1
|
Mianeh HY, Amiri L, Jafari A, Nourozi N. Health risk assessment via Monte Carlo simulation and sensitivity analysis for fluoride and nitrate content in bottled waters consumed in Kermanshah city, Iran. Sci Rep 2025; 15:5008. [PMID: 39929929 PMCID: PMC11811224 DOI: 10.1038/s41598-025-89439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
Bottled water consumption has increased in recent decade due to many reasons, especially significant decline in water quality and quantity. The concentration of fluoride and nitrate in bottled waters may vary based on brands and locations. This study was carried out to determine the levels of fluoride and nitrate in bottled waters consumed in Kermanshah city and assess the related non -carcinogenic risks. Totally, 22 brands of bottled water were collected from markets. Fluoride and nitrate measurement was conducted via a UV-visible spectrophotometer (DR-5000). From the results, Fluoride and nitrate levels in the studied bottled waters were 0.32 ± 0.18 mg/L and 2.3 ± 1.41 mg/L, respectively. The risk of non-carcinogenic in term of HQ for fluoride exposure, for only 2 brands of bottled water were > 1 for infants group. HQ was less than 1 for nitrate in all the brands for all the age groups revealed non-carcinogen risks. Hazard index (HI) calculation showed that only in 2 brands of bottled water HI was > 1 for infants group. The HI were as infants (0.64) > children (0.36) > teenagers (0.27) > adults (0.24). From Monte Carlo simulation, 95th Percentile for nitrate and fluoride was less than 1 for all the groups. This result indicated non-carcinogenic risks of nitrate and fluoride for 95% of the studied groups. Moreover, sensitivity analysis showered that concentration for both nitrate and fluoride had the highest effect on HQ for all the groups. From this work, although fluoride and nitrate content in the bottled waters were at standard range, but infants were proportionally at higher risk.
Collapse
Affiliation(s)
- Hanieh Yari Mianeh
- Department of Environmental Health Engineering, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Laya Amiri
- Department of Environmental Health Engineering, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Jafari
- Department of Environmental Health Engineering, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Health, Safety and Environment Technologies Research Core, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Nasim Nourozi
- Department of Environmental Health Engineering, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Żwierełło W, Maruszewska A, Skórka-Majewicz M, Wszołek A, Gutowska I. Is Fluoride Blameless?-The Influence of Fluorine Compounds on the Invasiveness of the Human Glioma-like Cell Line U-87. Int J Mol Sci 2024; 25:12773. [PMID: 39684484 DOI: 10.3390/ijms252312773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastoma remains one of the most treatment-resistant and malignant human cancers. Given the documented harmful effects of fluoride on the developing central nervous system and the rising incidence of brain tumors, especially among children, it is pertinent to explore the role of environmental toxins, including fluoride compounds, in the context of brain cancer. This study represents the first investigation into the influence of fluoride on mechanisms related to the invasiveness of human glioblastoma cells. We examined the effects of sodium fluoride (NaF) exposure on the migratory and invasive abilities of the U-87 human glioblastoma cell line, assessing levels of metalloproteinases MMP-2 and MMP-9 secreted by these cells. Additionally, the activation of metabolic pathways associated with invasiveness, including AKT and NF-κB, was analyzed. Our results suggest that the effects induced by NaF at physiologically high concentrations (0.1-10 µM) in U-87 glioblastoma cells may promote a pro-invasive phenotype.
Collapse
Affiliation(s)
- Wojciech Żwierełło
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Agnieszka Maruszewska
- Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, 70-453 Szczecin, Poland
| | - Marta Skórka-Majewicz
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Agata Wszołek
- Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, 70-453 Szczecin, Poland
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
3
|
Nayeri D, Elyasi H, Jafari A, Ghalhari MR. A Systematic Review on Fluoride Contamination in Water Resources of Iran from 2016 to 2023: Spatial Distribution and Probabilistic Risk Assessment (Monte Carlo Simulation). Biol Trace Elem Res 2024:10.1007/s12011-024-04422-y. [PMID: 39432238 DOI: 10.1007/s12011-024-04422-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Because of significant variations and existence of high fluoride (F-) in some waters, Iran has been considered for various fluoride studies in recent decades. Nevertheless, there is a no updated review on fluoride levels especially including F- risk assessment. Thus, this systematic review is mainly aimed to evaluate the spatial distribution of F- content in water sources of Iran using geographic information system (GIS) and conduct the health risk assessment. Besides, the Monte-Carlo Simulation technique with 10,000 iterations was applied for determination of the non-carcinogenic effects of F- in different exposed groups (infant, children, teenagers, and adults). The results indicated that the maximum and minimum concentrations of F- content were related to Jazmourian (Roudbar plain) (4.8 mg/L) and Sahneh (0.1 mg/L) provinces, respectively, and F- content of more than ≅ 19% of the samples exceeds the Iranian standard value (1.5 mg/L). The results showed that the HQ of F- in all groups were higher than 1 with the order of children > infants > teenager > adults in which children were the vulnerable group to F- consumption in study area. Therefore, it is necessary to monitor and continuously measure water supplies for fluoride content and control measures, including removal steps, be taken for human risk reduction.
Collapse
Affiliation(s)
- Danial Nayeri
- Department of Environmental Health Engineering, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadis Elyasi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Occupational Health Engineering, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Ali Jafari
- Department of Environmental Health Engineering, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mohammad Rezvani Ghalhari
- Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
- Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Ghanbarian M, Ghanbarian M, Torkshavand Z, Ghanbarian M, Kordi Z, Shafizadeh S. Geographical distribution of nitrate pollution and its risk assessment using GIS and Monte Carlo simulation in drinking water in urban areas of Fars province-Iran during 2017-2021. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:183. [PMID: 38696054 DOI: 10.1007/s10653-024-01962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/18/2024] [Indexed: 06/17/2024]
Abstract
Pollution of water resources with nitrate is currently one of the major challenges at the global level. In order to make macro-policy decisions in water safety plans, it is necessary to carry out nitrate risk assessment in underground water, which has not been done in Fars province for all urban areas. In the current study, 9494 drinking water samples were collected in four seasons in 32 urban areas of Fars province in Iran, between 2017 and 2021 to investigate the non-carcinogenic health risk assessment. Geographical distribution maps of hazard quotient were drawn using geographical information system software. The results showed that the maximum amount of nitrate in water samples in 4% of the samples in 2021, 2.5% of the samples in 2020 and 3% of the samples in 2019 were more than the standard declared by World Health Organization guidelines (50 mg/L). In these cases, the maximum amount of nitrate was reported between 82 and 123 mg/L. The HQ values for infants did not exceed 1 in any year, but for children (44% ± 10.8), teenagers (10.8% ± 8.4), and adults (3.2% ± 1.7) exceeded 1 in cities, years, and seasons, indicating that three age groups in the studied area are at noticeably significant non-carcinogenic risk. The results of the Monte Carlo simulation showed that the average value of non-carcinogenic risk was less than 1 for all age groups. Moreover, the maximum HQ values (95%) were higher than 1 for both children and teenager, indicating a significant non-carcinogenic risk for the two age groups.
Collapse
Affiliation(s)
| | - Marjan Ghanbarian
- Environmental and Occupational Health Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Zahra Torkshavand
- Department of Environmental Health Engineering, Faculty of Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Zahra Kordi
- Vice-Chancellery of Research and Technology, Shahroud University of Medical Sciences, Shahroud, Iran
| | | |
Collapse
|
5
|
Nawaz R, Nasim I, Irfan A, Islam A, Naeem A, Ghani N, Irshad MA, Latif M, Nisa BU, Ullah R. Water Quality Index and Human Health Risk Assessment of Drinking Water in Selected Urban Areas of a Mega City. TOXICS 2023; 11:577. [PMID: 37505543 PMCID: PMC10385057 DOI: 10.3390/toxics11070577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
The present study was conducted to evaluate the quality of drinking water and assess the potential health hazards due to water contaminants in selected urban areas of Lahore, Pakistan. Water samples were collected from ten sites and analyzed for different physico-chemical parameters including turbidity, color, pH, total dissolved solids (TDS), nitrates, fluoride, residual chlorine, and total hardness. Additionally, heavy metal (arsenic) and microbial parameters (E. coli) were also determined in the water samples. Drinking water quality evaluation indices, including the water quality index (WQI) for physico-chemical and biological parameters and human health risk assessment (HHRA) for heavy metal were estimated using the analytical results of the target parameters. It was found in most of the areas that the levels of arsenic, fluoride, TDS, and residual chlorine were higher than those recommended by the National Environmental Quality Standard (NEQS) and World Health Organization (WHO) guidelines. In addition to the physico-chemical parameters, microbial content (E. coli) was also found in the drinking water samples of the selected areas. Statistical analysis of the results indicated that levels of target parameters in drinking water samples are significantly different between sampling sites. The WQI for all physico-chemical and microbial parameters indicated that drinking water in most of the areas was unfit and unsuitable (WQI > 100) for drinking purposes except for the water of Bhatti Gate and Chota Gaon Shahdara with a WQI of 87 and 91, respectively. Drinking water in these areas had a very poor WQI rating. According to HHRA, drinking water from the selected sites was found to be of high risk to children and adults. The carcinogenic risk of arsenic indicated that all samples were of high risk to both adults and children (4.60 and 4.37 × 10-3, respectively). Regular monitoring of drinking water quality is essential, and proactive measures must be implemented to ensure the treatment and availability of safe drinking water in urban areas.
Collapse
Affiliation(s)
- Rab Nawaz
- Department of Environmental Sciences, The University of Lahore, Lahore 54000, Pakistan
- Research and Knowledge Transfer, INTI International University, Putra Nilai 71800, Malaysia
| | - Iqra Nasim
- Department of Environmental Sciences, The University of Lahore, Lahore 54000, Pakistan
- Department of Environmental Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Amjad Islam
- College of Chemistry and Chemical Engineering, Shantou University, Shantou 515031, China
| | - Ayesha Naeem
- Department of Environmental Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Nadia Ghani
- Department of Environmental Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Muhammad Atif Irshad
- Department of Environmental Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Maria Latif
- Department of Environmental Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Badar Un Nisa
- Department of Chemistry, The University of Lahore, Sargodha 40100, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Żwierełło W, Maruszewska A, Skórka-Majewicz M, Gutowska I. Fluoride in the Central Nervous System and Its Potential Influence on the Development and Invasiveness of Brain Tumours-A Research Hypothesis. Int J Mol Sci 2023; 24:1558. [PMID: 36675073 PMCID: PMC9866357 DOI: 10.3390/ijms24021558] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The purpose of this review is to attempt to outline the potential role of fluoride in the pathogenesis of brain tumours, including glioblastoma (GBM). In this paper, we show for the first time that fluoride can potentially affect the generally accepted signalling pathways implicated in the formation and clinical course of GBM. Fluorine compounds easily cross the blood-brain barrier. Enhanced oxidative stress, disruption of multiple cellular pathways, and microglial activation are just a few examples of recent reports on the role of fluoride in the central nervous system (CNS). We sought to present the key mechanisms underlying the development and invasiveness of GBM, as well as evidence on the current state of knowledge about the pleiotropic, direct, or indirect involvement of fluoride in the regulation of these mechanisms in various tissues, including neural and tumour tissue. The effects of fluoride on the human body are still a matter of controversy. However, given the growing incidence of brain tumours, especially in children, and numerous reports on the effects of fluoride on the CNS, it is worth taking a closer look at these mechanisms in the context of brain tumours, including gliomas.
Collapse
Affiliation(s)
- Wojciech Żwierełło
- Department of Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 71 St., 70-111 Szczecin, Poland
| | - Agnieszka Maruszewska
- Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, Felczaka 3c St., 71-412 Szczecin, Poland
- Molecular Biology and Biotechnology Centre, Institute of Biology, University of Szczecin, Wąska 13 St., 71-415 Szczecin, Poland
| | - Marta Skórka-Majewicz
- Department of Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 71 St., 70-111 Szczecin, Poland
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 71 St., 70-111 Szczecin, Poland
| |
Collapse
|
7
|
Ashoori R, Samaei MR, Yousefinejad S, Azhdarpoor A, Emadi Z, Mohammadpour A, Lari AR, Mousavi Khaneghah A. Simultaneous removal of fluoride and nitrate from synthetic aqueous solution and groundwater by the electrochemical process using non-coated and coated anode electrodes: A human health risk study. ENVIRONMENTAL RESEARCH 2022; 214:113938. [PMID: 35977584 DOI: 10.1016/j.envres.2022.113938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Co-presence of fluoride (F-) and nitrate (NO3-) in water causes numerous health complications. Thus, they should be eliminated by an appropriate method like the EC process. In this research, simultaneous removal of F- and NO3- from synthetic aqueous solution and groundwater has been considered by the EC technique under operational parameters like anode materials (un-coated (Al and Fe) and synthesized coated (Ti/TiRuSnO2 and Ti/PbO2)), cathode materials (Cu, St, and Gr), current density (12, 24, and 36 mA/cm2), inter-electrode distance (0.5, 1, and 2 cm), pH (5.5, 7, and 8.5), NaCl concentrations (0.5, 1, and 1.5 g/L), electrolysis time (15, 30, 45, 60, 90, and 120 min), NO3- concentrations (75, 150, and 225 mg/L), and F- concentrations (2, 4, 6, and 8 mg/L) for the first time in this research. The results proved that Al as non-coated anode and Cu as cathode electrodes were more effective in the co-removal of F- and NO3-. The maximum removal efficiencies of 94.19 and 95% were observed at the current density of 36 mA/cm2, 1 cm of inter-electrode distance, pH 7, 1 g/L of NaCl, and 90 min electrolysis time by Al-Cu electrode for F- (2 mg/L) and NO3- (75 mg/L), respectively. The higher efficiency of Al-Cu electrodes was due to the simultaneous occurrence of electrocoagulation, electroreduction, and electrooxidation processes. Al-Cu electrode application considerably diminished f- and NO3- concentrations in the groundwater. Health risk assessment proved that HQ of F- was significantly decreased after treatment by the Al-Cu electrode. Thus, the EC process using an appropriate and effective electrode is a promising technique for treating aqueous solutions containing F- and NO3-.
Collapse
Affiliation(s)
- Razieh Ashoori
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Samaei
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Saeed Yousefinejad
- Research Center for Health Sciences, Institute of Health, Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abooalfazl Azhdarpoor
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Emadi
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Mohammadpour
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, 71946-84636 Shiraz, Iran
| | - Ali Rasti Lari
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland.
| |
Collapse
|
8
|
Mohammadpour A, Zarei AA, Dehbandi R, Khaksefidi R, Shahsavani E, Rahimi S, Elshall AS, Azhdarpoor A. Comprehensive assessment of water quality and associated health risks in an arid region in south Iran. Regul Toxicol Pharmacol 2022; 135:105264. [PMID: 36152980 DOI: 10.1016/j.yrtph.2022.105264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 12/07/2022]
Abstract
This study aims at investigating the quality of drinking water and evaluating the non-carcinogenic risk of fluoride and nitrate ions in drinking water, and fluoride in tea in Zarrin Dasht, Iran. We focus on tea since it is the most popular drink among Iranian people and in the study region. We collected and analyzed 23 drinking water samples and 23 tea samples from different locations in the study region. Based on the water quality index, the consumed drinking water does not have a good quality in most Zarrin Dasht areas. Accordingly, the water quality index (WQI) is poor and very poor in 70% and 13% of the water samples, respectively. The average fluoride concentration of the tea samples is 2.71 mg/L. The mean values of Fluoride Hazard Index (HIfluoride) are 3.77, 2.77, and 2.33 for children, teenagers, and adults, respectively, which are higher than the safe limit of 1. The Nitrate Hazard Index (HInitrate) is higher than the safe limit of 1 in 8.7% of the samples. The results of the Monte Carlo simulation demonstrate that HIfluoride and HInitrate are higher than 1 in all the groups, except for adults. According to the results of the sensitivity analysis, ingestion rate and body weight have a large effect on HIfluoride and HInitrate, but body weight is inversely associated with sensitivity. According to the Piper diagram, saline water is the predominant type in Zarrin Dasht. Besides, the results of the principal component analysis (PCA) show a high correlation between fluoride and pH, which could be related to the effect of pH on fluoride dissolution and ion exchange. Therefore, appropriate measures are recommended to be taken in order to reduce the amount of fluoride in the drinking water resources of this region. Reduction of tea consumption can also be considered an important factor in decreasing the amount of fluoride intake.
Collapse
Affiliation(s)
- Amin Mohammadpour
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Allah Zarei
- Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Reza Dehbandi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Razyeh Khaksefidi
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ebrahim Shahsavani
- Research Center for Social Determinants of Health, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Sajad Rahimi
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ahmed S Elshall
- Department of Bioengineering, Civil Engineering, and Environmental Engineering, U.A. Whitaker College of Engineering, Florida Gulf Coast University, Fort Myers, FL, USA; The Water School, Florida Gulf Coast University, Fort Myers, FL, USA
| | - Abooalfazl Azhdarpoor
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Non-Carcinogenic Health Risk Evaluation of Elevated Fluoride in Groundwater and Its Suitability Assessment for Drinking Purposes Based on Water Quality Index. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159071. [PMID: 35897434 PMCID: PMC9331254 DOI: 10.3390/ijerph19159071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023]
Abstract
Fluoride (F-) contamination in drinking groundwater is a significant human health risk in Pakistan. Moreover, high fluoride pollution in drinking water causes a variety of disorders, including dental, neurological, and skeletal fluorosis. The aim of this research was to evaluate the health risk of elevated fluoride in groundwater and its suitability assessment for drinking purposes. The total of (n = 37) samples were collected from community tube wells of Quetta Valley, Balochistan, Pakistan. The results show a mean pH value of 7.7, TDS of 404.6 mg/L, EC of 500 µs/cm, depth of 96.8 feet, and turbidity of 1.7 nephelometric turbidity units. The mean values of HCO3-, Ca2+, Mg2+, and Na+, were 289.5, 47.5, 30.6, and 283.3 mg/L, respectively. The mean values of SO42-, NO3-, K+, Cl-, and Fe2+, were 34.9, 1.0, 1.6, 25.6, and 0.01 mg/L, respectively. The F- concentration in the groundwater varied between 0.19 and 6.21, with a mean value of 1.8 mg/L, and 18 samples out of 37 were beyond the WHO recommended limit of 1.5 mg/L. The hydrochemical analysis results indicated that among the groundwater samples of the study area, 54% samples were Na-HCO3 type and 46% were mixed CaNaHCO3 type. The saturation indices of the mineral phases reveal that the groundwater sources of the study area were saturated with CaCO3 and halide minerals due to their positive (SI) values. Such minerals include calcite, dolomite, gypsum, and fluorite. The principal component analysis results reveal that the groundwater sources of the study area are contaminated due to geological and anthropogenic actions. The health risk assessment results of the F- concentrations show the ranges of ADDingestion for children, females, and males in the Quetta Valley, and their mean values were observed to be 0.093052, 0.068825, and 0.065071, respectively. The HQingestion mean values were 1.55086, 1.147089, and 1.084521 for children, females, and males, respectively. It was noticed that children had the highest maximum and average values of ADDingestion and HQingestion in the research area, indicating that groundwater fluoride intake poses the greatest health risk to children. The water quality index (WQI) analyses show that 44% of the samples belong to the poor-quality category, 49% were of good quality, and 8% of the samples of the study area belong to the excellent category.
Collapse
|