1
|
Yakovleva EV, Deneva SV, Shamrikova EV, Gabov DN, Dubrovskiy YA. Polycyclic aromatic compounds in marsh and watershed soils of the Barents Sea coastline. MARINE POLLUTION BULLETIN 2025; 216:117979. [PMID: 40250099 DOI: 10.1016/j.marpolbul.2025.117979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/20/2025]
Abstract
We studied the PAH profiles in the soils of the marsh areas along the Barents Sea coast and found that the PAH content in the study area is low and corresponds to background levels. Peat soils contained more PAHs than organomineral soils, which is due to the characteristics of their historical formation. PAHs in soils along the Barents Sea coast are of petrogenic origin. The main sources of PAHs in marsh soils are guano, macrophytobenthos and plastic waste. The soils of the water catchment areas were of more natural pedogenic origin. The composition of PAHs in soils of the low and middle marshes is significantly influenced by sea tides bringing organic matter. The PAH composition of the high marshes and areas at the boundaries of the watersheds in the ecotone strip is determined by the composition of the vegetation and the presence of peat formation. Cluster analysis data show that soil type has a greater influence on PAH composition than proximity to the sea. The accumulation and migration of PAHs in soil profiles of organomineral soils is influenced by the salinity and granulometric composition of the soils and, to a lesser extent, by the organic carbon and nitrogen content. In organogenic soils, the content of organic matter and the degree of decomposition of peat are the main factors influencing the composition of PAHs. Permafrost acts as a barrier to the migration of PAHs to the underlying layers. Significant accumulation of PAHs is observed at the boundary of the seasonally thawed layer (STL).
Collapse
Affiliation(s)
- Evgenia V Yakovleva
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 167982 Syktyvkar, Kommunisticheskaya str., 28, Russia.
| | - Svetlana V Deneva
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 167982 Syktyvkar, Kommunisticheskaya str., 28, Russia
| | - Elena V Shamrikova
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 167982 Syktyvkar, Kommunisticheskaya str., 28, Russia
| | - Dmitriy N Gabov
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 167982 Syktyvkar, Kommunisticheskaya str., 28, Russia
| | - Yuriy A Dubrovskiy
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 167982 Syktyvkar, Kommunisticheskaya str., 28, Russia
| |
Collapse
|
2
|
Yakovleva E, Gabov D, Shamrikova E, Korolev M, Panukov A, Zhangurov E. Patterns of PAH distribution in karst sinkhole soils (Polar Urals). ENVIRONMENTAL RESEARCH 2025; 277:121555. [PMID: 40194677 DOI: 10.1016/j.envres.2025.121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/09/2025]
Abstract
This work was the first comprehensive study of polycyclic aromatic hydrocarbons (PAHs) accumulation in soils of karst sinkholes and in background soils of the Polar Urals. Principal component analysis and cluster analysis were used to assess the distribution patterns of PAHs. PAH concentrations were measured in 53 soil samples collected from plant communities of two habitat types: dryad-green moss-lichen tundra and herb-grass meadow. We found karst processes influenced contents of PAHs, especially in the deepest sinkholes where the increased PAH contents were mainly due to surface erosion. The shifted peaks of PAH accumulation along the soil profile were found at the slopes of sinkholes. This was possibly due to more active PAH migration and stratification of soil horizons. We also identified the relationship between accumulation of PAHs and species composition of plant communities. PCA analysis showed relationships between soil PAHs, organic carbon and organic nitrogen that were explained mainly by the formation of PAHs from high molecular weight organic substances, humic acids and lignin. Paleocoals also affected the PAH contents in soils. Calculated diagnostic ratios of PAHs indicated their pedogenic origin.
Collapse
Affiliation(s)
- Evgenia Yakovleva
- Institute of Biology, Federal Research Centre Komi Science Centre of the Ural Branch of the Russian Academy of Sciences (IB FRC Komi SC UB RAS), 28 Kommunisticheskaya St., Komi Republic, Syktyvkar, 167982, Russian Federation
| | - Dmitry Gabov
- Institute of Biology, Federal Research Centre Komi Science Centre of the Ural Branch of the Russian Academy of Sciences (IB FRC Komi SC UB RAS), 28 Kommunisticheskaya St., Komi Republic, Syktyvkar, 167982, Russian Federation
| | - Elena Shamrikova
- Institute of Biology, Federal Research Centre Komi Science Centre of the Ural Branch of the Russian Academy of Sciences (IB FRC Komi SC UB RAS), 28 Kommunisticheskaya St., Komi Republic, Syktyvkar, 167982, Russian Federation.
| | - Mikhail Korolev
- Institute of Biology, Federal Research Centre Komi Science Centre of the Ural Branch of the Russian Academy of Sciences (IB FRC Komi SC UB RAS), 28 Kommunisticheskaya St., Komi Republic, Syktyvkar, 167982, Russian Federation
| | - Andrew Panukov
- Institute of Biology, Federal Research Centre Komi Science Centre of the Ural Branch of the Russian Academy of Sciences (IB FRC Komi SC UB RAS), 28 Kommunisticheskaya St., Komi Republic, Syktyvkar, 167982, Russian Federation
| | - Egor Zhangurov
- Institute of Biology, Federal Research Centre Komi Science Centre of the Ural Branch of the Russian Academy of Sciences (IB FRC Komi SC UB RAS), 28 Kommunisticheskaya St., Komi Republic, Syktyvkar, 167982, Russian Federation
| |
Collapse
|
3
|
Siddiqui MH, Bhanbhro U, Shaikh K, Ahmed S, Begum R, Shoukat S, Khokhar WA. Seasonal occurrence and ecological risk assessment of polycyclic aromatic hydrocarbons in the sediments and water in the left-bank canals of Indus River, Pakistan. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1165. [PMID: 39499380 DOI: 10.1007/s10661-024-13302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024]
Abstract
This study investigated a pressing environmental concern: the presence, distribution, sources, and ecological implications of sixteen polycyclic aromatic hydrocarbons (PAHs) in the left-bank canals of Kotri barrage-Akram, Pinyari, and Phuleli of the Indus River in Pakistan. These vital waterways, crucial for industrial, domestic, and agricultural activities, are experiencing contamination threats from anthropogenic sources, particularly PAHs. The study collected three water and two sediment samples from each canal in pre-monsoon and post-monsoon seasons. Then the EPA's liquid-liquid extraction method and gas chromatography determined the concentrations of PAHs. The findings of this study reveal alarming contamination levels, with pre-monsoon concentrations ranging from 22.256 to 836.455 ng/L in water and 1,459.941 to 43,179.243 ng/g in sediments. The post-monsoon concentrations ranged from 60.352 to 5663.058 ng/L in water and 2976.770 to 15,238.335 ng/g in sediments. The diagnostic ratios and principal component analysis (PCA) identified multiple sources of contamination, including industrial and domestic wastewater discharge, solid waste burning, vehicular emissions, biomass combustion, and petroleum residues. Furthermore, the assessment of the toxic equivalency factor (TEF) underscored the heightened carcinogenic potential of certain PAHs, notably benzo(a)pyrene and benzo(a)anthracene. Thus, the high levels of PAH contamination pose severe health risks to both human populations and aquatic ecosystems, emphasizing the urgency of addressing this issue. Stricter regulations governing industrial and domestic waste discharge, advocacy for cleaner fuel technologies, and the implementation of effective waste management practices must be initiated as crucial strategies in safeguarding the environmental integrity of the left-bank canals and the health of the surrounding communities.
Collapse
Affiliation(s)
- Mohammed Hammad Siddiqui
- U.S.-Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology, Jamshoro, 76060, Sindh, Pakistan
| | - Uzma Bhanbhro
- U.S.-Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology, Jamshoro, 76060, Sindh, Pakistan.
| | - Kaleemullah Shaikh
- Faculty of Engineering, Baluchistan University of Information Technology, Engineering, and Management Sciences (BUITEMS), Quetta, Baluchistan, Pakistan
| | - Shoaib Ahmed
- Chemical Engineering Department, Dawood University of Engineering and Technology Karachi, Sindh, 74800, Pakistan
| | - Razia Begum
- Center for Environmental Studies, PCSIR Labs Complex, Karachi, Pakistan
| | - Sohail Shoukat
- Center for Environmental Studies, PCSIR Labs Complex, Karachi, Pakistan
| | - Waheed Ali Khokhar
- Institute Environmental Engineering & Management (IEEM), Mehran University of Engineering and Technology, Jamshoro, 76060, Sindh, Pakistan
| |
Collapse
|
4
|
Alghamdi MA, Hassan SK, Shetaya WH, Al Sharif MY, Nawab J, Khoder MI. Polycyclic aromatic hydrocarbons in indoor mosques dust in Saudi Arabia: Levels, source apportionment, human health and carcinogenic risk assessment for congregators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174331. [PMID: 38945247 DOI: 10.1016/j.scitotenv.2024.174331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Mosques are important places for Muslims where they perform their prayers. The congregators are exposed to hazardous pollutants such as polycyclic aromatic hydrocarbons (PAHs) associated with dust. However, studies on PAHs exposure in religious places are scarce. Air-condition filter (ACF) dust can correspond to air quality to a certain extent, since dust particles derived from indoor and outdoor places stick to it. Therefore, the present study aimed to evaluate the 16 EPA PAHs in ACF dust from mosques to determine their levels, profiles, sources and risks. Average Σ16 PAHs concentrations were 1039, 1527, 2284 and 5208 ng/g in AC filter dust from mosques in residential (RM), suburban (SM), urban (UM) and car repair workshop (CRWM), respectively, and the differences were statistically significant (p < 0.001). Based on the molecular diagnostic PAH ratios, PAHs in mosques dust is emitted from local incomplete fuel combustion, as well as complete fossil fuels combustion sources (pyrogenic), petroleum spills, crude and fuel oil, traffic emissions, and other possible sources of industrial emissions in different functional areas. The incremental lifetime cancer risks (ILCRs) values for children and adults across the different types of mosques follow the order: CRWM > UM > SM > RM. ILCRs values for both children and adults were found in order: dermal contact > ingestion > inhalation. The cancer risk levels via ingestion for children were relatively higher than the adults. The values of cancer risk for children and adults via dermal contact and ingestion (except in RM) were categorized in the 'potentially high risk' category (> 10-4). The mean values of total cancer risks (CR) for children (5.74 × 10-3) and adults (5.07 × 10-3) in mosques also exceeded the accepted threat value (>10-4). Finally, it is recommended that regular and frequent monitoring of PAHs should be carried out in mosques to improve the quality and maintain the health of congregators around the globe.
Collapse
Affiliation(s)
- Mansour A Alghamdi
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia.
| | - Salwa K Hassan
- Air Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, El Behooth Str., Dokki, Giza 12622, Egypt
| | - Waleed H Shetaya
- Air Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, El Behooth Str., Dokki, Giza 12622, Egypt
| | - Marwan Y Al Sharif
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia
| | - Javed Nawab
- Department of Environmental Sciences, Kohat University of Science & Technology, Kohat, Pakistan
| | - Mamdouh I Khoder
- Air Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, El Behooth Str., Dokki, Giza 12622, Egypt
| |
Collapse
|
5
|
Tao L, Zhou YZ, Shen X. Seasonal variation in urinary PAH metabolite levels and associations with neonatal birth outcomes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41893-41904. [PMID: 38850391 DOI: 10.1007/s11356-024-33888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Previous studies have demonstrated that exposure to polycyclic aromatic hydrocarbons (PAHs) can affect maternal and infant health. However, the conclusions regarding the effects of seasonal PAH exposure on maternal and infant health have been inconsistent. To further elucidate this issue, this study included data from 2282 mother-infant pairs in the Zuni birth cohort. The objective was to investigate the association between maternal late-pregnancy urinary PAH metabolite concentrations and neonatal birth outcomes during the heating and non-heating seasons. The results demonstrated that PAH exposure in Zunyi was primarily dominated by 2-OHNAP and 1-OHNAP and that the concentrations of PAH metabolites were significantly higher during the heating season. Furthermore, PAH metabolite exposure was found to affect neonatal birth weight, birth length, and parity index with seasonal differences. Further dose-effect analyses revealed nonlinear relationships and seasonal differences between PAH metabolites and neonatal birth weight, birth length, and parity index. Bayesian kernel mechanism regression modeling demonstrated that the inverted U-shaped relationship between PAH metabolites and neonatal birth weight and parity index was exclusive to the heating season. Consequently, it can be posited that maternal exposure to PAH metabolites during late pregnancy exerts a detrimental influence on neonatal growth and development, which is further compounded by the use of heating fuels. This highlights the necessity to either control or alter the use of heating fuels during pregnancy.
Collapse
Affiliation(s)
- Lin Tao
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
- Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, 563000, Guizhou Province, China
| | - Yuan-Zhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
- Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, 563000, Guizhou Province, China
| | - Xubo Shen
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China.
- Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, 563000, Guizhou Province, China.
| |
Collapse
|
6
|
Castel R, Bertoldo R, Lebarillier S, Noack Y, Orsière T, Malleret L. Toward an interdisciplinary approach to assess the adverse health effects of dust-containing polycyclic aromatic hydrocarbons (PAHs) and metal(loid)s on preschool children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122372. [PMID: 37598934 DOI: 10.1016/j.envpol.2023.122372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Settled dust can function as a pollutant sink for compounds, such as polycyclic aromatic hydrocarbons (PAHs) and metal(loid)s (MMs), which may lead to health issues. Thus, dust represents a hazard specifically for young children, because of their vulnerability and hand-to-mouth behavior favoring dust ingestion. The aim of the present study was to explore the influence of the season and the microenvironment on the concentrations of 15 PAHs and 17 MMs in indoor and outdoor settled dust in three preschools (suburban, urban, and industrial). Second, the potential sources and health risks among children associated with dust PAHs and MMs were assessed. Third, domestic factors (risk perception, knowledge and parental style) were described to explore protective parental behaviors toward dust hazards. The suburban preschool had the lowest concentrations of dust PAHs and MMs, while the industrial and urban preschools had higher but similar concentrations. Seasonal tendencies were not clearly observed. Indoor dusts reflected the outdoor environment, even if specific indoor sources were noted. Source analysis indicated mainly vehicular emissions, material release, and pyrogenic or industrial sources. The non-cancer health risks were non-existent, but potential cancer health risks (between 1.10-6 and 1.10-4) occurred at all sampling locations. Notably, the highest cancer risk was observed in a playground area (>1.10-4) and material release should be further addressed. Whereas we assessed higher risk indoors, parents perceived a higher risk in the open-air environment and at the preschool than at home. They also perceived a lower risk for their own children, revealing an optimism bias, which reduces parental anxiety.
Collapse
Affiliation(s)
- Rebecca Castel
- Aix Marseille Univ, CNRS, LCE, Laboratoire Chimie Environnement, FR ECCOREV, ITEM, Aix-en-Provence, France; Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Institut Méditerranéen de Biodiversité et Ecologie, FR ECCOREV, ITEM, Marseille, France
| | - Raquel Bertoldo
- Aix Marseille Univ, LPS, Laboratoire de Psychologie Sociale, FR ECCOREV, ITEM, Aix-en-Provence, France
| | - Stéphanie Lebarillier
- Aix Marseille Univ, CNRS, LCE, Laboratoire Chimie Environnement, FR ECCOREV, ITEM, Aix-en-Provence, France
| | - Yves Noack
- Aix Marseille Univ, CNRS, IRD, INRAE, CEREGE, Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement, FR ECCOREV, ITEM, Aix-en-Provence, France
| | - Thierry Orsière
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Institut Méditerranéen de Biodiversité et Ecologie, FR ECCOREV, ITEM, Marseille, France
| | - Laure Malleret
- Aix Marseille Univ, CNRS, LCE, Laboratoire Chimie Environnement, FR ECCOREV, ITEM, Aix-en-Provence, France.
| |
Collapse
|
7
|
Ma T, Kong J, Li W, Cheng X, Zhang Y, Kong D, Yang S, Li S, Zhang L, He H. Inventory, source and health risk assessment of nitrated and parent PAHs in agricultural soils over a rural river in Southeast China. CHEMOSPHERE 2023; 329:138688. [PMID: 37059199 DOI: 10.1016/j.chemosphere.2023.138688] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Nitrated polycyclic aromatic hydrocarbons (NPAHs) have become a concerning topic because of their widespread occurrence and carcinogenicity. However, studies on NPAHs in soils, especially in agricultural soils, are still limited. In this study, a systematic monitoring campaign of 15 NPAHs and 16 polycyclic aromatic hydrocarbons (PAHs) was performed in agricultural soils from the Taige Canal basin in 2018, which is a typical agricultural activity area of the Yangtze River Delta. The total concentration of NPAHs and PAHs ranged from 14.4 to 85.5 ng g-1 and 118-1108 ng g-1, respectively. Among the target analytes, 1,8-dinitropyrene and fluoranthene were the most predominant congeners accounting for 35.0% of ∑15NPAHs and 17.2% of ∑16PAHs, respectively. Four-ring NPAHs and PAHs were predominant, followed by three-ring NPAHs and PAHs. NPAHs and PAHs had a similar spatial distribution pattern with high concentrations in the northeastern Taige Canal basin. The soil mass inventory of ∑16PAHs and ∑15NPAHs was evaluated to be 31.7 and 2.55 metric tons, respectively. Total organic carbon had a significant impact on the distribution of PAHs in soils. The correlation between PAH congeners in agricultural soils was higher than that between NPAH congeners. Based on diagnostic ratios and principal component analysis-multiple linear regression model, vehicle exhaust emission, coal combustion, and biomass combustion were the predominant sources of these NPAHs and PAHs. According to the lifetime incremental carcinogenic risk model, the health risk posed by NPAHs and PAHs in agricultural soils of the Taige Canal basin was virtually negligible. The total health risk in soils of the Taige Canal basin to adults was slightly higher than that to children.
Collapse
Affiliation(s)
- Tao Ma
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China; Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing, 210042, PR China; School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
| | - Jijie Kong
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China; School of Geography, Nanjing Normal University, Nanjing, 210023, PR China
| | - Weidi Li
- Jiangsu Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, PR China
| | - Xinying Cheng
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yueqing Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing, 210042, PR China
| | - Deyang Kong
- Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing, 210042, PR China.
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, PR China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China; College of Ecological and Resource Engineering, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, 354300, PR China.
| |
Collapse
|
8
|
Qi R, Pan L, Liu T, Li Z. Source risk, ecological risk, and bioeffect assessment for polycyclic aromatic hydrocarbons (PAHs) in Laizhou Bay and Jiaozhou Bay of Shandong Peninsula, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56705-56726. [PMID: 35347599 DOI: 10.1007/s11356-022-19778-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
In order to incorporate the contribution of pollution sources to ecological risks into environmental monitoring, positive matrix factorization-risk quotient (PMF-RQ) was used to quantify the contribution of different PAH sources to ecological risks, which indicated that the unburned petroleum, vehicular emissions, and diesel combustion were the main sources of PAHs in Laizhou Bay and Jiaozhou Bay, and they were caused by petrochemical industry, maritime shipping, and urban traffic exhaust as the major sources of PAHs for ecological risk. Meanwhile, integrated biomarker response (IBR) and multi-biomarker pollution index (MPI) suggested that September was the most polluted month for PAHs in Laizhou Bay and Jiaozhou Bay and the pollution in Laizhou Bay was significantly higher than that in Jiaozhou Bay. This research was dedicated to explore the monitoring pattern for PAH pollution from the source to bioeffects, and it may have contributed a scientific support to monitoring and governance of marine PAH pollution.
Collapse
Affiliation(s)
- Ruicheng Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, China.
| | - Tong Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Zeyuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
9
|
Živančev J, Antić I, Buljovčić M, Đurišić-Mladenović N. A case study on the occurrence of polycyclic aromatic hydrocarbons in indoor dust of Serbian households: Distribution, source apportionment and health risk assessment. CHEMOSPHERE 2022; 295:133856. [PMID: 35122819 DOI: 10.1016/j.chemosphere.2022.133856] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
This study was conducted in order to obtain the first insight into the occurrence, potential sources, and health risks of polycyclic aromatic hydrocarbons (PAHs) in indoor dust. Samples (n = 47) were collected from households in four settlements in the northern Serbian province of Vojvodina. Total concentrations of 16 EPA priority PAHs in the dust samples varied from 140 to 8265 μg kg-1. Mean and median values for all samples were 1825 and 1404 μg kg-1, respectively. According to the international guidelines for indoor environment, PAH content can be regarded as normal (<500 μg kg-1) for ∼6% of the samples, high (500-5000 μg kg-1) for ∼87% of the samples, and very high (5000-50000 μg kg1) for ∼6% of the samples. In all settlements, PAHs with 4 rings were the most prevalent (accounting for 40-53% of the total PAHs). They were followed by 3-ringed PAHs (29-40%), which indicates rather uniform PAH profiles in the analyzed dust. Based on diagnostic ratios, principal component analysis (PCA), and positive matrix factorization (PMF), pyrogenic sources, such as vehicle emissions and wood combustion were the dominant sources of PAHs in analyzed samples. Health risk assessment, which included incidental ingesting, inhaling and skin contact with PAHs in the analyzed dust, was evaluated by using the incremental lifetime cancer risk (ILCR) model. Median total ILCR was 3.88E-04 for children, and 3.73E-04 for adults. Results revealed that major contribution to quite high total ILCRs was brought by dermal contact and ingestion. Total cancer risk for indoor dust indicated that 85% of the studied locations exceeded 10-4. This implies risk of high concern, with potential adverse health effects. The results are valuable for future observation of PAHs in indoor environment. They are also useful for regional authorities who can use them to create policies which control sources of pollution.
Collapse
Affiliation(s)
- Jelena Živančev
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia.
| | - Igor Antić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia
| | - Maja Buljovčić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia
| | - Nataša Đurišić-Mladenović
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia
| |
Collapse
|
10
|
Vu-Duc N, Phung Thi LA, Le-Minh T, Nguyen LA, Nguyen-Thi H, Pham-Thi LH, Doan-Thi VA, Le-Quang H, Nguyen-Xuan H, Thi Nguyen T, Nguyen PT, Chu DB. Analysis of Polycyclic Aromatic Hydrocarbon in Airborne Particulate Matter Samples by Gas Chromatography in Combination with Tandem Mass Spectrometry (GC-MS/MS). JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:6641326. [PMID: 34136305 PMCID: PMC8175174 DOI: 10.1155/2021/6641326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/17/2021] [Accepted: 05/12/2021] [Indexed: 05/26/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), the family of organic contaminations, have been shown to have negative effects on human health. However, until now, the comprehension on occurrence, distribution, and risk assessment of human exposure to PAHs has been limited in Vietnam. In this work, a capillary gas chromatography coupled with electron impact ionization tandem mass spectrometry (GC-EI-MS/MS) has been introduced for analysis of 16 PAHs in some particulate matter samples. PAHs have been separated on the TG 5 ms capillary gas chromatographic column and detected by tandem mass spectrometry in multiple reaction monitoring mode. The PAHs in the particulate matter (PM 2.5 and PM 10) samples were extracted by ultrasonic-assisted liquid extraction and cleaned up by an acidic silica gel solid phase extraction. The linearity range of all analyzed PAHs was from 5 to 2000 ng mL-1 with R 2 ≥0.9990. Limit of detection (LOD) of PAHs in particulate matter sample was from 0.001 ng m-3 (Br-Naph) to 0.276 ng m-3 (Fln). The recovery of PAHs was investigated by international proficiency testing samples. The recoveries of PAHs in proficiency testing sample ranged from 79.3% (Chr) to 109.8% (IcdP). The in-house validated GC-EI-MS/MS method was then applied to analysis of some particulate matter samples that were collected in the Hanoi areas. The total concentrations of PAHs in several brands of samples collected from Hanoi were found in the range of 226.3 ng m-3-706.43 ng m-3. Among the studied compounds, naphthalene was found at high frequency and ranged from 106.5 ng m-3 to 631.1 ng m-3. The main distribution of the PAHs in particulate matter samples was two-ring and three-ring compounds.
Collapse
Affiliation(s)
- Nam Vu-Duc
- Center for Research and Technology Transfer, Vietnam Academic of Science and Technology, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Lan Anh Phung Thi
- School of Environmental Science and Technology, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hanoi 100000, Vietnam
| | - Thuy Le-Minh
- Center for Research and Technology Transfer, Vietnam Academic of Science and Technology, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Lan-Anh Nguyen
- Center for Research and Technology Transfer, Vietnam Academic of Science and Technology, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Huong Nguyen-Thi
- Center for Research and Technology Transfer, Vietnam Academic of Science and Technology, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Loan-Ha Pham-Thi
- Center for Research and Technology Transfer, Vietnam Academic of Science and Technology, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Van-Anh Doan-Thi
- Center for Research and Technology Transfer, Vietnam Academic of Science and Technology, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Huong Le-Quang
- Center for Research and Technology Transfer, Vietnam Academic of Science and Technology, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Hung Nguyen-Xuan
- Center for Research and Technology Transfer, Vietnam Academic of Science and Technology, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Thao Thi Nguyen
- School of Environmental Science and Technology, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hanoi 100000, Vietnam
| | - Phuong Thanh Nguyen
- FPT University, Hoa Lac High Tech Park, Km 29 Thang Long Boulevard, Thach That, Hanoi 100000, Vietnam
| | - Dinh Binh Chu
- Department of Analytical Chemistry, School of Chemical Engineering, Hanoi University of Science and Technology, No. 1 Dai Co Viet Road, Hanoi 100000, Vietnam
| |
Collapse
|