1
|
Barral MT, Rodríguez-Iglesias D, Martiñá-Prieto D, Paradelo R. Assessment of the Chronic Toxicity and Interactions between Arsenic and Riverbed Biofilms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12689. [PMID: 36231992 PMCID: PMC9564892 DOI: 10.3390/ijerph191912689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The toxic effect of exposure to arsenic, As(V), at concentrations of 0 to 30 mg L-1, for 49 days, on epipsammic biofilms, was evaluated in a microcosm experiment. The growth and composition of biofilms developed on sediments containing As concentrations of 31 mg kg-1 and 85 mg kg-1 were compared, using photosynthetic parameters and Live/Dead stains as end points. A toxic effect of arsenic could not be demonstrated; however, biofilm growth was higher over the sediment with higher arsenic concentrations, suggesting the development of pollution-induced community induced tolerance (PICT). Nevertheless, PICT was not observed after exposure to high arsenic concentration in the laboratory, as there were no differences in algal growth between the previous 0 and 30 mg L-1 systems exposed to new 30 mg As L-1 dissolution over 29 days. The algal composition was affected by the added arsenic, and brown algae were the most tolerant compared to green algae and cyanophyceae, as their percentage increased from 25 and 33% in the control samples to 57 and 47% in the samples with the highest added As concentration. In turn, the biofilm development influenced arsenic redistribution and speciation. Arsenic concentration in water decreased with time during the incubation experiment, retained by the sediment particles and the biofilm. In the biofilm, extracellular As was significantly higher (up to 11 times) than intracellular arsenic. As(V) was the predominant species in water and in the biofilm, but products of biotic transformation, namely As(III), DMA(V) and MMA(V), were also found in the solution and in the biofilm in some systems, demonstrating reduction and methylation by the organisms. As a conclusion, a toxic effect was not detected for the concentrations evaluated. Biofilms naturally exposed in the river system to high As concentrations acquire pollution-induced tolerance; however, tolerance was not acquired by exposure to 30 mg L-1 for 29 days in the laboratory.
Collapse
Affiliation(s)
- María Teresa Barral
- Department of Soil Science and Agricultural Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Diego Rodríguez-Iglesias
- Department of Soil Science and Agricultural Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Diego Martiñá-Prieto
- Department of Soil Science and Agricultural Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Remigio Paradelo
- Department of Soil Science and Agricultural Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Cross-Research in Environmental Technologies (CRETUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Cardoso-Silva S, Mizael JOSS, Frascareli D, Figueira RCL, Pompêo M, Vicente E, Moschini-Carlos V. Geochemistry and sedimentary photopigments as proxies to reconstruct past environmental changes in a subtropical reservoir. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28495-28509. [PMID: 34993819 DOI: 10.1007/s11356-022-18518-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Sediment cores were used to establish past environmental impacts associated with eutrophication, erosion and metal contamination in the subtropical Atibainha reservoir (São Paulo State, Brazil). We hypothesize that: (1) the levels of nutrients, determined by a spectrophotometric method, reflect the contributions of these elements over time and (2) changes in sedimentation rates, determined by 210Pb geochronology, and metal flows, determined by ICP-AEOS, are related to anthropic activities. Stratigraphic changes in the analysed variables were used to divide the sediment cores into three intervals, according to PCA and cluster analysis (Euclidian distances, Ward's method). Interval I, composed by the period prior to operation of the reservoir, was influenced by organic matter levels. Interval II, between 1967 and 1993 (PC2: 14.94% of the total variability), a period of minor impacts, was mainly influenced by Mn (eigenvalue of 0.71) and Zn (0.74). Interval III, which included sediment deposited between 1993 and 2015 (PC1: 60.28% of the total variability), was influenced by the highest levels of the pigments lutein (0.86), zeaxanthin (0.90) and fucoxanthin (0.65), together with total nitrogen (0.78) and sedimentation rate (0.91), suggesting changes in the phytoplankton community composition probably associated to the intensification of eutrophication and erosion processes. Despite the limitations of applying paleolimnological techniques in reservoirs and the use of pigments as proxies in regions with higher temperatures, it was observed that the anoxic conditions and the aphotic environment in the hypolimnion acted to preserve pigments associated with the groups Chlorophyta (lutein), Cyanobacteria (zeaxanthin) and Bacillariophyta (fucoxanthin). The isolated analysis of nutrients was not sufficient to make conclusive inferences regarding the eutrophication history, since the levels of TP tended to decrease over time, in contrast to an increase in the levels of TN. Despite intensification of eutrophication and erosion, associated to anthropic activities, no signs of metal contamination were recorded.
Collapse
Affiliation(s)
- Sheila Cardoso-Silva
- Ecology and Natural Resources Management Program, Federal University of Acre (UFAC), Rodovia BR 364, km 4, Distrito Industrial, Rio Branco, AC, 69920-900, Brazil.
- Oceanographic Institute, University of São Paulo (USP), São Paulo, SP, Brazil.
| | | | - Daniele Frascareli
- Environmental Sciences Program, Institute of Science and Technology, State University of São Paulo (UNESP), Sorocaba, SP, Brazil
| | | | - Marcelo Pompêo
- Environmental Sciences Program, Institute of Science and Technology, State University of São Paulo (UNESP), Sorocaba, SP, Brazil
- Ecology Department, Biosciences Institute, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Eduardo Vicente
- Microbiology and Ecology Department, Valencia University, Burjassot, Valencia, Spain
| | - Viviane Moschini-Carlos
- Environmental Sciences Program, Institute of Science and Technology, State University of São Paulo (UNESP), Sorocaba, SP, Brazil
| |
Collapse
|
3
|
Barral-Fraga L, Barral MT, MacNeill KL, Martiñá-Prieto D, Morin S, Rodríguez-Castro MC, Tuulaikhuu BA, Guasch H. Biotic and Abiotic Factors Influencing Arsenic Biogeochemistry and Toxicity in Fluvial Ecosystems: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072331. [PMID: 32235625 PMCID: PMC7177459 DOI: 10.3390/ijerph17072331] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 01/20/2023]
Abstract
This review is focused on the biogeochemistry of arsenic in freshwaters and, especially, on the key role that benthic microalgae and prokaryotic communities from biofilms play together in through speciation, distribution, and cycling. These microorganisms incorporate the dominant iAs (inorganic arsenic) form and may transform it to other arsenic forms through metabolic or detoxifying processes. These transformations have a big impact on the environmental behavior of arsenic because different chemical forms exhibit differences in mobility and toxicity. Moreover, exposure to toxicants may alter the physiology and structure of biofilms, leading to changes in ecosystem function and trophic relations. In this review we also explain how microorganisms (i.e., biofilms) can influence the effects of arsenic exposure on other key constituents of aquatic ecosystems such as fish. At the end, we present two real cases of fluvial systems with different origins of arsenic exposure (natural vs. anthropogenic) that have improved our comprehension of arsenic biogeochemistry and toxicity in freshwaters, the Pampean streams (Argentina) and the Anllóns River (Galicia, Spain). We finish with a briefly discussion of what we consider as future research needs on this topic. This work especially contributes to the general understanding of biofilms influencing arsenic biogeochemistry and highlights the strong impact of nutrient availability on arsenic toxicity for freshwater (micro) organisms.
Collapse
Affiliation(s)
- Laura Barral-Fraga
- Grup de recerca en Ecologia aquàtica continental (GRECO), Departament de Ciències Ambientals, Universitat de Girona, 17071 Girona, Spain;
- LDAR24—Laboratoire Départemental d’Analyse et de Recherche du Département de la Dordogne, 24660 Coulounieix-Chamiers, Périgueux, France
- Correspondence:
| | - María Teresa Barral
- Instituto CRETUS, Departmento de Edafoloxía e Química Agrícola, Facultade de Farmacia, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.T.B.); (D.M.-P.)
| | - Keeley L. MacNeill
- Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA;
| | - Diego Martiñá-Prieto
- Instituto CRETUS, Departmento de Edafoloxía e Química Agrícola, Facultade de Farmacia, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.T.B.); (D.M.-P.)
| | - Soizic Morin
- INRAE—Institut National de Recherche en Agriculture, Alimentation et Environnement, UR EABX—Equipe ECOVEA, 33612 Cestas Cedex, France;
| | - María Carolina Rodríguez-Castro
- INEDES—Instituto de Ecología y Desarrollo Sustentable (UNLu-CONICET), Universidad Nacional de Luján, 6700 Buenos Aires, Argentina;
- CONICET—Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1425FQB CABA, Argentina
| | - Baigal-Amar Tuulaikhuu
- School of Agroecology, Mongolian University of Life Sciences, Khoroo 11, Ulaanbaatar 17024, Mongolia;
| | - Helena Guasch
- Grup de recerca en Ecologia aquàtica continental (GRECO), Departament de Ciències Ambientals, Universitat de Girona, 17071 Girona, Spain;
- CEAB—Centre d’Estudis Avançats de Blanes, CSIC, Blanes, 17300 Girona, Spain
| |
Collapse
|
4
|
Devesa-Rey R, González-Aller J, Urréjola S. Analysis of Biomaterials as Green Coagulants to Control Suspended Solids for Surface Water Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17051777. [PMID: 32182930 PMCID: PMC7084783 DOI: 10.3390/ijerph17051777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
This study explores the use of natural, ecological coagulant-flocculants to reduce suspended particles in water. Three compounds were tested, namely: diatomaceous earth, calcium lactate and lactic acid. For this purpose, experiments in jar tests were carried out and the best compound was submitted to an optimization in order to evaluate the most significant parameters affecting its use as coagulant-flocculant. First results evidenced that lactic acid remove 71% of the suspended particles during the first five minutes, and up to 83% during the first 15 min. To optimize its use, the range of suspended particles concentration, lactic acid dose and salinity gradient was tested by means of an incomplete 33 factorial design. This technique allows reducing the number of experiments to be carried out through a response surface methodology, which enables to infer the values of the dependent variables in not studied situations, by means of predictive equations. As a result of the experiments carried out, optimal conditions to remove suspended particles were set at a lactic acid concentration of 1.75 g·L-1. As lactic acid may be obtained biotechnologically from organic wastes, this use supposes a promising area by keeping products and materials in use and contributing to a circular economy.
Collapse
|
5
|
Barral-Fraga L, Martiñá-Prieto D, Barral MT, Morin S, Guasch H. Mutual interaction between arsenic and biofilm in a mining impacted river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:985-998. [PMID: 29729516 DOI: 10.1016/j.scitotenv.2018.04.287] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/17/2018] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
Gold mining activities in fluvial systems may cause arsenic (As) pollution, as is the case at the Anllóns River (Galicia, NW Spain), where high concentrations of arsenate (AsV) in surface sediments (up to 270 mg kg-1) were found. A 51 day-long biofilm-translocation experiment was performed in this river, moving some biofilm-colonized substrata from upstream (less As-polluted) to downstream the mine area (more As-polluted site), to explore the effect of As on benthic biofilms, as well as their role on As retention and speciation in the water-sediment interface. Eutrophic conditions (range: 0.07-0.38 mg L-1 total phosphorus, TP) were detected in water in both sites, while sediments were not considered P-polluted (below 600 mg kg-1). Dimethylarsenate (DMAV) was found intracellularly and in the river water, suggesting a detoxification process by biofilms. Since most As in sediments and water was AsV, the high amount of arsenite (AsIII) detected extracellularly may also confirm AsV reduction by biofilms. Furthermore, translocated biofilms accumulated more As and showed higher potential toxicity (higher As/P ratio). In concordance, their growth was reduced to half that observed in those non-translocated, became less nutritive (less nitrogen content), and with higher bacterial and dead diatom densities. Besides the high As exposure, other environmental conditions such as the higher riparian cover at the more As-polluted site could contribute to those effects. Our study provides new arguments to understand the contribution of microorganisms to the As biogeochemistry in freshwater environments.
Collapse
Affiliation(s)
- Laura Barral-Fraga
- Institute of Aquatic Ecology, Department of Environmental Science, University of Girona, Girona, Spain.
| | - Diego Martiñá-Prieto
- Department of Soil Science and Agricultural Chemistry, Faculty of Pharmacy, Campus Vida, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Teresa Barral
- Department of Soil Science and Agricultural Chemistry, Faculty of Pharmacy, Campus Vida, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Helena Guasch
- Institute of Aquatic Ecology, Department of Environmental Science, University of Girona, Girona, Spain
| |
Collapse
|
6
|
Abstract
The influence of epipsammic biofilms on As release from river sediments was evaluated in a microcosm experiment where biofilms were grown on sediments containing 106 mg kg−1As, collected in the Anllóns River, and compared with control systems without biofilms. The As transfer to the water column was low (<0.11% of total As in the sediment) and was further reduced by 64% in the presence of biofilms.AsVwas the predominant species in the overlying water in both systems.AsIIIconcentration was higher (up to 12% of total dissolved As) in the control systems than in the systems with biofilms, where this species was almost absent. This fact is of toxicological relevance due to the usually higher mobility and toxicity of the reducedAsIIIspecies. Control systems exhibited higher As mobility in water, in sulphate solution, and in weak acid medium and higher bioavailability in diffusive gradient in thin films (DGT) devices. Arsenic retained by the biofilm was equally distributed between extracellular and intracellular compartments. Inside the cells, significant concentrations ofAsIII, monomethylarsonic acid (MMAV), and dimethylarsinic acid (DMAV) were detected, suggesting that active methylation (detoxification) processes are occurring in the intracellular compartment.
Collapse
|
7
|
Devesa-Rey R, Díaz-Fierros F, Barral MT. Assessment of enrichment factors and grain size influence on the metal distribution in riverbed sediments (Anllóns River, NW Spain). ENVIRONMENTAL MONITORING AND ASSESSMENT 2011; 179:371-388. [PMID: 20957517 DOI: 10.1007/s10661-010-1742-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 10/04/2010] [Indexed: 05/30/2023]
Abstract
The metals distribution in the bed sediments of the Anllóns River was studied, with special emphasis on the evaluation of the metal distribution as a function of the granulometric fraction chosen for the analysis. Statistical significant differences between the distribution of K, Ca, Cr, Mn, As, Rb, Sr and Nb in the bulk (<2 mm) and fine fraction (<63 μm) were not found. Fe, Ni, Cu, Ga, Zr, Zn and Pb commonly appear in higher concentrations in the fine fraction, whereas Ti appears in higher concentrations in the bulk fraction. In general, it was observed that contamination phenomena tend to equalise the concentrations of both fractions, and this was mainly explained as the result of two processes. First, the formation of coatings over sands and, second, the formation of large aggregates (pseudo-sands) at sites located over basic rocks, whose chemical behaviour is closer to that of clays and could be responsible for significant adsorption processes. Normalisation techniques to evaluate contamination were applied by testing Nb, Sr, Rb or Ga as normaliser elements and by using crustal or shale average values for background concentrations. The most satisfactory result was obtained when using shale average values and Ga as the normaliser element. Arsenic was identified as the main contaminant of the basin, exceeding in all cases the low-effect reference values proposed by sediment quality guidelines and in two cases the medium-effect reference values. These sites were identified by multivariate techniques, which allow differentiating site 10 as affected by anthropogenic inputs related to past mining activities.
Collapse
Affiliation(s)
- Rosa Devesa-Rey
- Departamento de Edafología y Química Agrícola, Facultad de Farmacia, USC, 15782 Santiago de Compostela, Spain.
| | | | | |
Collapse
|
8
|
Johari N, Keng C, Rathinam X, Sinniah U, Subramania S. Cryopreservation of Brassia rex Orchid Shoots Using PVS2 Technique. ACTA ACUST UNITED AC 2009. [DOI: 10.3923/rjb.2009.74.88] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|