1
|
Sheng C, Liu B, Chavarro J, Hart JE, Zhang C, Wang M, Sun Q. Maternal macronutrient intake at pregnancy and offspring growth trajectory through childhood: a prospective analysis in the Growing Up Today Study 2 cohort. Am J Clin Nutr 2025; 121:843-852. [PMID: 39900248 PMCID: PMC11968214 DOI: 10.1016/j.ajcnut.2025.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/20/2024] [Accepted: 01/29/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Childhood obesity has become a public health challenge globally. Existing studies have indicated a potential link between maternal dietary macronutrient compositions and subsequent weight changes in their offspring during early childhood, although few studies have been conducted through early adulthood. OBJECTIVES We aimed to investigate the relationship between maternal macronutrient intake before or during pregnancy and offspring body weight from late childhood till early adulthood. METHODS We included 5715 children from the Growing Up Today Study 2 (GUTS2) (mean 11.8 y old at baseline in 2004) born to 4731 mothers who participated in the Nurses' Health Study II (NHSII) during 1989-1995. Diet during or before pregnancy was assessed using a validated food frequency questionnaire (FFQ) in 1991 and 1995. Age- and sex-specific body mass index (BMI) were used to define overweight and obesity in childhood and adolescence. Multivariable linear and log-binomial regression models with generalized estimating equations were used to evaluate the associations of interest. RESULTS The mean (SD) maternal macronutrient percent energy intake during pregnancy was 19.3% (3.1) for protein, 51.2% (6.6) for carbohydrates, and 30.8% (5.0) for total fat. For diet during pregnancy, after multivariate adjustment for maternal and offspring risk factors, compared with the lowest quartile, the highest quartile of trans fatty acid consumption was associated with a 0.20 unit (95% confidence interval [CI]: 0.00, 0.40) increase in BMI z-score without a significant linear trend (P-trend = 0.06). A positive association with BMI z-score was also observed for total fat intake (β: 0.21; 95% CI: 0.05, 0.36; P-trend = 0.02) when replacing total carbohydrate, and vice versa (β: -0.24; 95% CI: -0.40, -0.08; P-trend = 0.02 for total carbohydrate intake). For diet before pregnancy, none of the macronutrients were associated with offspring BMI z-score or the risk of overweight or obesity. CONCLUSIONS Higher fat, especially trans fat intake, during pregnancy was positively associated with higher body weight among offspring. Other macronutrients from various food sources were not associated with the offspring weight. Overall, these data suggest that, apart from trans fatty acids, other macronutrient composition of maternal diet may have minimal impact on offspring body weight in this well-nourished population.
Collapse
Affiliation(s)
- Chen Sheng
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Binkai Liu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Jorge Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Jaime E Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Cuilin Zhang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States; Global Center for Asian Women's Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Qi Sun
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States; Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
2
|
Tain YL, Hsu CN. Maternal Dietary Strategies for Improving Offspring Cardiovascular-Kidney-Metabolic Health: A Scoping Review. Int J Mol Sci 2024; 25:9788. [PMID: 39337276 PMCID: PMC11432268 DOI: 10.3390/ijms25189788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Dietary regulation has been recognized for its profound impact on human health. The convergence of cardiovascular, kidney, and metabolic disorders at the pathophysiological level has given rise to cardiovascular-kidney-metabolic (CKM) syndrome, which constitutes a significant global health burden. Maternal dietary nutrients play a crucial role in fetal development, influencing various programmed processes. This review emphasizes the effects of different types of dietary interventions on each component of CKM syndrome in both preclinical and clinical settings. We also provide an overview of potential maternal dietary strategies, including amino acid supplementation, lipid-associated diets, micronutrients, gut microbiota-targeted diets, and plant polyphenols, aimed at preventing CKM syndrome in offspring. Additionally, we discuss the mechanisms mediated by nutrient-sensing signals that contribute to CKM programming. Altogether, we underscore the interaction between maternal dietary interventions and the risk of CKM syndrome in offspring, emphasizing the need for continued research to facilitate their clinical translation.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
3
|
Pang W, Zhang B, Zhang J, Chen T, Han Q, Yang Z. Effects of maternal advanced lipoxidation end products diet on the glycolipid metabolism and gut microbiota in offspring mice. Front Nutr 2024; 11:1421848. [PMID: 38962449 PMCID: PMC11220281 DOI: 10.3389/fnut.2024.1421848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction Dietary advanced lipoxidation end products (ALEs), which are abundant in heat-processed foods, could induce lipid metabolism disorders. However, limited studies have examined the relationship between maternal ALEs diet and offspring health. Methods To investigate the transgenerational effects of ALEs, a cross-generation mouse model was developed. The C57BL/6J mice were fed with dietary ALEs during preconception, pregnancy and lactation. Then, the changes of glycolipid metabolism and gut microbiota of the offspring mice were analyzed. Results Maternal ALEs diet not only affected the metabolic homeostasis of dams, but also induced hepatic glycolipid accumulation, abnormal liver function, and disturbance of metabolism parameters in offspring. Furthermore, maternal ALEs diet significantly upregulated the expression of TLR4, TRIF and TNF-α proteins through the AMPK/mTOR/PPARα signaling pathway, leading to dysfunctional glycolipid metabolism in offspring. In addition, 16S rRNA analysis showed that maternal ALEs diet was capable of altered microbiota composition of offspring, and increased the Firmicutes/Bacteroidetes ratio. Discussion This study has for the first time demonstrated the transgenerational effects of maternal ALEs diet on the glycolipid metabolism and gut microbiota in offspring mice, and may help to better understand the adverse effects of dietary ALEs.
Collapse
Affiliation(s)
- Wenwen Pang
- School of Medicine, Nankai University, Tianjin, China
| | - Bowei Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Junshi Zhang
- Department of Hematology, Oncology Center, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Tianyi Chen
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiurong Han
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhen Yang
- Department of Clinical Laboratory, Tianjin Union Medical Center, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Bogl LH, Strohmaier S, Hu FB, Willett WC, Eliassen AH, Hart JE, Sun Q, Chavarro JE, Field AE, Schernhammer ES. Maternal One-Carbon Nutrient Intake and Risk of Being Overweight or Obese in Their Offspring-A Transgenerational Prospective Cohort Study. Nutrients 2024; 16:1210. [PMID: 38674900 PMCID: PMC11054902 DOI: 10.3390/nu16081210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
We aimed to investigate the associations between maternal intake of folate, vitamin B12, B6, B2, methionine, choline, phosphatidylcholine and betaine during the period surrounding pregnancy and offspring weight outcomes from birth to early adulthood. These associations were examined among 2454 mother-child pairs from the Nurses' Health Study II and Growing Up Today Study. Maternal energy-adjusted nutrient intakes were derived from food frequency questionnaires. Birth weight, body size at age 5 and repeated BMI measurements were considered. Overweight/obesity was defined according to the International Obesity Task Force (<18 years) and World Health Organization guidelines (18+ years). Among other estimands, we report relative risks (RRs) for offspring ever being overweight with corresponding 95% confidence intervals across quintiles of dietary factors, with the lowest quintile as the reference. In multivariate-adjusted models, higher maternal intakes of phosphatidylcholine were associated with a higher risk of offspring ever being overweight (RRQ5vsQ1 = 1.16 [1.01-1.33] p-trend: 0.003). The association was stronger among offspring born to mothers with high red meat intake (high red meat RRQ5vsQ1 = 1.50 [1.14-1.98], p-trend: 0.001; low red meat RRQ5vsQ1 = 1.05 [0.87-1.27], p-trend: 0.46; p-interaction = 0.13). Future studies confirming the association between a higher maternal phosphatidylcholine intake during pregnancy and offspring risk of being overweight or obese are needed.
Collapse
Affiliation(s)
- Leonie H. Bogl
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, 1090 Wien, Austria; (L.H.B.); (S.S.)
- School of Health Professions, Bern University of Applied Sciences, 3012 Bern, Switzerland
| | - Susanne Strohmaier
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, 1090 Wien, Austria; (L.H.B.); (S.S.)
| | - Frank B. Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA (J.E.C.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Walter C. Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA (J.E.C.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - A. Heather Eliassen
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA (J.E.C.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Jaime E. Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA (J.E.C.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Jorge E. Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA (J.E.C.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Alison E. Field
- Department of Epidemiology, Brown University, Providence, RI 02903, USA
| | - Eva S. Schernhammer
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, 1090 Wien, Austria; (L.H.B.); (S.S.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| |
Collapse
|
5
|
Díaz-López A, Rodríguez Espelt L, Abajo S, Arija V. Close Adherence to a Mediterranean Diet during Pregnancy Decreases Childhood Overweight/Obesity: A Prospective Study. Nutrients 2024; 16:532. [PMID: 38398856 PMCID: PMC10892739 DOI: 10.3390/nu16040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
The study of dietary patterns during pregnancy may be of great importance for determining the potential risk of obesity in childhood. We assessed the prospective association between maternal adherence to the Mediterranean diet (MedDiet) during pregnancy and risk of childhood overweight/obesity at 4 years. This prospective analysis involved 272 mother-child pairs from the ECLIPSES study. Maternal diet during pregnancy was assessed using a validated 45-item food-frequency questionnaire and a relative whole-pregnancy MedDiet score (rMedDiet) was calculated. The children's weight and height were measured at the age of 4. Primary outcome was childhood overweight/obesity based on age- and-sex-specific BMI z-score > 85th percentile using the WHO child growth standards. Mean maternal rMedDiet score in pregnancy was 9.8 (±standard deviation 2.3) and 25.7% of the children were overweight/obese. Significant differences in anthropometric measurements (weight, height, and BMI) were found according to sex, with higher scores for boys. After controlling for potential confounders, greater maternal adherence to rMedDiet during pregnancy was associated with a lower risk of childhood overweight/obesity, highest vs. lowest quartile (OR = 0.34, 95% CI: 0.12-0.90; p-trend 0.037). Similar trends regarding this association (per 1-point increase rMedDiet score) were observed after stratification by advanced maternal age, maternal early pregnancy BMI, education, socioeconomic status, smoking, and gestational weight gain. Our findings suggest that closer adherence to the MedDiet during pregnancy may protect against the risk of offspring overweight/obesity at 4 years. Further research is needed to explore whether associations persist across the life course.
Collapse
Affiliation(s)
- Andrés Díaz-López
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili (URV), 43204 Reus, Spain; (A.D.-L.); (L.R.E.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
| | - Laura Rodríguez Espelt
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili (URV), 43204 Reus, Spain; (A.D.-L.); (L.R.E.)
| | - Susana Abajo
- Sexual and Reproductive Healthcare Service of Reus-Tarragona, Institut Català de la Salut, Generalitat de Catalunya, 43003 Tarragona, Spain;
- Atención Primaria, Centro de Salud Embajadores, Dirección Asistencial Noroeste, 28012 Madrid, Spain
| | - Victoria Arija
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili (URV), 43204 Reus, Spain; (A.D.-L.); (L.R.E.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
- Collaborative Group on Lifestyles, Nutrition, and Tobacco (CENIT), Tarragona-Reus Research Support Unit, Jordi Gol Primary Care Research Institute, 43202 Reus, Spain
| |
Collapse
|
6
|
Rowley CE, Lodge S, Egan S, Itsiopoulos C, Christophersen CT, Silva D, Kicic-Starcevich E, O’Sullivan TA, Wist J, Nicholson J, Frost G, Holmes E, D’Vaz N. Altered dietary behaviour during pregnancy impacts systemic metabolic phenotypes. Front Nutr 2023; 10:1230480. [PMID: 38111603 PMCID: PMC10725961 DOI: 10.3389/fnut.2023.1230480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/25/2023] [Indexed: 12/20/2023] Open
Abstract
Rationale Evidence suggests consumption of a Mediterranean diet (MD) can positively impact both maternal and offspring health, potentially mediated by a beneficial effect on inflammatory pathways. We aimed to apply metabolic profiling of serum and urine samples to assess differences between women who were stratified into high and low alignment to a MD throughout pregnancy and investigate the relationship of the diet to inflammatory markers. Methods From the ORIGINS cohort, 51 pregnant women were stratified for persistent high and low alignment to a MD, based on validated MD questionnaires. 1H Nuclear Magnetic Resonance (NMR) spectroscopy was used to investigate the urine and serum metabolite profiles of these women at 36 weeks of pregnancy. The relationship between diet, metabolite profile and inflammatory status was investigated. Results There were clear differences in both the food choice and metabolic profiles of women who self-reported concordance to a high (HMDA) and low (LMDA) Mediterranean diet, indicating that alignment with the MD was associated with a specific metabolic phenotype during pregnancy. Reduced meat intake and higher vegetable intake in the HMDA group was supported by increased levels of urinary hippurate (p = 0.044) and lower creatine (p = 0.047) levels. Serum concentrations of the NMR spectroscopic inflammatory biomarkers GlycA (p = 0.020) and GlycB (p = 0.016) were significantly lower in the HDMA group and were negatively associated with serum acetate, histidine and isoleucine (p < 0.05) suggesting a greater level of plant-based nutrients in the diet. Serum branched chain and aromatic amino acids were positively associated with the HMDA group while both urinary and serum creatine, urine creatinine and dimethylamine were positively associated with the LMDA group. Conclusion Metabolic phenotypes of pregnant women who had a high alignment with the MD were significantly different from pregnant women who had a poor alignment with the MD. The metabolite profiles aligned with reported food intake. Differences were most significant biomarkers of systemic inflammation and selected gut-microbial metabolites. This research expands our understanding of the mechanisms driving health outcomes during the perinatal period and provides additional biomarkers for investigation in pregnant women to assess potential health risks.
Collapse
Affiliation(s)
- Charlotte E. Rowley
- Australian National Phenome Centre, and Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA, Australia
| | - Samantha Lodge
- Australian National Phenome Centre, and Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA, Australia
| | - Siobhon Egan
- Australian National Phenome Centre, and Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA, Australia
| | | | - Claus T. Christophersen
- WA Human Microbiome Collaboration Centre, Curtin University, Bentley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Desiree Silva
- Telethon Kids Institute, Perth Children’s Hospital, Nedlands, WA, Australia
- Joondalup Health Campus, Joondalup, WA, Australia
| | | | - Therese A. O’Sullivan
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Julien Wist
- Australian National Phenome Centre, and Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Chemistry Department, Universidad del Valle, Cali, Colombia
| | - Jeremy Nicholson
- Australian National Phenome Centre, and Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Faculty of Medicine, Imperial College London, Institute of Global Health Innovation, London, United Kingdom
- Section of Nutrition Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Gary Frost
- Australian National Phenome Centre, and Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Section of Nutrition Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Elaine Holmes
- Australian National Phenome Centre, and Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Faculty of Medicine, Imperial College London, Institute of Global Health Innovation, London, United Kingdom
- Section of Nutrition Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Nina D’Vaz
- Telethon Kids Institute, Perth Children’s Hospital, Nedlands, WA, Australia
| |
Collapse
|
7
|
Liu R, Sheng J, Huang H. Research progress on the effects of adverse exposure during pregnancy on skeletal muscle function in the offspring. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 53:271-279. [PMID: 37986679 PMCID: PMC11348699 DOI: 10.3724/zdxbyxb-2023-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/05/2023] [Indexed: 11/22/2023]
Abstract
Skeletal muscle plays a crucial role in maintaining metabolism, energy homeostasis, movement, as well as endocrine function. The gestation period is a critical stage for myogenesis and development of the skeletal muscle. Adverse environmental exposures during pregnancy may impose various effects on the skeletal muscle health of the offspring. Maternal obesity during pregnancy can mediate lipid deposition in the skeletal muscle of the offspring by affecting fetal skeletal muscle metabolism and inflammation-related pathways. Poor dietary habits during pregnancy, such as high sugar and high fat intake, can affect autophagy of skeletal muscle mitochondria and reduce the quality of the offspring skeletal muscle. Nutritional deficiencies during pregnancy can affect the development of the offspring skeletal muscle through epigenetic modifications. Gestational diabetes may affect the function of the offspring skeletal muscle by upregulating the levels of miR-15a and miR-15b in the offspring. Exposure to environmental endocrine disruptors during pregnancy may impair skeletal muscle function by interfering with insulin receptor-related signaling pathways. This article reviews the research progress on effects and possible mechanisms of adverse maternal exposures during pregnancy on the offspring skeletal muscle function based on clinical and animal studies, aiming to provide scientific evidence for the prevention and treatment strategies of birth defects in the skeletal muscle.
Collapse
Affiliation(s)
- Rui Liu
- Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, Zhejiang Province, China.
- Ministry of Education Key Laboratory of Reproductive Genetics, Department of Reproductive Endocrinology, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Jianzhong Sheng
- Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, Zhejiang Province, China
- Ministry of Education Key Laboratory of Reproductive Genetics, Department of Reproductive Endocrinology, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Hefeng Huang
- Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, Zhejiang Province, China.
- Ministry of Education Key Laboratory of Reproductive Genetics, Department of Reproductive Endocrinology, Zhejiang University School of Medicine, Hangzhou 310006, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200030, China.
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200030, China.
| |
Collapse
|
8
|
Gonzalez-Nahm S, Marchesoni J, Maity A, Maguire RL, House JS, Tucker R, Atkinson T, Murphy SK, Hoyo C. Maternal Mediterranean Diet Adherence and Its Associations with Maternal Prenatal Stressors and Child Growth. Curr Dev Nutr 2022; 6:nzac146. [PMID: 36406812 PMCID: PMC9665863 DOI: 10.1093/cdn/nzac146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background Psychosocial and physiologic stressors, such as depression and obesity, during pregnancy can have negative consequences, such as increased systemic inflammation, contributing to chronic disease for both mothers and their unborn children. These conditions disproportionately affect racial/ethnic minorities. The effects of recommended dietary patterns in mitigating the effects of these stressors remain understudied. Objectives We aimed to evaluate the relations between maternal Mediterranean diet adherence (MDA) and maternal and offspring outcomes during the first decade of life in African Americans, Hispanics, and Whites. Methods This study included 929 mother-child dyads from the NEST (Newborn Epigenetics STudy), a prospective cohort study. FFQs were used to estimate MDA in pregnant women. Weight and height were measured in children between birth and age 8 y. Multivariable linear regression models were used to examine associations between maternal MDA, inflammatory cytokines, and pregnancy and postnatal outcomes. Results More than 55% of White women reported high MDA during the periconceptional period compared with 22% of Hispanic and 18% of African American women (P < 0.05). Higher MDA was associated with lower likelihood of depressive mood (β = -0.45; 95% CI: -0.90, -0.18; P = 0.02) and prepregnancy obesity (β = -0.29; 95% CI: -0.57, -0.0002; P = 0.05). Higher MDA was also associated with lower body size at birth, which was maintained to ages 3-5 and 6-8 y-this association was most apparent in White children (3-5 y: β = -2.9, P = 0.02; 6-8 y: β = -3.99, P = 0.01). Conclusions If replicated in larger studies, our data suggest that MDA provides a potent avenue by which effects of prenatal stressors on maternal and fetal outcomes can be mitigated to reduce ethnic disparities in childhood obesity.
Collapse
Affiliation(s)
- Sarah Gonzalez-Nahm
- Department of Nutrition, University of Massachusetts Amherst, Amherst, MA, USA
| | - Joddy Marchesoni
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Arnab Maity
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | - Rachel L Maguire
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - John S House
- National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Rachel Tucker
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Tamara Atkinson
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University, Durham, NC, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
9
|
Wang Y, Wang K, Du M, Khandpur N, Rossato SL, Lo CH, VanEvery H, Kim DY, Zhang FF, Chavarro JE, Sun Q, Huttenhower C, Song M, Nguyen LH, Chan AT. Maternal consumption of ultra-processed foods and subsequent risk of offspring overweight or obesity: results from three prospective cohort studies. BMJ 2022; 379:e071767. [PMID: 36198411 PMCID: PMC9533299 DOI: 10.1136/bmj-2022-071767] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To assess whether maternal ultra-processed food intake during peripregnancy and during the child rearing period is associated with offspring risk of overweight or obesity during childhood and adolescence. DESIGN Population based prospective cohort study. SETTING The Nurses' Health Study II (NHSII) and the Growing Up Today Study (GUTS I and II) in the United States. PARTICIPANTS 19 958 mother-child (45% boys, aged 7-17 years at study enrollment) pairs with a median follow-up of 4 years (interquartile range 2-5 years) until age 18 or the onset of overweight or obesity, including a subsample of 2925 mother-child pairs with information on peripregnancy diet. MAIN OUTCOME MEASURES Multivariable adjusted, log binomial models with generalized estimating equations and an exchangeable correlation structure were used to account for correlations between siblings and to estimate the relative risk of offspring overweight or obesity defined by the International Obesity Task Force. RESULTS 2471 (12.4%) offspring developed overweight or obesity in the full analytic cohort. After adjusting for established maternal risk factors and offspring's ultra-processed food intake, physical activity, and sedentary time, maternal consumption of ultra-processed foods during the child rearing period was associated with overweight or obesity in offspring, with a 26% higher risk in the group with the highest maternal ultra-processed food consumption (group 5) versus the lowest consumption group (group 1; relative risk 1.26, 95% confidence interval 1.08 to 1.47, P for trend<0.001). In the subsample with information on peripregnancy diet, while rates were higher, peripregnancy ultra-processed food intake was not significantly associated with an increased risk of offspring overweight or obesity (n=845 (28.9%); group 5 v group 1: relative risk 1.17, 95% confidence interval 0.89 to 1.53, P fortrend=0.07). These associations were not modified by age, sex, birth weight, and gestational age of offspring or maternal body weight. CONCLUSIONS Maternal consumption of ultra-processed food during the child rearing period was associated with an increased risk of overweight or obesity in offspring, independent of maternal and offspring lifestyle risk factors. Further study is needed to confirm these findings and to understand the underlying biological mechanisms and environmental determinants. These data support the importance of refining dietary recommendations and the development of programs to improve nutrition for women of reproductive age to promote offspring health.
Collapse
Affiliation(s)
- Yiqing Wang
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kai Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Mengxi Du
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Neha Khandpur
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
- Center for Epidemiological Studies in Health and Nutrition, Faculty of Public Health, University of São Paulo, São Paulo, Brazil
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sinara Laurini Rossato
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Institute of Geography, Graduation course of Collective Health, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Chun-Han Lo
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Hannah VanEvery
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniel Y Kim
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Fang Fang Zhang
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
- Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, MA, USA
| | - Jorge E Chavarro
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Qi Sun
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Long H Nguyen
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Mo L, Zhao C, Huang B, Niu J, Hong S, Li J, Lin Y, Qin F. Health Effects of Dietary Oxidized Milk Administration in Offspring Mice during Pregnancy and Lactation with Metabolomic Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1679-1688. [PMID: 35104143 DOI: 10.1021/acs.jafc.1c07132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Milk is an important source of nutrients during pregnancy. Previous studies have consistently shown that oxidation in milk and dairy products can induce oxidative stress, inflammation, and fibrosis in the liver and kidney. However, the mechanism underlying these effects remains largely unexplored. This study aimed to investigate the effects of oxidized milk on fecal metabolism and liver and kidney function of offspring mice. Oxidative modification of milk was performed using H2O2-Cu or heating, causing varying degrees of oxidative damage. Kunming female mice were fed with a H2O2-Cu, heat, or normal control diet until their offspring were 3 weeks old. Feces were collected for the metabolomics study based on mass spectrometry. Forty-two potentially significant metabolic biomarkers were screened, and each group's relative intensity was compared. The results showed that oxidized milk mainly regulated isoleucine metabolism, proline metabolism, and tricarboxylic acid cycle. In addition, the histopathological analysis showed accumulation of protein and lipid oxidation products in the liver and kidney tissues after intake of oxidized milk, which induced oxidative stress, increased the levels of inflammatory factors, and significantly increased the expression of genes and proteins involved in inflammatory pathways. The above results suggest that intake of oxidized milk during gestation may increase the risk of liver and kidney injury in male offspring by interfering with amino acid and energy metabolism, highlighting the potential health risks of oxidized milk in humans.
Collapse
Affiliation(s)
- Ling Mo
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin, Guangxi 541004, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chaochao Zhao
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin, Guangxi 541004, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Bo Huang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin, Guangxi 541004, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Jiawei Niu
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin, Guangxi 541004, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Siyan Hong
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin, Guangxi 541004, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Jingjing Li
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin, Guangxi 541004, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Yintao Lin
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin, Guangxi 541004, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Fengqiong Qin
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin, Guangxi 541004, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China
| |
Collapse
|
11
|
Hieronimus B, Ensenauer R. Influence of maternal and paternal pre-conception overweight/obesity on offspring outcomes and strategies for prevention. Eur J Clin Nutr 2021; 75:1735-1744. [PMID: 34131301 PMCID: PMC8636250 DOI: 10.1038/s41430-021-00920-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Overweight, obesity, and their comorbidities remain global health challenges. When established early in life, overweight is often sustained into adulthood and contributes to the early onset of non-communicable diseases. Parental pre-conception overweight and obesity is a risk factor for overweight and obesity in childhood and beyond. This increased risk likely is based on an interplay of genetic alterations and environmental exposures already at the beginning of life, although mechanisms are still poorly defined. In this narrative review, potential routes of transmission of pre-conceptional overweight/obesity from mothers and fathers to their offspring as well as prevention strategies are discussed. Observational evidence suggests that metabolic changes due to parental overweight/obesity affect epigenetic markers in oocytes and sperms alike and may influence epigenetic programming and reprogramming processes during embryogenesis. While weight reduction in overweight/obese men and women, who plan to become pregnant, seems advisable to improve undesirable outcomes in offspring, caution might be warranted. Limited evidence suggests that weight loss in men and women in close proximity to conception might increase undesirable offspring outcomes at birth due to nutritional deficits and/or metabolic disturbances in the parent also affecting gamete quality. A change in the dietary pattern might be more advisable. The data reviewed here suggest that pre-conception intervention strategies should shift from women to couples, and future studies should address possible interactions between maternal and paternal contribution to longitudinal childhood outcomes. Randomized controlled trials focusing on effects of pre-conceptional diet quality on long-term offspring health are warranted.
Collapse
Affiliation(s)
- Bettina Hieronimus
- Institute of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
- Institute of Child Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Regina Ensenauer
- Institute of Child Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany.
| |
Collapse
|
12
|
Francis EC, Dabelea D, Shankar K, Perng W. Maternal diet quality during pregnancy is associated with biomarkers of metabolic risk among male offspring. Diabetologia 2021; 64:2478-2490. [PMID: 34370046 PMCID: PMC8499858 DOI: 10.1007/s00125-021-05533-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS Limited data exist on the association between maternal diet quality during pregnancy and metabolic traits in offspring during early childhood, which is a sensitive period for risk of obesity-related disorders later in life. We aimed to examine the association of maternal diet quality, as indicated by the Healthy Eating Index-2010 (HEI), in pregnancy with offspring metabolic biomarkers and body composition at age 4-7 years. METHODS We used data from 761 mother-offspring pairs from the Healthy Start study to examine sex-specific associations of HEI >57 vs ≤57 with offspring fasting glucose, leptin, cholesterol, HDL, LDL, percentage fat mass, BMI z score and log-transformed insulin, 1/insulin, HOMA-IR, adiponectin, triacylglycerols, triacylglycerols:HDL, fat mass, and sum of skinfolds. Multivariable linear regression models accounted for maternal race/ethnicity, age, education, smoking habits during pregnancy and physical activity, and child's age. RESULTS During pregnancy, mean (SD) HEI score was 55.0 (13.3), and 43.0% had an HEI score >57. Among boys, there was an inverse association of maternal HEI with offspring glucose, insulin, HOMA-IR and adiponectin. For instance, maternal HEI >57 was associated with lower fasting glucose (-0.11; 95% CI -0.20, -0.02 mmol/l), and lower concentrations of: insulin by 15.3% (95% CI -24.6, -5.0), HOMA-IR by 16.3% (95% CI -25.7, -5.6) and adiponectin by 9.3% (95% CI -16.1, -2.0). Among girls, there was an inverse association of maternal HEI with insulin and a positive association with LDL. However, following covariate adjustment, all estimates among girls were attenuated to the null. CONCLUSIONS/INTERPRETATION Greater compliance with the USA Dietary Guidelines via the HEI may improve the maternal-fetal milieu and decrease susceptibility for poor metabolic health among offspring, particularly boys. Future studies are warranted to confirm these associations and determine the underlying mechanisms.
Collapse
Affiliation(s)
- Ellen C Francis
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA.
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Kartik Shankar
- Department of Pediatrics, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Wei Perng
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
- Department of Nutritional Sciences, University of Michigan SPH, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Maternal Dietary Quality and Dietary Inflammation Associations with Offspring Growth, Placental Development, and DNA Methylation. Nutrients 2021; 13:nu13093130. [PMID: 34579008 PMCID: PMC8468062 DOI: 10.3390/nu13093130] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022] Open
Abstract
The ‘Developmental Origins of Health and Diseases’ hypothesis posits that prenatal maternal diet influences offspring growth and later life health outcomes. Dietary assessment has focused on selected nutrients. However, this approach does not consider the complex interactions between foods and nutrients. To provide a more comprehensive approach to public health, dietary indices have been developed to assess dietary quality, dietary inflammation and risk factors for non-communicable diseases. Thus far, their use in the context of placental development is limited and associations with offspring outcomes have been inconsistent. Although epidemiological studies have focused on the role of maternal diet on foetal programming, the underlying mechanisms are still poorly understood. Some evidence suggests these associations may be driven by placental and epigenetic changes. In this narrative review, we examine the current literature regarding relationships between key validated diet quality scores (Dietary Inflammatory Index [DII], Mediterranean diet [MD], Healthy Eating Index [HEI], Alternative Healthy Eating Index [AHEI], Dietary Approaches to Stop Hypertension [DASH], Glycaemic Index [GI] and Glycaemic Load [GL]) in pregnancy and birth and long-term offspring outcomes. We summarise findings, discuss potential underlying placental and epigenetic mechanisms, in particular DNA methylation, and highlight the need for further research and public health strategies that incorporate diet quality and epigenetics.
Collapse
|
14
|
Chamorro-Garcia R, Veiga-Lopez A. The new kids on the block: Emerging obesogens. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:457-484. [PMID: 34452694 PMCID: PMC8941623 DOI: 10.1016/bs.apha.2021.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The current obesity epidemic is calling for action in the determination of contributing factors. Although social and life-style factors have been traditionally associated with metabolic disruption, a subset of endocrine-disrupting chemicals (EDCs), called obesogens are garnering increasing attention for their ability to promote adipose tissue differentiation and accumulation. For some chemicals, such as tributyltin, there is conclusive evidence regarding their ability to promote adipogenesis and their mechanism of action. In recent years, the list of chemicals that exert obesogenic potential is increasing. In this chapter, we review current knowledge of the most recent developments in the field of emerging obesogens with a specific focus on food additives, surfactants, and sunscreens, for which the mechanism of action remains unclear. We also review new evidence relative to the obesogenic potential of environmentally relevant chemical mixtures and point to potential therapeutic approaches to minimize the detrimental effects of obesogens. We conclude by discussing the available tools to investigate new obesogenic chemicals, strategies to maximize reproducibility in adipogenic studies, and future directions that will help propel the field forward.
Collapse
Affiliation(s)
- Raquel Chamorro-Garcia
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA, United States.
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois-Chicago, Chicago, IL, United States; The ChicAgo Center for Health and Environment, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
15
|
Pre-Pregnancy Diet Quality Is Associated with Lowering the Risk of Offspring Obesity and Underweight: Finding from a Prospective Cohort Study. Nutrients 2021; 13:nu13041044. [PMID: 33804865 PMCID: PMC8063840 DOI: 10.3390/nu13041044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/11/2021] [Accepted: 03/20/2021] [Indexed: 12/16/2022] Open
Abstract
Maternal diet plays a critical role in epigenetic changes and the establishment of the gut microbiome in the fetus, which has been associated with weight outcomes in offspring. This study examined the association between maternal diet quality before pregnancy and childhood body mass index (BMI) in offspring. There were 1936 mothers with 3391 children included from the Australian Longitudinal Study on Women’s Health (ALSWH) and the Mothers and their Children’s Health (MatCH) study. Maternal dietary intakes were assessed using a semi-quantitative and validated 101-item food-frequency questionnaire (FFQ). The healthy eating index (HEI-2015) score was used to explore preconception diet quality. Childhood BMI was categorized as underweight, normal, overweight, and obese based on sex and age-specific BMI classifications for children. Multinomial logistic regression with cluster-robust standard errors was used for analyses. Greater adherence to maternal diet quality before pregnancy was associated with a lower risk of offspring being underweight after adjustment for potential confounders, highest vs. lowest quartile (relative risk ratio (RRR) = 0.68, 95% confidence interval (CI): 0.49, 0.96). Higher adherence to preconception diet quality was also inversely linked with the risk of childhood obesity (RRR = 0.49, 95% CI: 0.24, 0.98). This association was, however, no longer significant after adjusting for pre-pregnancy BMI. Sodium intake was significantly associated with decreased risk of childhood overweight and obesity (RRR = 0.18, 95% CI: 0.14, 0.23) and (RRR = 0.21, 95% CI: 0.17, 0.26), respectively. No significant association was detected between preconception diet quality and offspring being overweight. This study suggests that better adherence to maternal diet quality before pregnancy is associated with a reduced risk of childhood underweight and obesity.
Collapse
|
16
|
Monthé-Drèze C, Rifas-Shiman SL, Aris IM, Shivappa N, Hebert JR, Sen S, Oken E. Maternal diet in pregnancy is associated with differences in child body mass index trajectories from birth to adolescence. Am J Clin Nutr 2021; 113:895-904. [PMID: 33721014 PMCID: PMC8023853 DOI: 10.1093/ajcn/nqaa398] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/24/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Nutrition in pregnancy and accelerated childhood growth are important predictors of obesity risk. Yet, it is unknown which dietary patterns in pregnancy are associated with accelerated growth and whether there are specific periods from birth to adolescence that are most sensitive to these associations. OBJECTIVES To examine the extent to which 3 dietary indices in pregnancy [Dietary Inflammatory Index (DII), Alternate Healthy Eating Index for Pregnancy (AHEI-P), and Mediterranean Diet Score (MDS)] are associated with child BMI z-score (BMI-z) trajectories from birth to adolescence. METHODS We examined 1459 mother-child dyads from Project Viva that had FFQ data in pregnancy and ≥3 child BMI-z measurements between birth and adolescence. We used linear spline mixed-effects models to examine whether BMI-z growth rates and BMI z-scores differed by quartile of each dietary index from birth to 1 mo, 1-6 mo, 6 mo to 3 y, 3-10 y, and >10 y. RESULTS The means ± SDs for DII (range, -9 to +8 units), AHEI-P (range, 0-90 points), and MDS (range, 0-9 points) were -2.6 ± 1.4 units, 61 ± 10 points, and 4.6 ± 2.0 points, respectively. In adjusted models, children of women in the highest (vs. lowest) DII quartile had higher BMI-z growth rates between 3-10 y (β, 0.03 SD units/y; 95% CI: 0.00-0.06) and higher BMI z-scores from 7 y through 10 y. Children of women with low adherence to a Mediterranean diet had higher BMI z-scores from 3 y through 15 y. Associations of AHEI-P with growth rates and BMI z-scores from birth through adolescence were null. CONCLUSIONS A higher DII and a lower MDS in pregnancy, but not AHEI-P results, are associated with higher BMI-z trajectories during distinct growth periods from birth through adolescence. Identifying the specific dietary patterns in pregnancy associated with rapid weight gain in children could inform strategies to reduce child obesity.
Collapse
Affiliation(s)
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Izzuddin M Aris
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Nitin Shivappa
- South Carolina Statewide Cancer Prevention and Control Program and Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA,Department of Nutrition, Connecting Health Innovations LLC, Columbia, SC, USA
| | - James R Hebert
- South Carolina Statewide Cancer Prevention and Control Program and Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA,Department of Nutrition, Connecting Health Innovations LLC, Columbia, SC, USA
| | - Sarbattama Sen
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| |
Collapse
|