1
|
Xia Y, Wen Y, Yang Y, Song X, Wang Y, Zhang Z. Exploring bio-remediation strategies by a novel bacteria Micrococcus sp. strain HX in Cr(VI)-contaminated groundwater from long-term industrial polluted. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117474. [PMID: 39644576 DOI: 10.1016/j.ecoenv.2024.117474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/25/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Hexavalent chromium (Cr(VI)) has emerged as a contaminant of heavy metal, owing to its wide use in industry. This study focuses on elucidating the interaction between microbial communities and environmental parameters in Cr(VI)-contaminated groundwater near a factory in Henan Province, and evaluating the bio-remediation potential of microorganisms toward Cr(VI) reduction. The highest concentration of Cr(VI) in the groundwater is 208.08 mg/L. The dominant microbes were Proteobacteria and Bacteroidota, closely positively related to Cr(VI) and SO42-. Many of these genus have been proven to be chromium tolerant or have the ability to reduce Cr(VI). Two strains, Micrococcus sp. HX and Bacillus sp. HX-2, were isolated from contaminated groundwater, and Micrococcus sp. HX was used for the first time to reduce Cr(VI) in groundwater. The reduced ability of HX reached 90.18 % at a Cr(VI) concentration of 100 mg/L, while HX-2 achieved a reduction capacity of 63.8 %. Micrococcus sp. HX shows the best reduction efficiency in alkaline environments (ph=8), which is close to the tannery industry wastewater. The reduction efficiency by Micrococcus sp. HX reached 67.26 % in groundwater samples (Cr(VI)= 26.08 mg/L). Transcriptome analyses revealed oxidoreductase activity, ATP binding and the NAD(P) binding region protein-related gene expression were up-regulated. Binding reduction experiments indicated that most of the Cr(III) was detected extracellular, which suggests that the reduction of Cr(VI) by HX was mainly extracellular enzyme-catalyzed.
Collapse
Affiliation(s)
- Yu Xia
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Yujuan Wen
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China; Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang University, Shenyang 110044, China; Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, China.
| | - Yuesuo Yang
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China; Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China
| | - Xiaoming Song
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Yunlong Wang
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Zhipeng Zhang
- Sichuan Geological Environment Survey and Research Center, Sichuan 610000, China
| |
Collapse
|
2
|
Jiang Z, Wan X, Bai X, Chen Z, Zhu L, Feng J. Cd indirectly affects the structure and function of plankton ecosystems by affecting trophic interactions at environmental concentrations. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136242. [PMID: 39442296 DOI: 10.1016/j.jhazmat.2024.136242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/08/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The toxic effects of potentially toxic elements have been observed at low concentrations; however, many studies have focused on single-species toxicity testing. Consequently, it is imperative to quantify toxicity at the community level at environmental concentrations. A microcosm approach was employed in conjunction with the Lotka-Volterra model to ascertain the impact of environmentally relevant concentrations of cadmium (Cd) on plankton abundance, community function, and stability. The results demonstrated that Cd led to a reduction in the abundance of Daphnia magna, yet unexpectedly resulted in an increase in the abundance of Brachionus calyciflorus and Paramecium caudatum. Additionally, Cd was observed to impede primary productivity, metabolic capacity and the stability of the planktonic community. Further model analyses revealed that the environmental concentration of Cd directly reduced intrinsic growth rates and intraspecific interactions. In particular, we found that the predation effects of Daphnia magna on Brachionus calyciflorus were significantly weakened. The findings of this study offer quantitative evidence that Cd exposure exerts an indirect influence on the structure and functioning of plankton ecosystems, mediated by alterations in trophic interactions. The findings indicate that the impact of environmental concentrations of potentially toxic elements may be underestimated in single-species experiments.
Collapse
Affiliation(s)
- Zhendong Jiang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xuhao Wan
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xue Bai
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zhongzhi Chen
- InnoTech Alberta, Hwy 16A & 75 Street, P.O. Box 4000, Vegreville, AB T9C 1T4, Canada
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Raja P, Marigoudar SR, Karthikeyan P, Barath Kumar S, Nagarjuna A, Srinivas TNR, Srirama Krishna M, Sharma KV, Ramana Murthy MV. Responses of plankton community to threshold metal concentrations of cadmium and lead in a mesocosm experiment at Bay of Bengal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120982. [PMID: 38678904 DOI: 10.1016/j.jenvman.2024.120982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/28/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
Metals are essential at trace levels to aquatic organisms for the function of many physiological and biological processes. But their elevated levels are toxic to the ecosystem and even brings about shifts in the plankton population. Threshold limits such as Predicted No Effect Concentration (PNEC - 0.6 μg/l of Cd; 2.7 μg/l of Pb), Criterion Continuous Concentration (CCC - 3.0 μg/l of Cd; 4.5 μg/l of Pb) and Criterion Maximum Concentration (CMC - 23 μg/l of Cd; 130 μg/l of Pb) prescribed for Indian coastal waters were used for the study. Short-term mesocosm experiments (96 h) were conducted in coastal waters of Visakhapatnam to evaluate responses of the planktonic community on exposure to threshold concentrations of cadmium and lead for the first time. Four individual experimental bags of 2500 L capacity (Control, PNEC, CCC & CMC) were used for the deployment and ambient water samples were analysed simultaneously to evaluate the impacts of the threshold levels in the natural waters. Chaetoceros sp. were dominant group in the control system whereas, Prorocentrum sp. Ceratium sp. Tintinopsis sp. Chaetoceros sp. and Skeletonema sp. were major groups in the test bags. Throughout the experiment the phytoplankton community did not show any significant differences with increased nutrients and plankton biomass (Chl-a <8.64 mg/m3). Positive response of plankton community was observed in the experimental bags. High abundance of diatoms were observed in PNEC, CCC & CMC bags at 48 h and the abundance decreased with shift in the species at 72-96 h. The catalase activity in phytoplankton (5.99 nmol/min/ml) and the zooplankton (4.77 nmol/min/ml) showed induction after exposure to PNEC. The present mesocosm study is confirmed that short-term exposure to threshold metal concentration did not affects the phytoplankton community structure in PNEC, but CCC and CMC affects the community structure beyond 24 h. The insights from this study will serve as a baseline information and help develop environmental management tools. We believe that long-term mesocosm experiments would unravel metal detoxification mechanisms at the cellular level and metal transfer rate at higher trophic levels in real-world environment.
Collapse
Affiliation(s)
- Pitchaikkaran Raja
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences, NIOT Campus, Pallikaranai, Chennai 600100, India
| | - Shambanagouda R Marigoudar
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences, NIOT Campus, Pallikaranai, Chennai 600100, India.
| | - Panneerselvam Karthikeyan
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences, NIOT Campus, Pallikaranai, Chennai 600100, India
| | - Sarvalingam Barath Kumar
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences, NIOT Campus, Pallikaranai, Chennai 600100, India
| | - Avula Nagarjuna
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences, NIOT Campus, Pallikaranai, Chennai 600100, India
| | | | - Moturi Srirama Krishna
- CSIR-National Institute of Oceanography-Regional Centre, Visakhapatnam 530 017, Andhra Pradesh, India
| | - Krishna Venkatarama Sharma
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences, NIOT Campus, Pallikaranai, Chennai 600100, India
| | | |
Collapse
|
4
|
Wołowski K, Lenarczyk J, Augustynowicz J, Sitek E. Exploring a unique water ecosystem under long-term exposure to hexavalent chromium - An in situ study of natural diatom (Bacillariophyceae) communities. CHEMOSPHERE 2023; 340:139941. [PMID: 37634594 DOI: 10.1016/j.chemosphere.2023.139941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/01/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
This paper reports the third in a series of three studies of a unique aquatic phytobial consortium that developed in a polluted ditch situated near an old chromium waste landfill. The ditch is a specific ecological niche having increased loads of several chemical compounds, including extreme hexavalent chromium concentrations up to two thousand times the allowed limit (0.02 mg dm-3 in Poland) in the more polluted section B; the moderate concentrations in section A are twice the limit. We focus on the microscopic algae group of diatoms, one of the most important components of the phytobial consortium, and continue our novel attempt to analyze the bioremediation potential of the entire consortium under those environmental conditions. We used numerical methods to analyze differences in diatom biodiversity between sections A and B, and assessed the relations between diatoms and selected water chemistry properties, including hexavalent chromium, chlorides and sulphates, the latter two known to positively influence the resistance of algae to the impact of hexavalent chromium. We noted 37 diatom taxa in section A of the ditch and 30 in section B. The most frequently observed diatoms were cosmopolitan taxa and/or characteristic taxa of saline waters. Sulphates were the most important factor influencing the diatom composition in the ditch, explaining 52% of the total variability, followed by chlorides (30%) and hexavalent chromium (9%). Gomphonema acuminatum, Melosira varians and Nitzschia frustulum var. frustulum were found to be most resistant to hexavalent chromium and were selected for further experimental studies on their biotechnological usefulness.
Collapse
Affiliation(s)
- Konrad Wołowski
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland
| | - Joanna Lenarczyk
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland.
| | - Joanna Augustynowicz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Kraków, Poland
| | - Ewa Sitek
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Kraków, Poland
| |
Collapse
|
5
|
Gomes PH, Pereira SP, Tavares TCL, Garcia TM, Soares MO. Impacts of desalination discharges on phytoplankton and zooplankton: Perspectives on current knowledge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160671. [PMID: 36481138 DOI: 10.1016/j.scitotenv.2022.160671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Large-scale application of desalination technology can result in impacts to the marine biota, such as phytoplankton and zooplankton, basal components of marine trophic webs. In this context, our perspective aimed to summarize the impacts of effluent discharges from desalination plants on phytoplankton and zooplankton in order to identify the main gaps and challenges in this theme, propose solutions, and provide recommendations for future work. We identified two main approaches to assess the desalination impacts: laboratory experiments and field studies. Most of these studies were conducted in areas impacted by effluent discharges using the BACI (before, after, and control-impact) approach. They primarily aimed to set out the impacts of hypersaline brine on the surrounding environment and, to a lesser extent, the high-temperature effluents and contaminants from desalination plants. Moreover, phytoplankton was more sensitive to effluent discharges than zooplankton. The main changes observed were a decrease in primary productivity, a loss in diversity, and a change in the community structure of planktonic populations due to the dominance of saline-tolerant groups, which highlights the importance improving treatment or dilution of effluent discharges to minimize the impacts over whole neritic trophic webs, which depend on phytoplankton. From the impacts related to effluent discharges analyzed herein, RO technology was related to most cases of negative impact related to salinity modifications. However, coagulants were related to negative effects in all study cases. Future work should focus on escalate the impacts of such effluents on other trophic levels that could be directly or indirectly impacted as well as on how to improve the quality of effluent discharges. Also, we highlight the importance of further baseline and long-term monitoring studies to investigate desalination-induced changes and community resilience to these impacts, as well as studies to provide alternatives to the use of toxic chemicals in the pre-treatment phases.
Collapse
Affiliation(s)
- Pedro Henrique Gomes
- Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará (UFC), Abolição Avenue 3207, Fortaleza, Brazil.
| | - Silvano Porto Pereira
- Companhia de Água e Esgoto do Ceará (CAGECE), Fortaleza, Brazil; University of Alicante
| | - Tallita Cruz Lopes Tavares
- Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará (UFC), Abolição Avenue 3207, Fortaleza, Brazil
| | - Tatiane Martins Garcia
- Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará (UFC), Abolição Avenue 3207, Fortaleza, Brazil
| | - Marcelo O Soares
- Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará (UFC), Abolição Avenue 3207, Fortaleza, Brazil; Reef Systems Group, Leibniz Center for Tropical Marine Research (ZMT), Bremen, Germany
| |
Collapse
|
6
|
Murthy MK, Khandayataray P, Samal D. Chromium toxicity and its remediation by using endophytic bacteria and nanomaterials: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115620. [PMID: 35772275 DOI: 10.1016/j.jenvman.2022.115620] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/13/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Chromium (Cr) is a crucial element for all life forms. Various anthropogenic activities have been responsible for environmental contamination with Cr (VI) in recent years. For this review, articles were collected using electronic databases such as Web of Science, Pubmed, ProQuest, and Google Scholar as per the guidelines of PRISMA-2015, applying the Boolean search methods. Chromium can cause severe health complications in humans and animals and threatens the surrounding environment, with negative impacts on crop yield, development, and quality. Hence, monitoring Cr contamination is essential, and various remediation technologies have emerged in the past 50 years to reduce the amount of Cr in the environment. This review focuses on chromium exposure and the associated environmental health risks. We also reviewed sustainable remediation processes, with emphasis on nanoparticle and endophytic remediation processes.
Collapse
Affiliation(s)
| | | | - Dibyaranjan Samal
- Department of Biotechnology, Academy of Management and Information Technology, VidyaVihar, IID Center, Khordha, Odisha, India
| |
Collapse
|
7
|
Bai X, Jiang Y, Jiang Z, Zhu L, Feng J. Nutrient potentiate the responses of plankton community structure and metabolites to cadmium: A microcosm study. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128506. [PMID: 35739684 DOI: 10.1016/j.jhazmat.2022.128506] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 06/15/2023]
Abstract
Metal pollution is a worldwide concern and may pose risks to aquatic organisms, communities, and ecosystems. The toxic effects of metals at the organism level are relatively clear. However, their impacts at the community level are still poorly understood, especially with concurred eutrophication in surface water. In the present study, the effects of Cd on the plankton community structure and function under varying nutrient conditions were evaluated using a microcosm study. The employed concentrations of Cd and nutrient were based on the values currently measured in the freshwater ecosystem. For the plankton structure, our results showed that the Chl a concentration, the abundances of total phytoplankton, Cyanophyta, and Chlorophyta, and the abundance of Copepoda decreased by Cd consistently. The Cyanophyta Oscillatoria tenuis and Copepoda nauplius were the most sensitive species to Cd in the phytoplankton and zooplankton community, respectively. For the community effects, we found the inhibitory effects of Cd on the photosystem II (PSII) activity of phytoplankton community because of the consistent decrease in the chlorophyll fluorescence parameters (Fv/Fm, Y(Ⅱ), and ETR). Furthermore, the reductions of DOC and pH by Cd were only found in the high nutrient condition, which indicated that the toxic effects of Cd on the community structure and community metabolites were aggravated by the increased nutrient. This study emphasizes the importance of considering nutrient conditions when assessing the metal ecotoxicological effects at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Xue Bai
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Yueming Jiang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Zhendong Jiang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
8
|
Pastorino P, Broccoli A, Bagolin E, Anselmi S, Cavallo A, Prearo M, Renzi M. A Multidisciplinary Approach to Evaluate the Effects of Contaminants of Emerging Concern on Natural Freshwater and Brackish Water Phytoplankton Communities. BIOLOGY 2021; 10:biology10101039. [PMID: 34681137 PMCID: PMC8533126 DOI: 10.3390/biology10101039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
Ecotoxicological assays on monospecific phytoplankton have limited application for detecting the effects of environmental pollutants on multiple species communities. With this study, we took an ecotoxicological, ecological, and biochemical approach to evaluate the effects of two contaminants of emerging concern (zinc oxide nanoparticles, ZnO NPs, and potassium dichromate, K2Cr2O7) at different concentrations (K2Cr2O7 5.6-18-50 mg/L; ZnO NPs 10-100-300 mg/L) on natural freshwater and brackish water phytoplankton communities. Cell density and absorbance values decreased in freshwater and brackish water phytoplankton communities after exposure to ZnO NPs (100 mg/L and 300 mg/L only for freshwater), whereas growth rate was increased in both freshwater and brackish water phytoplankton communities after exposure to ZnO NPs 10 mg/L. Differently, there was no clear relationship between concentration and inhibition growth after exposure to K2Cr2O7: the lowest cell density was recorded after exposure to 18 mg/L. Moreover, the evenness index value was lower compared to the other concentrations, indicating the growth of a few, albeit resistant species to higher K2Cr2O7 concentrations. Generally, Bacillariophyceae and Dinoficee were prevalent in phytoplankton cultures after exposure to ZnO NPs and K2Cr2O7. The Shannon-Wiener index was slightly higher in the negative than the positive controls, but diversity was low after all treatments in both ecotoxicological assays. The evenness index was always very close to zero, indicating the numerical predominance of one or very few species. Finally, the decrease in chlorophyll-a and pheophytin-a in both ecotoxicological assays indicated a change in photosynthetic activity. Our findings provide evidence for alterations in natural phytoplankton after exposure to emerging contaminants that can disrupt an entire ecosystem's integrity.
Collapse
Affiliation(s)
- Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy;
- Correspondence: ; Tel.: +39-0112-686-251
| | - Andrea Broccoli
- Bioscience Research Center, Via Aurelia Vecchia, 32, 58015 Orbetello, Italy; (A.B.); (S.A.)
| | - Elisa Bagolin
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via Licio Giorgieri 10, 34127 Trieste, Italy; (E.B.); (M.R.)
| | - Serena Anselmi
- Bioscience Research Center, Via Aurelia Vecchia, 32, 58015 Orbetello, Italy; (A.B.); (S.A.)
| | - Andrea Cavallo
- CERTEMA Scarl, Strada Provinciale del Cipressino km 10, 58044 Cinigiano, Italy;
| | - Marino Prearo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy;
| | - Monia Renzi
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via Licio Giorgieri 10, 34127 Trieste, Italy; (E.B.); (M.R.)
| |
Collapse
|
9
|
Pushkar B, Sevak P, Parab S, Nilkanth N. Chromium pollution and its bioremediation mechanisms in bacteria: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112279. [PMID: 33706095 DOI: 10.1016/j.jenvman.2021.112279] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/10/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Environment pollution is at its peak and is creating havoc for living beings. Industrial wastes containing toxic pollutants have contributed to a great extent in this disastrous environment pollution. Chromium (Cr3+/Cr6+) is highly toxic and one of the most common environmental pollutants because of its extensive use in industries especially tanneries. Lack of efficient treatment methods has resulted in extensive chromium pollution. Bioremediation of chromium using bacteria is very thoughtful due to its eco-friendly and cost-effective outcome. Bacteria possess numerous mechanisms such as biosorption, reduction, efflux or bioaccumulation, naturally or acquired to counter the toxicity of chromium. This review focuses on the bacterial responses against chromium toxicity and scope for their application in bioremediation. The differences and similarities between Gram negative and positive bacteria against chromium are also highlighted. Further, the knowledge gap and future prospects are also discussed in order to fill these gaps and overcome the problem associated with real-time applicability of bacterial bioremediation.
Collapse
Affiliation(s)
- Bhupendra Pushkar
- Department of Biotechnology, University of Mumbai, Kalina, Santacruz (E), Mumbai, 400098, Maharashtra, India; Global Biotech Forum, Maharashtra, India.
| | - Pooja Sevak
- Department of Biotechnology, University of Mumbai, Kalina, Santacruz (E), Mumbai, 400098, Maharashtra, India; Society for Innovations in Biosciences, Maharashtra, India
| | - Sejal Parab
- Department of Biotechnology, University of Mumbai, Kalina, Santacruz (E), Mumbai, 400098, Maharashtra, India
| | - Nikita Nilkanth
- Department of Biotechnology, University of Mumbai, Kalina, Santacruz (E), Mumbai, 400098, Maharashtra, India
| |
Collapse
|
10
|
Suteja Y, Dirgayusa IGNP, Purwiyanto AIS. Chromium in Benoa Bay, Bali - Indonesia. MARINE POLLUTION BULLETIN 2020; 153:111017. [PMID: 32275563 DOI: 10.1016/j.marpolbul.2020.111017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 06/11/2023]
Abstract
The chromium (Cr) pollution in Bali gained public attention because the textile and screen-printing industry was reportedly dumping their waste into the river. Benoa Bay is the estuary of six rivers in Bali and is thought to be contaminated by Cr. In this research, we investigated the presence of Cr in surface water, sediment and plankton (as a base trophic level) in Benoa Bay, Bali. Thirty stations were used to investigate Cr in Benoa Bay. The results showed that at almost all stations, surface waters of Benoa Bay were not contaminated by Cr, meanwhile Cr was detected in plankton and sediment. This research found that the range of Cr concentrations was sediment > plankton > water. The Bioaccumulation Factor (BCF) between plankton-water was much higher than plankton-sediment.
Collapse
Affiliation(s)
- Yulianto Suteja
- Marine Science Department, Faculty of Marine and Fisheries, Udayana University, Jl, Raya Kampus Universitas Udayana, Bukit Jimbaran, Bali, Indonesia.
| | - I Gusti Ngurah Putra Dirgayusa
- Marine Science Department, Faculty of Marine and Fisheries, Udayana University, Jl, Raya Kampus Universitas Udayana, Bukit Jimbaran, Bali, Indonesia.
| | - Anna Ida Sunaryo Purwiyanto
- Marine Science Program Study, Faculty of Mathematics and Natural Science, Sriwijaya University, Palembang, Indonesia.
| |
Collapse
|
11
|
Zhang Z, Cao H, Song N, Zhang L, Cao Y, Tai J. Long-term hexavalent chromium exposure facilitates colorectal cancer in mice associated with changes in gut microbiota composition. Food Chem Toxicol 2020; 138:111237. [PMID: 32145354 DOI: 10.1016/j.fct.2020.111237] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is among the leading causes of cancer-related mortality worldwide. Hexavalent chromium [Cr(VI)] is often present in groundwater. Chronic Cr(VI) exposure is suggested to be one of the main factors inducing cancer. However, the correlation between Cr(VI) and CRC remains unclear. In this study, we investigated the role of Cr(VI) in CRC by establishing a mouse CRC model induced by 1, 2-dimethylhydrazine (DMH). The results showed that Cr(VI) increased weight loss in DMH-induced mice and promoted the formation of tumors. Cr(VI) also increased DMH-induced proliferating cell nuclear antigen (PCNA) levels. Investigation of the underlying mechanisms found that Cr(VI) significantly decreased DMH-induced SOD, GSH and CAT levels, while, the MDA level increased. Metagenomic analyses found that the abundance of Firmicutes and Bacteroidetes in the DMH + Cr group was down-regulated. Interestingly, the combination of Cr(VI) and DMH significantly increased the abundance of Verrucomicrobia. At the family and genus levels, families Akkermansiaceae and Saccharimonadaceae and genus Akkermansia were more abundant in the DMH + Cr group, whereas the abundance of short-chain fatty acid (SCFA)-producing bacteria (family Muribaculaceae, family Lachnosipiraceae, genus Lachnospiraceae_NK4A136_group, and genus Roseburia) decreased. These results indicate that Cr(VI) might aggravate CRC by altering the composition of the gut microflora.
Collapse
Affiliation(s)
- Zecai Zhang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China; Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, People's Republic of China
| | - Hongyang Cao
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Ning Song
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Lixiao Zhang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, People's Republic of China
| | - Yongguo Cao
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China; Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, People's Republic of China.
| | - Jiandong Tai
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China.
| |
Collapse
|
12
|
Pereira EJ, Ramaiah N. Chromate detoxification potential of Staphylococcus sp. isolates from an estuary. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:457-466. [PMID: 30969406 DOI: 10.1007/s10646-019-02038-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/19/2019] [Indexed: 05/14/2023]
Abstract
Chromium (Cr) pollution is an emerging environmental problem. The present study was carried out to isolate Cr-resistant bacteria and characterize their Cr detoxification and resistance ability. Bacteria screened by exposure to chromate (Cr6+) were isolated from Mandovi estuary Goa, India. Two isolates expressed high resistance to Cr6+ (MIC ≥ 300 µg mL-1), Cr3+ (MIC ≥ 900 µg mL-1), other toxic heavy metals and displayed a pattern of resistance to cephalosporins and ß-lactams. Biochemical and 16 S rRNA gene sequence analysis indicated that both isolates tested belonged to the Staphylococcus genus and were closely related to S. saprophyticus and S. arlettae. Designated as strains NIOER176 and NIOER324, batch experiments demonstrated that both removed 100% of 20 and 50 µg mL-1 Cr6+ within 4 and 10 days, respectively. The rate of reduction in both peaked at 0.260 µg mL-1 h-1. ATP-binding cassette (ABC) transporter gene involved in transport of a variety of substrates including efflux of toxicants was present in strain NIOER176. Through SDS-PAGE analysis, whole-cell proteins extracted from both strains indicated chromium-induced specific induction and up-regulation of 24 and 40 kDa proteins. Since bacterial ability to ameliorate Cr6+ is of practical significance, these findings demonstrate strong potential of some estuarine bacteria to detoxify Cr6+ even when its concentrations far exceed the concentrations reported from many hazardous effluents and chromium contaminated natural habitats. Such potential of salt tolerant bacteria would help in Cr6+ bioremediation efforts.
Collapse
Affiliation(s)
- Elroy Joe Pereira
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Nagappa Ramaiah
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India.
| |
Collapse
|