Resources Analysis (ARAM) Research Group, University of Extremadura, Avda. de Elvas s/n, Badajoz, Spain
| | - Luis Fernández-Pozo
- Environmental Resources Analysis (ARAM) Research Group, University of Extremadura, Avda. de Elvas s/n, Badajoz, Spain.
| | - Mª Ángeles Rodríguez-González
- Environmental Resources Analysis (ARAM) Research Group, University of Extremadura, Avda. de Elvas s/n, Badajoz, Spain
| |
Collapse
|
15
|
Feed Safety and the Development of Poultry Intestinal Microbiota. Animals (Basel) 2022; 12:ani12202890. [PMID: 36290275 PMCID: PMC9598862 DOI: 10.3390/ani12202890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Intensive gut colonisation of animals starts immediately after birth or hatch. Oral route of colonisation, and consequently the first feed, plays a significant role in the continual defining of the intestinal microbial community. The feed can influence colonisation in two ways: providing the microbial inoculum and providing the nutritional requirements that suit a specific type of microbes. In combination with environmental factors, feed shapes animal’s future health and performance from the first day of life. The objective of this review was to investigate feed safety aspects of animal nutrition from the gut colonisation aspect. Abstract The first feed offered to young chicks is likely the most important meal in their life. The complex gut colonisation process is determined with early exposure and during the first days of life before the microbial community is formed. Therefore, providing access to high-quality feed and an environment enriched in the beneficial and deprived of pathogenic microorganisms during this period is critical. Feed often carries a complex microbial community that can contain major poultry pathogens and a range of chemical contaminants such as heavy metals, mycotoxins, pesticides and herbicides, which, although present in minute amounts, can have a profound effect on the development of the microbial community and have a permanent effect on bird’s overall health and performance. The magnitude of their interference with gut colonisation in livestock is yet to be determined. Here, we present the animal feed quality issues that can significantly influence the microbial community development, thus severely affecting the bird’s health and performance.
Collapse
|
16
|
Marquès M, Correig E, Capdevila E, Gargallo E, González N, Nadal M, Domingo JL. Essential and Non-essential Trace Elements in Milks and Plant-Based Drinks. Biol Trace Elem Res 2022; 200:4524-4533. [PMID: 34792758 PMCID: PMC9439980 DOI: 10.1007/s12011-021-03021-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022]
Abstract
Although milk and plant-based drinks are widely consumed foodstuffs with high nutritional value, their consumption may also mean intake of non-essential/toxic elements becoming a risk for human health. This study was aimed at determining the concentrations of essential (Ca, Co, K, Mg, Mn, Na, Ni and P) and non-essential/toxic (Hg, Pb, U and V) elements in milks (cow and goat), plant-based drinks (soy, almond, rice and oat) and infant formulas from organic and conventional production systems. Lactose-free, fresh and ultra-high-temperature (UHT) milks were also included. Chemical analyses were performed by means of inductively coupled plasma-mass spectrometry (ICP-MS). The content of the elements hereby assessed did not depend on the production system and the presence of lactose. However, significant differences were found in the concentrations of multiple elements when comparing sterilization methods, source (animal vs. plant-based) and animal species. Non-essential elements were not detected in milks and plant-based drinks, excepting Pb, which was detected in three samples. While the consumption of goat milk is recommended, considering the global intake of essential elements and the absence of non-essential elements, further studies should be conducted to confirm the absence of non-target toxic elements at very low trace levels. On the other hand, the best plant-based drinks are those made up with almonds (intake of Ca) and soy (K and Mg). The current results should be useful to help the population to balance the benefits and risks from milks and plant-based drinks consumption, as well as to adapt their dietary habits.
Collapse
Affiliation(s)
- Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, IISPV, Sant Llorenç 21, 43201, Reus, Catalonia, Spain.
| | - Eudald Correig
- Department of Biostatistics, School of Medicine, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Esther Capdevila
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, IISPV, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Eva Gargallo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, IISPV, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Neus González
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, IISPV, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, IISPV, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, IISPV, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| |
Collapse
|
17
|
Non-carcinogenic risk assessment of cadmium and lead in raw milk from dairy production farms in Iran, using Monte Carlo Simulation approach. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
18
|
Sharifi S, Sohrabvandi S, Mofid V, Javanmardi F, Khanniri E, Mortazavian AM. The assessment of lead concentration in raw milk collected from some major dairy farms in Iran and evaluation of associated health risk. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:181-186. [PMID: 35669832 PMCID: PMC9163241 DOI: 10.1007/s40201-021-00765-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/29/2021] [Indexed: 06/15/2023]
Abstract
Milk is one of the most consumed sources among people, especially children. hence, its contamination with heavy metals can pose a serious risk to children. Therefore, this study aimed to measure the lead concentration as one of the most dangerous heavy metals in the raw milk of several major animal husbandries in Tehran province from Iran. A total of 57 raw milk samples were collected from different regions of Tehran province. The lead contents were measured using a graphite furnace atomic absorption spectrometer. To evaluate the risk of the samples and hazard quotient (HQ) were calculated. The results showed that HQ for all samples was lower than 1 which was found within the acceptable level. Because the absorption of Pb is higher in children and this metal has a cumulative property in the body, even its small weekly intake can be dangerous in long-term consumption.
Collapse
Affiliation(s)
- Shahnaz Sharifi
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Sohrabvandi
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Qods Town (The West), Shahid Farahzadi Blvd, Shahid Hafezi St, Tehran, 1981619573 Iran
| | - Vahid Mofid
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Qods Town (The West), Shahid Farahzadi Blvd, Shahid Hafezi St, Tehran, 1981619573 Iran
| | - Fardin Javanmardi
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Qods Town (The West), Shahid Farahzadi Blvd, Shahid Hafezi St, Tehran, 1981619573 Iran
| | - Elham Khanniri
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Qods Town (The West), Shahid Farahzadi Blvd, Shahid Hafezi St, Tehran, 1981619573 Iran
| | - Amir Mohammad Mortazavian
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Qods Town (The West), Shahid Farahzadi Blvd, Shahid Hafezi St, Tehran, 1981619573 Iran
| |
Collapse
|
19
|
Risk assessment of potentially toxic trace elements via consumption of dairy products sold in the city of Yerevan, Armenia. Food Chem Toxicol 2022; 163:112922. [PMID: 35304181 DOI: 10.1016/j.fct.2022.112922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/07/2022] [Accepted: 03/12/2022] [Indexed: 02/07/2023]
Abstract
The study aimed to investigate the potentially toxic trace elements (PTEs) Pb, Cd, Hg, Mo, and Cu in dairy products sold in Yerevan's markets and to assess the related exposure and possible health risks among the adult population residing in the capital city of Armenia, Yerevan. The PTEs contents were determined in widely consumed dairy products (pasteurized milk, sour cream, matsoun and cheese from cow milk) using graphite furnace atomic absorption spectrometry. PTE contents were in the range of 7.90E-04 (Pb in pasteurized milk) to 6.75E-01 (Cu in cheese) mg/kg. Food consumption was assessed by the 24-h dietary recall method. The PTE daily intakes and margin of exposure (MOE) were calculated by the deterministic approach. The results indicated potential health concerns for the contribution of dairy products to the overall dietary intake of Pb and Cd. MOEs of Pb and Cd (8.71 and 8.80, respectively) estimated for high consumers of cheese (90 g/day and more) were lower than 10. The pilot data set provides the first comprehensive appraisal on the dairy products contamination by PTEs in the Caucasus region. The results point out further attention to sources of Pb and Cd in Armenian dairy products, including environment and farm characteristics.
Collapse
|
20
|
Bilandžić N, Čalopek B, Sedak M, Đokić M, Gajger IT, Murati T, Kmetič I. Essential and potentially toxic elements in raw milk from different geographical regions of Croatia and their health risk assessment in the adult population. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Jiang S, Wang F, Li Q, Sun H, Wang H, Yao Z. Environment and food safety: a novel integrative review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54511-54530. [PMID: 34431060 PMCID: PMC8384557 DOI: 10.1007/s11356-021-16069-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/16/2021] [Indexed: 04/12/2023]
Abstract
Environment protection and food safety are two critical issues in the world. In this review, a novel approach which integrates statistical study and subjective discussion was adopted to review recent advances on environment and food safety. Firstly, a scientometric-based statistical study was conducted based on 4904 publications collected from the Web of Science Core Collection database. It was found that the research on environment and food safety was growing steadily from 2001 to 2020. Interestingly, the statistical analysis of most-cited papers, titles, abstracts, keywords, and research areas revealed that the research on environment and food safety was diverse and multidisciplinary. In addition to the scientometric study, strategies to protect environment and ensure food safety were critically discussed, followed by a discussion on the emerging research topics, including emerging contaminates (e.g., microplastics), rapid detection of contaminants (e.g., biosensors), and environment friendly food packaging materials (e.g., biodegradable polymers). Finally, current challenges and future research directions were proposed.
Collapse
Affiliation(s)
- Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Qirun Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Haishu Sun
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huijiao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|