1
|
Zhang B, Yang R, Liu Y, Guo J, Yang J, Qin X, Wang S, Liu J, Yang X, Zhang W, Liu G, Chen T. From glacier forelands to human settlements: Patterns, environmental drivers, and risks of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138455. [PMID: 40334594 DOI: 10.1016/j.jhazmat.2025.138455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
Antibiotic resistance genes (ARGs) are biological pollutants widely present in glaciers, such as ice, snow, and melt water. However, it remains unclear whether ARGs in glaciers influence their distribution in human settlements within the glacier basins. Therefore, we investigated the distribution pattern and driving factors of ARGs in the Laohugou glacier basins on the Tibetan Plateau. Using high-throughput quantitative PCR, the total abundance of ARGs in the Laohugou glacier basins ranged from 7.53 × 10⁶ to 1.83 × 10⁹ copies/g, including 128 detected ARGs across 11 classes, with aminoglycoside resistance genes being the dominant group. The abundance of ARGs exhibited a U-shaped pattern along the elevational gradient, with higher levels in glacier regions and human settlements, and the lowest abundance at mid-elevations. While glacier melting and anthropogenic disturbance are likely major contributors to this pattern, other potential mechanisms may also be involved, such as elevation-dependent microbial community composition, atmospheric deposition and release of legacy ARGs from melting permafrost and glacial ice. Together, these processes likely interact to shape the observed ARG pattern in this alpine watershed. We further verified that the distribution of ARGs was strongly correlated with microbial community structure, especially bacterial communities (r > 0.50; p < 0.05). Network analysis showed that Nitrolancea negatively correlated with several core ARGs, suggesting its potential role in regulating the spread of ARGs. Random forest analysis and structural equation modeling (SEM) indicated that, after accounting for various driving factors, organic matter and bacterial biomass were the primary drivers of increased ARG abundance. This study provides a foundation for assessing the risks of ARGs in glacier basins under global climate change, offering insights into risk mitigation strategies and guiding future ecological and public health research.
Collapse
Affiliation(s)
- Binglin Zhang
- Qilianshan Observation and Research Station of Cryosphere and Ecological Environment, Yulong Snow Station of Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco, Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province 730000, China
| | - Ruiqi Yang
- College of Environment and Urban Development, Lanzhou City University, Lanzhou 730070, China
| | - Yang Liu
- Qilianshan Observation and Research Station of Cryosphere and Ecological Environment, Yulong Snow Station of Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco, Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province 730000, China
| | - Junming Guo
- Qilianshan Observation and Research Station of Cryosphere and Ecological Environment, Yulong Snow Station of Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco, Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Junhua Yang
- Qilianshan Observation and Research Station of Cryosphere and Ecological Environment, Yulong Snow Station of Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco, Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiang Qin
- Qilianshan Observation and Research Station of Cryosphere and Ecological Environment, Yulong Snow Station of Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco, Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shijin Wang
- Qilianshan Observation and Research Station of Cryosphere and Ecological Environment, Yulong Snow Station of Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco, Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Junlin Liu
- Department of Reagent, Zhejiang Digena Diagnosis Technology Co., Ltd., Zhejiang 311100, China
| | - Xiaoying Yang
- College of Environment and Urban Development, Lanzhou City University, Lanzhou 730070, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province 730000, China; Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province 730000, China; Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Tuo Chen
- Qilianshan Observation and Research Station of Cryosphere and Ecological Environment, Yulong Snow Station of Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco, Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
2
|
Chen DD, Zhang LL, Zhang JH, Ban WT, Li Q, Wu JC. Comparative genomic analysis of metal-tolerant bacteria reveals significant differences in metal adaptation strategies. Microbiol Spectr 2025:e0168024. [PMID: 40272196 DOI: 10.1128/spectrum.01680-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/18/2024] [Indexed: 04/25/2025] Open
Abstract
Metal-tolerant bacteria have been commercially used in wastewater treatment, bio-fertilizer, and soil remediation, etc. However, the mechanisms underlying their actions are not yet fully understood. We isolated metal-tolerant bacteria from the rhizosphere soil samples with metal-enriched media containing Cu, Fe, or Mn, sequenced and compared the genomes, and analyzed their metal adaptation strategies at genomic levels to better understand their action mechanisms. Totally, 32 metal-tolerant isolates were identified and classified into 12 genera based on phylogenetic analysis. The determination of maximum tolerance concentration and the effect of metal ions on the isolates indicated that Serratia marcescens X1 (CuSO4: 1,000 mg/L, FeSO4: 1,000 mg/L, and MnSO4.4H2O: 2,000 mg/L), Mammaliicoccus sciuri X26 (FeSO4: 600 mg/L and MnSO4.4H2O: 2,000 mg/L), and Rummeliibacillus pycnus X33 (CuSO4: 400 mg/L, FeSO4: 1,000 mg/L, and MnSO4.4H2O: 800 mg/L) showed significant differences in metal tolerance to Cu, Fe, and Mn with other isolates. They possess quite different genomic features that enable them to adapt to various metal ions. S. marcescens X1 possesses abundant genes required for Cu, Fe, and Mn homeostasis. M. sciuri X26 has a number of genes involved in Mn and Zn homeostasis but with no genes responsible for Cu and Ca transport. R. pycnus X33 is rich in Fe, Zn, and Mg transport systems but poor in Cu and Mn transport systems. It is thus inferred that the combined use of them would compensate for their differences and enhance their ability in accumulating a wider range of heavy metals for promoting their applications in industry, agriculture, and ecology. IMPORTANCE Metal-tolerant bacteria have wide applications in environmental, agricultural, and ecological fields, but their action strategies are not yet fully understood. We isolated 32 metal-tolerant bacteria from the rhizosphere soil samples. Among them, Serratia marcescens X1, Mammaliicoccus sciuri X26, and Rummeliibacillus pycnus X33 showed significant differences in metal tolerance to Cu, Fe, and Mn with other isolates. Comparative genomic analysis revealed that they have abundant and different genomic features to adapt to various metal ions. It is thus inferred that the combined use of them would compensate for their differences and enhance their ability to accumulate heavy metal ions, widening their applications in industry, agriculture, and ecology.
Collapse
Affiliation(s)
- Dai Di Chen
- Guangdong Engineering Technology Research Center of Enzyme and Biocatalysis, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Liu Lian Zhang
- Guangdong Engineering Technology Research Center of Enzyme and Biocatalysis, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiu Hua Zhang
- Guangdong Engineering Technology Research Center of Enzyme and Biocatalysis, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Wen Ting Ban
- Guangdong Engineering Technology Research Center of Enzyme and Biocatalysis, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingxin Li
- Guangdong Engineering Technology Research Center of Enzyme and Biocatalysis, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Jin Chuan Wu
- Guangdong Engineering Technology Research Center of Enzyme and Biocatalysis, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
3
|
Zhang J, Yue Y, Lin Z, Tao X, Yin D, Zhang C. Pyridyl/Pyrimidyl-Containing Ligands Modulating Two Cd(II)-MOFs with Distinct Architectures and Al 3+ Sensing Abilities. Inorg Chem 2024; 63:23344-23353. [PMID: 39582171 DOI: 10.1021/acs.inorgchem.4c04040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
It is a challenging task to develop metal-organic frameworks (MOFs) with fascinating architectures and outstanding performance. In this work, two novel Cd(II)-MOFs, [Cd2(L1)(BDC)2·1.5i-PrOH]n (1) and [Cd(L2)0.5(BDC)(H2O)]n (2), with distinct sensing performances are successfully synthesized by pyridyl/pyrimidyl-containing functional ligands 9,10-bis(di(pyridine-4-yl)methylene)-9,10-dihydroanthracene (L1) and 9,10-bis(di(pyrimidin-5-yl)methylene)-9,10-dihydroanthracene (L2). 1 exhibits a 3D (4,6,10)-connected multicylindrical framework with compartments, constructed by 4-connected L1 and BDC2- in modes A and B, 6-connected Cd1, and 10-connected [Cd2(COO)2]2+. 2 is fabricated by 4-connected BDC2-, 7-connected Cd, and L2 bridges to generate a 3D (4,7)-connected pillar-layered framework with uncoordinated pyrimidyl N active sites. More importantly, their topologies have not been reported thus far. 1 and 2 have excellent water, pH, and thermal stabilities. 1 can efficiently sense TNP and MDZ in H2O, but its Al3+ sensing ability is relatively average. In sharp contrast, 2 has ultrahigh Al3+ sensitivity. Its limit of detection (LOD) toward Al3+ (2.93 × 10-7 M) is nearly 2 orders of magnitude and 25 times lower than that of 1 (1.18 × 10-5 M) and the WHO's maximum Al3+ limit (7.41 × 10-6 M) in drinking water, respectively. Their sensing mechanisms and different sensing performances are explored in depth.
Collapse
Affiliation(s)
- Jinfang Zhang
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yinlong Yue
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zhuo Lin
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xingyu Tao
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Dejing Yin
- School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Chi Zhang
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
4
|
Yu Z, Zhou Y, Zhang H, Zhang M, Gong S, Yin H, Sun T. Oxygen vacancy-rich β-Bi 2O 3/Bi 2O 2SiO 3 Z-Scheme heterojunction: A strategy to enhance visible light-driven photocatalytic removal of ARB and ARGs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124500. [PMID: 38964641 DOI: 10.1016/j.envpol.2024.124500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
Oxygen vacancy-rich β-Bi2O3/Bi2O2SiO3 (BO/BOS) Z-Scheme heterojunction was prepared by hydrothermal method-assisted calcination. Under visible light, β-Bi2O3/Bi2O2SiO3 photocatalyst demonstrated superior photocatalytic efficacy in degrading antibiotics and antibiotic-resistant Escherichia coli (AR E. coli) compared to individual β-Bi2O3 and Bi2O2SiO3. The experimental results showed that BO/BOS-450 sample possessed the best photocatalytic activity against tetracycline (2 h, 80.8%), amoxicillin (4 h, 57.9%) and AR E. coli (3 h, 107.43 CFU·mL-1). BO/BOS-450 sample showed 91.8% electrostatic capture of AR E. coli in the bacterial capture experiment. In the antibiotic-resistant genes (ARGs) degradation experiment, BO/BOS-450 sample was able to bring the log10 (Ct/C0) value of tetA to -3.49 after 2 h. Oxygen vacancies (OVs) were verified through HR-TEM, XPS and EPR analyses. ESR experiments aligned with the quenching experiment results, confirming that the crucial active species were ‧O2- and h+ during photocatalytic sterilization. A small-scale sewage treatment equipment was designed for the effective removal of ARB from real water samples.
Collapse
Affiliation(s)
- Zhengkun Yu
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China.
| | - Haowei Zhang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China
| | - Miao Zhang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China
| | - Shuqi Gong
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China
| | - Huanshun Yin
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China.
| | - Tianyi Sun
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China
| |
Collapse
|
5
|
Abdelhadi AA, Elarabi NI, Ibrahim SM, Abdel-Maksoud MA, Abdelhaleem HAR, Almutairi S, Malik A, Kiani BH, Henawy AR, Halema AA. Hybrid-genome sequence analysis of Enterobacter cloacae FACU and morphological characterization: insights into a highly arsenic-resistant strain. Funct Integr Genomics 2024; 24:174. [PMID: 39320439 DOI: 10.1007/s10142-024-01441-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024]
Abstract
Many organisms have adapted to survive in environments with high levels of arsenic (As), a naturally occurring metalloid with various oxidation states and a common element in human activities. These organisms employ diverse mechanisms to resist the harmful effects of arsenic compounds. Ten arsenic-resistant bacteria were isolated from contaminated wastewater in this study. The most efficient bacterial isolate able to resist 15,000 ppm Na2HAsO4·7H2O was identified using the 16S rRNA gene and whole genome analysis as Enterobacter cloacae FACU. The arsenic E. cloacae FACU biosorption capability was analyzed. To further unravel the genetic determinants of As stress resistance, the whole genome sequence of E. cloacae FACU was performed. The FACU complete genome sequence consists of one chromosome (5.7 Mb) and two plasmids, pENCL 1 and pENCL 2 (755,058 and 1155666 bp, respectively). 7152 CDSs were identified in the E. cloacae FACU genome. The genome consists of 130 genes for tRNA and 21 for rRNAs. The average G + C content was found to be 54%. Sequencing analysis annotated 58 genes related to resistance to many heavy metals, including 16 genes involved in arsenic efflux transporter and arsenic reduction (five arsRDABC genes) and 42 genes related to lead, zinc, mercury, nickel, silver, copper, cadmium and chromium in FACU. Scanning electron microscopy (SEM) confirmed the difference between the morphological responses of the As-treated FACU compared to the control strain. The study highlights the genes involved in the mechanism of As stress resistance, metabolic pathways, and potential activity of E. cloacae FACU at the genetic level.
Collapse
Affiliation(s)
- Abdelhadi A Abdelhadi
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| | - Nagwa I Elarabi
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| | - Saifeldeen M Ibrahim
- Biotechnology Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
- Bioinformatics Department, Agricultural Genetic Engineering Research Institute, ARC, Giza, Egypt
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Heba A R Abdelhaleem
- College of Biotechnology, Misr University for Science and Technology (MUST), 6th October City, Egypt
| | - Saeedah Almutairi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bushra Hafeez Kiani
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachuesetts, 01609, USA
| | - Ahmed R Henawy
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Asmaa A Halema
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
6
|
Gillieatt BF, Coleman NV. Unravelling the mechanisms of antibiotic and heavy metal resistance co-selection in environmental bacteria. FEMS Microbiol Rev 2024; 48:fuae017. [PMID: 38897736 PMCID: PMC11253441 DOI: 10.1093/femsre/fuae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024] Open
Abstract
The co-selective pressure of heavy metals is a contributor to the dissemination and persistence of antibiotic resistance genes in environmental reservoirs. The overlapping range of antibiotic and metal contamination and similarities in their resistance mechanisms point to an intertwined evolutionary history. Metal resistance genes are known to be genetically linked to antibiotic resistance genes, with plasmids, transposons, and integrons involved in the assembly and horizontal transfer of the resistance elements. Models of co-selection between metals and antibiotics have been proposed, however, the molecular aspects of these phenomena are in many cases not defined or quantified and the importance of specific metals, environments, bacterial taxa, mobile genetic elements, and other abiotic or biotic conditions are not clear. Co-resistance is often suggested as a dominant mechanism, but interpretations are beset with correlational bias. Proof of principle examples of cross-resistance and co-regulation has been described but more in-depth characterizations are needed, using methodologies that confirm the functional expression of resistance genes and that connect genes with specific bacterial hosts. Here, we comprehensively evaluate the recent evidence for different models of co-selection from pure culture and metagenomic studies in environmental contexts and we highlight outstanding questions.
Collapse
Affiliation(s)
- Brodie F Gillieatt
- School of Life and Environmental Sciences, The University of Sydney, F22 - LEES Building, NSW 2006, Australia
| | - Nicholas V Coleman
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, 6 Wally’s Walk, Macquarie Park, NSW 2109, Australia
| |
Collapse
|
7
|
Zhang J, Zhao S, Tao X, Chen Q, Yin D, Zhang C. Two AIE-Ligand-Based 2-D Luminescent Metal-Organic Frameworks as Fe 3+ Sensors. Inorg Chem 2024; 63:8342-8350. [PMID: 38640494 DOI: 10.1021/acs.inorgchem.4c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
The design and synthesis of high-performance sensors are very important but remain great challenges. In this work, a new aggregation-induced-emission (AIE) molecule 4,4'-(((9H-fluoren-9-ylidene)methylene)bis(4,1-phenylene))dipyridine (L) was successfully synthesized and first developed as a functional ligand to construct two isomorphic metal-organic frameworks (MOFs) [M(L)(OBBA)]n [M2+ = Cd2+ (1), Co2+ (2); H2OBBA = 4,4'-oxybisbenzoic acid]. They adopt [M2(COO)4] flywheel clusters, OBBA2- bridges, and terminal L ligands as building units to form isomorphic 2-D networks with Lewis base active cites (uncoordinated pyridyl N). Both 1 and 2 exhibit excellent water, pH, and thermal stabilities and extremely efficient Fe3+ sensing abilities in the water environment. The quenching constants and detection limits reach the best levels reported so far. The sensing mechanism of 1 and 2 toward Fe3+ is studied in depth, and the difference in their sensing performance is also explained.
Collapse
Affiliation(s)
- Jinfang Zhang
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Shunchang Zhao
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Xingyu Tao
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Qinghan Chen
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Dejing Yin
- School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Chi Zhang
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
8
|
Timková I, Maliničová L, Nosáľová L, Kolesárová M, Lorková Z, Petrová N, Pristaš P, Kisková J. Genomic insights into the adaptation of Acinetobacter johnsonii RB2-047 to the heavy metal-contaminated subsurface mine environment. Biometals 2024; 37:371-387. [PMID: 37973678 PMCID: PMC11006771 DOI: 10.1007/s10534-023-00555-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/21/2023] [Indexed: 11/19/2023]
Abstract
The subsurface mine environments characterized by high levels of toxic metals and low nutrient availability represent an extreme threat to bacterial persistence. In recent study, the genomic analysis of the Acinetobacter johnsonii strain RB2-047 isolated from the Rozália Gold Mine in Slovakia was performed. As expected, the studied isolate showed a high level of heavy metal tolerance (minimum inhibitory concentrations were 500 mg/L for copper and nickel, 1,500 mg/L for lead, and 250 mg/L for zinc). The RB2-047 strain also showed noticeable resistance to several antibiotics (ampicillin, kanamycin, chloramphenicol, tetracycline and ciprofloxacin). The genomic composition analysis demonstrated a low number of antibiotic and metal resistance coding genes, but a high occurrence of efflux transporter genes located on the bacterial chromosome. The experimental inhibition of efflux pumps resulted in decreased tolerance to Zn and Ni (but not to Cu and Pb) and to all antibiotics tested. In addition, the H33342 dye-accumulation assay confirmed the high efflux activity in the RB2-047 isolate. These findings showed the important role of efflux pumps in the adaptation of Acinetobacter johsonii strain RB2-047 to metal polluted mine environment as well as in development of multi-antibiotic resistance.
Collapse
Affiliation(s)
- Ivana Timková
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia
| | - Lenka Maliničová
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia
| | - Lea Nosáľová
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia
| | - Mariana Kolesárová
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia
| | - Zuzana Lorková
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia
| | - Nikola Petrová
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia
| | - Peter Pristaš
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia
- Centre of Biosciences, Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4-6, 04001, Košice, Slovakia
| | - Jana Kisková
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia.
| |
Collapse
|
9
|
Kim H, Yoo K. Marine plastisphere selectively enriches microbial assemblages and antibiotic resistance genes during long-term cultivation periods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123450. [PMID: 38280464 DOI: 10.1016/j.envpol.2024.123450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/07/2024] [Accepted: 01/24/2024] [Indexed: 01/29/2024]
Abstract
Several studies have focused on identifying and quantifying suspended plastics in surface and subsurface seawater. Microplastics (MPs) have attracted attention as carriers of antibiotic resistance genes (ARGs) in the marine environment. Plastispheres, specific biofilms on MP, can provide an ideal niche to spread more widely through horizontal gene transfer (HGT), thereby increasing risks to ecosystems and human health. However, the microbial communities formed on different plastic types and ARG abundances during exposure time in natural marine environments remain unclear. Four types of commonly used MPs (polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyvinyl chloride (PVC)) were periodically cultured (46, 63, and 102 d) in a field-based marine environment to study the co-selection of ARGs and microbial communities in marine plastispheres. After the first 63 d of incubation (p < 0.05), the initial 16S rRNA gene abundance of microorganisms in the plastisphere increased significantly, and the biomass subsequently decreased. These results suggest that MPs can serve as vehicles for various microorganisms to travel to different environments and eventually provide a niche for a variety of microorganisms. Additionally, the qPCR results showed that MPs selectively enriched ARGs. In particular, tetA, tetQ, sul1, and qnrS were selectively enriched in the PVC-MPs. The abundances of intl1, a mobile genetic element, was measured in all MP types for 46 d (5.22 × 10-5 ± 8.21 × 10-6 copies/16s rRNA gene copies), 63 d (5.90 × 10-5 ± 2.49 × 10-6 copies/16s rRNA gene copies), and 102 d (4.00 × 10-5 ± 5.11 × 10-6 copies/16s rRNA gene copies). Network analysis indicated that ARG profiles co-occurred with key biofilm-forming bacteria. This study suggests that the selection of ARGs and their co-occurring bacteria in MPs could potentially accelerate their transmission through HGT in natural marine plastics.
Collapse
Affiliation(s)
- Hyunsu Kim
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea
| | - Keunje Yoo
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea.
| |
Collapse
|
10
|
Larsson Y, Mongelli A, Kisielius V, Bester K. Microbial biofilm metabolization of benzalkonium compounds (benzyl dimethyl dodecyl ammonium & benzyl dimethyl tetradecyl ammonium chloride). JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132834. [PMID: 37918070 DOI: 10.1016/j.jhazmat.2023.132834] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Benzalkonium chlorides (BACs) are quaternary ammonium compounds (QUATs) that are used as biocides. The degradation of these compounds in wastewater treatment plants is essential to reduce their spread into the environment and thus prevent the development of QUAT-resistant genes. The biodegradation of two BACs (BAC-12 and BAC-14) was investigated in moving bed biofilm reactors (MBBRs). Degradation half-lives of 12 and 20 h for BAC-12 and - 14, respectively, were detected as well as the formation of 42 metabolites. Two new degradation pathways for the BACs were identified in this study: 1) one involving an ω-oxidation, followed by β-oxidation and 2) one via an ω-oxidation followed by an α-oxidation that was succeeded by β-oxidation. Similar metabolites were detected for both BAC-12 and BAC-14. Additional metabolites were detected in the study, that could not be assigned to the above-mentioned pathways, revealing even more metabolic pathways in the MBBR which is probably due to the complexity of the microbial community in the biofilm. Interestingly, both TP194 (Benzyl-(carboxymethyl)-dimethylazanium) and TP208B (Benzyl-(2-carboxyethyl)-dimethylazanium) were identified as end products of the ω/β-pathway and the α/β-pathway. TP208B, TP152 and TP250 that were identified in this study, as well as the known BDMA were discovered in the effluent of a wastewater treatment plant.
Collapse
Affiliation(s)
- Yrsa Larsson
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Andrea Mongelli
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Vaidotas Kisielius
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark.
| |
Collapse
|
11
|
Chukwu KB, Abafe OA, Amoako DG, Essack SY, Abia ALK. Environmental concentrations of antibiotics, biocides, and heavy metals fail to induce phenotypic antimicrobial resistance in Escherichia coli. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165721. [PMID: 37482346 DOI: 10.1016/j.scitotenv.2023.165721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Most anthropogenically affected environments contain mixtures of pollutants from different sources. The impact of these pollutants is usually the combined effect of the individual polluting constituents. However, how these stressors contribute to the development of antimicrobial resistance in environmental microorganisms is poorly understood. Thus, a 30-day exposure experiment to environmental and sub-inhibitory concentrations of oxytetracycline, amoxicillin, zinc, copper, BAC (benzalkonium chloride) 10 and DADMAC (diallyldimethylammonium chloride) 12, was conducted using fully susceptible E. coli ATCC 25922 to ascertain any development of phenotypic or genotypic resistance. Furthermore, wild-type isolates were collected from the same aquatic environment as the stressors, analysed for phenotypic resistance using the disk diffusion method and genotypically through whole genome sequencing. Exposure to the various concentrations and combinations of the stressors did not trigger phenotypic resistance in the experimental bacteria. Furthermore, genotypic analysis of the WGS on the exposed isolates only found the macrolide resistance mdf(A) gene (also present in the control strain) and the disinfectant resistance gene sitABCD. With further analysis for single nucleotide variants (SNV), mutations were detected for 19 genes that encoded for oxidative stress, DNA repair, membrane proteins efflux systems, growth and persister formations except for the robA, a transcription protein subset of the ArcC/XylS family of proteins, which confer multidrug resistance in E. coli. This indicates that exposure to sub-inhibitory concentrations of antibiotics, heavy metals and biocide residues in the aquatic environmental concentrations of the stressors identified in the current study could not induce phenotypic or genotypic resistance but encoded for genes responsible for the development of persistence and tolerance in bacteria, which could be a precursor to the development of resistance in environmental bacteria.
Collapse
Affiliation(s)
- Kelechi B Chukwu
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ovokeroye A Abafe
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; Residue Laboratory, Agricultural Research Council - Onderstepoort Veterinary Research Campus, Onderstepoort 0110, South Africa
| | - Daniel G Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Integrative Biology and Bioinformatics, University of Guelph, Ontario N1G 2W1, Canada
| | - Sabiha Y Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Akebe L K Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Environmental Research Foundation, Westville 3630, Kwazulu-Natal, South Africa.
| |
Collapse
|
12
|
Andrade L, P Ryan M, P Burke L, Hynds P, Weatherill J, O'Dwyer J. Assessing antimicrobial and metal resistance genes in Escherichia coli from domestic groundwater supplies in rural Ireland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121970. [PMID: 37343911 DOI: 10.1016/j.envpol.2023.121970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/08/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
Natural ecosystems can become significant reservoirs and/or pathways for antimicrobial resistance (AMR) dissemination, with the potential to affect nearby microbiological, animal, and ultimately human communities. This is further accentuated in environments that provide direct human exposure, such as drinking water. To date, however, few studies have investigated AMR dissemination potential and the presence of co-selective stressors (e.g., metals/metalloids) in groundwater environments of human health significance. Accordingly, the present study analysed samples from rural (drinking) groundwater supplies (i.e., private wells) in the Republic of Ireland, where land use is dominated by livestock grazing activities. In total, 48 Escherichia coli isolates tested phenotypically for antimicrobial susceptibility in an earlier study were further subject to whole genome sequencing (WGS) and corresponding water samples were further analysed for trace metal/metalloid concentrations. Eight isolates (i.e., 16.7%) were genotypically resistant to antimicrobials, confirming prior phenotypic results through the identification of ten antimicrobial resistance genes (ARGs); namely: aph(3″)-lb (strA; n=7), aph(6)-Id (strA; n = 6), blaTEM (n = 6), sul2 (n = 6), tetA (n = 4), floR (n = 2), dfrA5 (n = 1), tetB (n = 1), and tetY (n = 1). Additional bioinformatic analysis revealed that all ARGs were plasmid-borne, except for two of the six sul2 genes, and that 31.2% of all tested isolates (n = 15) and 37.5% of resistant ones (n = 3) carried virulence genes. Study results also found no significant relationships between metal concentrations and ARG abundance. Additionally, just one genetic linkage was identified between ARGs and a metal resistance gene (MRG), namely merA, a mercury-resistant gene found on the same plasmid as blaTEM, dfrA5, strA, strB, and sul2 in the only isolate of inferred porcine (as opposed to bovine) origin. Overall, findings suggest that ARG (and MRG) acquisition may be occurring prior to groundwater ingress, and are likely a legacy issue arising from agricultural practices.
Collapse
Affiliation(s)
- Luisa Andrade
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland.
| | - Michael P Ryan
- Department of Applied Sciences, Technological University of the Shannon Midwest, Moylish, Ireland
| | - Liam P Burke
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Paul Hynds
- Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin, Dublin 7, Ireland
| | - John Weatherill
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - Jean O'Dwyer
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
Cornacchia A, Janowicz A, Centorotola G, Saletti MA, Ranieri SC, Ancora M, Ripà P, Cammà C, Pomilio F, Chiaverini A. Multi-approach methods to predict cryptic carbapenem resistance mechanisms in Klebsiella pneumoniae detected in Central Italy. Front Microbiol 2023; 14:1242693. [PMID: 37700864 PMCID: PMC10493390 DOI: 10.3389/fmicb.2023.1242693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/09/2023] [Indexed: 09/14/2023] Open
Abstract
The rapid emergence of carbapenem-resistant Klebsiella pneumoniae (Kp) strains in diverse environmental niches, even outside of the clinical setting, poses a challenge for the detection and the real-time monitoring of novel antimicrobial resistance trends using molecular and whole genome sequencing-based methods. The aim of our study was to understand cryptic resistance determinants responsible for the phenotypic carbapenem resistance observed in strains circulating in Italy by using a combined approach involving whole genome sequencing (WGS) and genome-wide association study (GWAS). In this study, we collected 303 Kp strains from inside and outside clinical settings between 2018-2022 in the Abruzzo region of Italy. The antimicrobial resistance profile of all isolates was assessed using both phenotypic and bioinformatic methods. We identified 11 strains resistant to carbapenems, which did not carry any known genetic determinants explaining their phenotype. The GWAS results showed that incongruent carbapenem-resistant phenotype was associated specifically with strains with two capsular types, KL13 and KL116 including genes involved in the capsule synthesis, encoding proteins involved in the assembly of the capsule biosynthesis apparatus, capsule-specific sugar synthesis, processing and export, polysaccharide pyruvyl transferase, and lipopolysaccharide biosynthesis protein. These preliminary results confirmed the potential of GWAS in identifying genetic variants present in KL13 and KL116 that could be associated with carbapenem resistance traits in Kp. The implementation of advanced methods, such as GWAS with increased antimicrobial resistance surveillance will potentially improve Kp infection treatment and patient outcomes.
Collapse
Affiliation(s)
- Alessandra Cornacchia
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario, Teramo, Italy
| | - Anna Janowicz
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario, Teramo, Italy
| | - Gabriella Centorotola
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario, Teramo, Italy
| | - Maria Antonietta Saletti
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario, Teramo, Italy
| | - Sofia Chiatamone Ranieri
- Operative Unit of Clinical Pathology and Microbiology, Department of Services, ASL of Teramo, Teramo, Italy
| | - Massimo Ancora
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario, Teramo, Italy
| | - Paola Ripà
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario, Teramo, Italy
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario, Teramo, Italy
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario, Teramo, Italy
| | - Alexandra Chiaverini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario, Teramo, Italy
| |
Collapse
|
14
|
Sodhi KK, Singh CK, Kumar M, Singh DK. Whole-genome sequencing of Alcaligenes sp. strain MMA: insight into the antibiotic and heavy metal resistant genes. Front Pharmacol 2023; 14:1144561. [PMID: 37251338 PMCID: PMC10213877 DOI: 10.3389/fphar.2023.1144561] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction: A wide range of pollutants, including the likes of xenobiotics, heavy metals, and antibiotics, are characteristic of marine ecosystems. The ability of the bacteria to flourish under high metal stress favors the selection of antibiotic resistance in aquatic environments. Increased use and misuse of antibiotics in medicine, agriculture, and veterinary have posed a grave concern over antimicrobial resistance. The exposure to these heavy metals and antibiotics in the bacteria drives the evolution of antibiotic and heavy metal resistance genes. In the earlier study by the author Alcaligenes sp. MMA was involved in the removal of heavy metals and antibiotics. Alcaligenes display diverse bioremediation capabilities but remain unexplored at the level of the genome. Methods: To shed light on its genome, the Alcaligenes sp. strain MMA, was sequenced using Illumina Nova Seq sequencer, which resulted in a draft genome of 3.9 Mb. The genome annotation was done using Rapid annotation using subsystem technology (RAST). Given the spread of antimicrobial resistance and the generation of multi-drug resistant pathogens (MDR), the strain MMA was checked for potential antibiotic and heavy metal resistance genes Further, we checked for the presence of biosynthetic gene clusters in the draft genome. Results: Alcaligenes sp. strain MMA, was sequenced using Illumina Nova Seq sequencer, which resulted in a draft genome of 3.9 Mb. The RAST analysis revealed the presence of 3685 protein-coding genes, involved in the removal of antibiotics and heavy metals. Multiple metal-resistant genes and genes conferring resistance to tetracycline, beta-lactams, and fluoroquinolones were present in the draft genome. Many types of BGCs were predicted, such as siderophore. The secondary metabolites of fungi and bacteria are a rich source of novel bioactive compounds which have the potential to in new drug candidates. Discussion: The results of this study provide information on the strain MMA genome and are valuable for the researcher in further exploitation of the strain MMA for bioremediation. Moreover, whole-genome sequencing has become a useful tool to monitor the spread of antibiotic resistance, a global threat to healthcare.
Collapse
Affiliation(s)
| | | | - Mohit Kumar
- Hindu College, University of Delhi, Delhi, India
| | | |
Collapse
|
15
|
Yan S, Zhang Z, Wang J, Xia Y, Chen S, Xie S. River sediment microbial community composition and function impacted by thallium spill. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163101. [PMID: 36996985 DOI: 10.1016/j.scitotenv.2023.163101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023]
Abstract
Thallium (Tl) is widely used in various industries, which increases the risk of leakage into the environment. Since Tl is highly toxic, it can do a great harm to human health and ecosystem. In order to explore the response of freshwater sediment microorganisms to sudden Tl spill, metagenomic technique was used to elucidate the changes of microbial community composition and functional genes in river sediments. Tl pollution could have profound impacts on microbial community composition and function. Proteobacteria remained the dominance in contaminated szediments, indicating that it had a strong resistance to Tl contamination, and Cyanobacteria also showed a certain resistance. Tl pollution also had a certain screening effect on resistance genes and affected the abundance of resistance genes. Metal resistance genes (MRGs) and antibiotic resistance genes (ARGs) were enriched at the site near the spill site, where Tl concentration was relatively low among polluted sites. When Tl concentration was higher, the screening effect was not obvious and the resistance genes even became lower. Moreover, there was a significant correlation between MRGs and ARGs. In addition, co-occurrence network analysis showed that Sphingopyxis had the most links with resistance genes, indicating that it was the biggest potential host of resistance genes. This study provided new insight towards the shifts in the composition and function of microbial communities after sudden serious Tl contamination.
Collapse
Affiliation(s)
- Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhengke Zhang
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| | - Ji Wang
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| | - Yulin Xia
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| | - Sili Chen
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China.
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Anedda E, Farrell ML, Morris D, Burgess CM. Evaluating the impact of heavy metals on antimicrobial resistance in the primary food production environment: A scoping review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121035. [PMID: 36623784 DOI: 10.1016/j.envpol.2023.121035] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Heavy metals are naturally occurring environmental compounds, which can influence antimicrobial resistance (AMR) dissemination. However, there is limited information on how heavy metals may act as a selective pressure on AMR in the primary food production environment. This review aims to examine the literature on this topic in order to identify knowledge gaps. A total of 73 studies, which met pre-established criteria, were included. These investigations were undertaken between 2008 and 2021, with a significant increase in the last three years. The majority of studies included were undertaken in China. Soil, water and manure were the most common samples analysed, and the sampling locations varied from areas with a natural presence of heavy metals, areas intentionally amended with heavy metals or manure, to areas close to industrial activity or mines. Fifty-four per cent of the investigations focused on the analysis of four or more heavy metals, and copper and zinc were the metals most frequently analysed (n = 59, n = 49, respectively). The findings of this review highlight a link between heavy metals and AMR in the primary food production environment. Heavy metals impacted the abundance and dissemination of mobile genetic elements (MGEs) and antimicrobial resistance genes (ARGs), with MGEs also observed as playing a key role in the spread of ARGs and metal resistance genes (MRGs). Harmonization of methodologies used in future studies would increase the opportunity for comparison between studies. Further research is also required to broaden the availability of data at a global level.
Collapse
Affiliation(s)
- Elena Anedda
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Ireland; Food Safety Department, Teagasc Food Research Centre Ashtown, Dublin, Ireland.
| | - Maeve Louise Farrell
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Ireland.
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Ireland.
| | - Catherine M Burgess
- Food Safety Department, Teagasc Food Research Centre Ashtown, Dublin, Ireland.
| |
Collapse
|
17
|
Bosch J, Bezuidenhout C, Coertze R, Molale-Tom L. Metal- and antibiotic-resistant heterotrophic plate count bacteria from a gold mine impacted river: the Mooi River system, South Africa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:31605-31619. [PMID: 36449242 PMCID: PMC9995416 DOI: 10.1007/s11356-022-24015-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/01/2022] [Indexed: 04/16/2023]
Abstract
The Wonderfonteinspruit, South Africa, is highly impacted by a century of gold mining activities. The aim of this study was to investigate the physico-chemical properties of the Wonderfonteinspruit and the receiving Mooi River system, the levels of antimicrobial (metals and antibiotics) resistance characteristics and heterotrophic bacteria levels in these water systems. Various physico-chemical parameters were determined. R2A agar and R2A agar supplemented with antimicrobials were used to enumerate heterotrophic bacteria. Morphologically distinct antimicrobial-resistant isolates were purified and screened for antibiotic susceptibility by a disc diffusion method. Selected isolates were identified, and minimum inhibitory concentration ranges determined. Among the antimicrobial resistant isolates, 87% were resistant to at least one antibiotic. Of these, almost 50% were resistant to more than 3 antibiotic classes. A large proportion was resistant to all 7 antibiotics tested. Phyla detected were Proteobacteria, Firmicutes and Bacteriodetes. High MIC levels for metals and antibiotics were detected among all the genera. Results demonstrate potential impacts of physico-chemical properties on levels of antimicrobial-resistant bacteria. Metal-resistant bacteria were also resistant to multiple antibiotics, suggesting that metal pollution from mining may be responsible for co-selection and maintenance of antibiotic-resistant bacteria in this aquatic system.
Collapse
Affiliation(s)
- Janita Bosch
- Unit for Environmental Sciences and Management, Microbiology, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Carlos Bezuidenhout
- Unit for Environmental Sciences and Management, Microbiology, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Roelof Coertze
- Unit for Environmental Sciences and Management, Microbiology, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Lesego Molale-Tom
- Unit for Environmental Sciences and Management, Microbiology, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
18
|
Lu H, Xia C, Chinnathambi A, Nasif O, Narayanan M, Shanmugam S, Lan Chi NT, Pugazhendhi A, On-Uma R, Jutamas K, Anupong W. Evaluation of cadmium tolerance and remediated efficacy of wild and mutated Enterobacter species isolated from potassium nitrate (KNO₃) processing unit contaminated soil. CHEMOSPHERE 2023; 311:136899. [PMID: 36265702 DOI: 10.1016/j.chemosphere.2022.136899] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The purpose of this study was to find the most cadmium (Cd2+) tolerant and remediated bacteria isolate from KNO3 processing unit contaminated soil. One isolate out of 19 isolates possessed excellent Cd2+ tolerance than others, which was recognized as Enterobacter hormaechei SFC3 through molecular characterization (16S rRNA sequencing). The identified E. hormaechei SFC3 contained 55% and 45% of GC and AT content, respectively. The wild and acridine orange mutated E. hormaechei SFC3 exhibited excellent resistance to Cd2+ up to the concentration of 1500 μg mL-1. Furthermore, the wild E. hormaechei SFC3 and mutated E. hormaechei SFC3 showed 82.47% and 90.21% of Cd2+ remediation on 6th days of treatment respectively. Similarly, the Cd2+ tolerant wild and mutated E. hormaechei SFC3 showed considerable resistance to all the tested antibiotics. The findings indicate that E. hormaechei SFC3 isolated from KNO₃ processing unit contaminated soil is a promising candidate for microbial remediation of Cd2+ contamination.
Collapse
Affiliation(s)
- Haiying Lu
- College of Biology and the Environment, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Changlei Xia
- College of Biology and the Environment, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Omaima Nasif
- Department of Physiology, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh, 11461, Saudi Arabia
| | - Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, Tamil Nadu, India
| | - Sabarathinam Shanmugam
- Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Lifescience, Kreutzwaldi 56, 51014, Tartu, Estonia
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Ruangwong On-Uma
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kumchai Jutamas
- Department of Plant Science and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wongchai Anupong
- Department of Agricultural Economy and Development, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
19
|
Zagui GS, Andrade LN, Sierra J, Rovira J, Darini ALC, Segura-Muñoz S. Plastisphere as a pathway for antimicrobial-resistant bacteria spread to the environment: New challenge and open questions. ENVIRONMENTAL RESEARCH 2022; 214:114156. [PMID: 36037917 DOI: 10.1016/j.envres.2022.114156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Affiliation(s)
| | | | - Jordi Sierra
- Faculty of Pharmacy, Universitat de Barcelona, Joan XXIII s/n Avenue, 08028, Barcelona, Catalonia, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Joaquim Rovira
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Environmental Engineering Laboratory, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Paisos Catalans Avenue 26, 43007, Tarragona, Catalonia, Spain
| | | | | |
Collapse
|
20
|
Shin M, Kang JW, Kang DH. A study on antibiotic resistance gene degradation in fresh produce using peracetic acid combined with an ultraviolet-C light-emitting-diode. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
21
|
Singh A, Chauhan S, Varjani S, Pandey A, Bhargava PC. Integrated approaches to mitigate threats from emerging potentially toxic elements: A way forward for sustainable environmental management. ENVIRONMENTAL RESEARCH 2022; 209:112844. [PMID: 35101398 DOI: 10.1016/j.envres.2022.112844] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/13/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Potentially toxic elements (PTEs) such as toxic metal (loid)s and other emerging hazardous contaminants, exist in the environment and poses a serious threat. A large amount of wastewater containing PTEs such as cadmium, chromium, copper, nickel, arsenic, lead, zinc, etc. Release from industries during production process. Besides these, chemical-based fertilizers used in soils during crop production have become one of the crucial sources of PTEs. Various techniques are being employed for the mitigation of PTEs like chemical precipitation, ion exchange, coagulation, activated carbon, adsorption, membrane filtration, and bioremediation. Among these mitigation strategies, biological processes such as bioremediation, phytoremediation etc. Are extensively used, as they are economic have high-efficiency rate and are eco-friendly. This review intends to provide information on PTEs contamination through various sources; along with the toxicity of metal (loid)s with respect to their patterns of transmission and risks in the changing environment. Various remediation methods for the management of these pollutants along with their techno-economic perspective are also summarized in this review.
Collapse
Affiliation(s)
- Anuradha Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Shraddha Chauhan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | | | - Ashok Pandey
- Centre for Innovation and Transnational Research, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Center for Energy and Environmental Sustainability, Lucknow, 226029, Uttar Pradesh, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007,Uttarakhand, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
22
|
Gaeta NC, de Carvalho DU, Fontana H, Sano E, Moura Q, Fuga B, Munoz PM, Gregory L, Lincopan N. Genomic features of a multidrug-resistant and mercury-tolerant environmental Escherichia coli recovered after a mining dam disaster in South America. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153590. [PMID: 35122850 PMCID: PMC8994849 DOI: 10.1016/j.scitotenv.2022.153590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 05/03/2023]
Abstract
Mining dam disasters contribute to the contamination of aquatic environments, impacting associated ecosystems and wildlife. A multidrug-resistant Escherichia coli strain (B2C) was isolated from a river water sample in Brazil after the Mariana mining dam disaster. The genome was sequenced using the Illumina MiSeq platform, and de novo assembled using Unicycler. Resistome, virulome, and plasmidome were predicted using bioinformatics tools. Data analysis revealed that E. coli B2C belonged to sequence type ST219 and phylogroup E. Strikingly, a broad resistome (antibiotics, hazardous heavy metals, and biocides) was predicted, including the presence of the clinically relevant blaCTX-M-2 extended-spectrum β-lactamase (ESBL) gene, qacE∆1 efflux pump gene, and the mer (mercury resistance) operon. SNP-based analysis revealed that environmental E. coli B2C was clustered along to ESBL-negative E. coli strains of ST219 isolated between 1980 and 2021 from livestock in the United States of America. Acquisition of clinically relevant genes by ST219 seems to be a recent genetic event related to anthropogenic activities, where polluted water environments may contribute to its dissemination at the human-animal-environment interface. In addition, the presence of genes conferring resistance to heavy metals could be related to environmental pollution from mining activities. Antimicrobial resistance genes could be essential biomarkers of environmental exposure to human and mining pollution.
Collapse
Affiliation(s)
- Natália C Gaeta
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| | - Daniel U de Carvalho
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Herrison Fontana
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil
| | - Elder Sano
- One Health Brazilian Resistance Project (OneBR), Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Quézia Moura
- Federal Institute of Education, Science and Technology of Espírito Santo, Vila Velha, Brazil
| | - Bruna Fuga
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Lilian Gregory
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
23
|
Pavón A, Riquelme D, Jaña V, Iribarren C, Manzano C, Lopez-Joven C, Reyes-Cerpa S, Navarrete P, Pavez L, García K. The High Risk of Bivalve Farming in Coastal Areas With Heavy Metal Pollution and Antibiotic-Resistant Bacteria: A Chilean Perspective. Front Cell Infect Microbiol 2022; 12:867446. [PMID: 35463633 PMCID: PMC9021898 DOI: 10.3389/fcimb.2022.867446] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022] Open
Abstract
Anthropogenic pollution has a huge impact on the water quality of marine ecosystems. Heavy metals and antibiotics are anthropogenic stressors that have a major effect on the health of the marine organisms. Although heavy metals are also associate with volcanic eruptions, wind erosion or evaporation, most of them come from industrial and urban waste. Such contamination, coupled to the use and subsequent misuse of antimicrobials in aquatic environments, is an important stress factor capable of affecting the marine communities in the ecosystem. Bivalves are important ecological components of the oceanic environments and can bioaccumulate pollutants during their feeding through water filtration, acting as environmental sentinels. However, heavy metals and antibiotics pollution can affect several of their physiologic and immunological processes, including their microbiome. In fact, heavy metals and antibiotics have the potential to select resistance genes in bacteria, including those that are part of the microbiota of bivalves, such as Vibrio spp. Worryingly, antibiotic-resistant phenotypes have been shown to be more tolerant to heavy metals, and vice versa, which probably occurs through co- and cross-resistance pathways. In this regard, a crucial role of heavy metal resistance genes in the spread of mobile element-mediated antibiotic resistance has been suggested. Thus, it might be expected that antibiotic resistance of Vibrio spp. associated with bivalves would be higher in contaminated environments. In this review, we focused on co-occurrence of heavy metal and antibiotic resistance in Vibrio spp. In addition, we explore the Chilean situation with respect to the contaminants described above, focusing on the main bivalves-producing region for human consumption, considering bivalves as potential vehicles of antibiotic resistance genes to humans through the ingestion of contaminated seafood.
Collapse
Affiliation(s)
- Alequis Pavón
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Diego Riquelme
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Víctor Jaña
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas (NIAVA), Universidad de Las Américas, Santiago, Chile
| | - Cristian Iribarren
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Camila Manzano
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Carmen Lopez-Joven
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Reyes-Cerpa
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Paola Navarrete
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Leonardo Pavez
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas (NIAVA), Universidad de Las Américas, Santiago, Chile
- *Correspondence: Leonardo Pavez, ; Katherine García,
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
- Carrera de Nutrición y Dietética, Universidad Autónoma de Chile, Santiago, Chile
- *Correspondence: Leonardo Pavez, ; Katherine García,
| |
Collapse
|
24
|
Li X, Zhu X, Zhang Y, Cao P, Wang R, He Y. Cationic Copolymer Sweetsop-shape Nanospheres Conjugating SalPhen-Zinc Complex for Excellent Antimicrobial. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
25
|
Bäumler W, Eckl D, Holzmann T, Schneider-Brachert W. Antimicrobial coatings for environmental surfaces in hospitals: a potential new pillar for prevention strategies in hygiene. Crit Rev Microbiol 2021; 48:531-564. [PMID: 34699296 DOI: 10.1080/1040841x.2021.1991271] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent reports provide evidence that contaminated healthcare environments represent major sources for the acquisition and transmission of pathogens. Antimicrobial coatings (AMC) may permanently and autonomously reduce the contamination of such environmental surfaces complementing standard hygiene procedures. This review provides an overview of the current status of AMC and the demands to enable a rational application of AMC in health care settings. Firstly, a suitable laboratory test norm is required that adequately quantifies the efficacy of AMC. In particular, the frequently used wet testing (e.g. ISO 22196) must be replaced by testing under realistic, dry surface conditions. Secondly, field studies should be mandatory to provide evidence for antimicrobial efficacy under real-life conditions. The antimicrobial efficacy should be correlated to the rate of nosocomial transmission at least. Thirdly, the respective AMC technology should not add additional bacterial resistance development induced by the biocidal agents and co- or cross-resistance with antibiotic substances. Lastly, the biocidal substances used in AMC should be safe for humans and the environment. These measures should help to achieve a broader acceptance for AMC in healthcare settings and beyond. Technologies like the photodynamic approach already fulfil most of these AMC requirements.
Collapse
Affiliation(s)
- Wolfgang Bäumler
- Department of Dermatology, University Hospital, Regensburg, Germany
| | - Daniel Eckl
- Department of Microbiology, University of Regensburg, Regensburg, Germany
| | - Thomas Holzmann
- Department of Infection Control and Infectious Diseases, University Hospital, Regensburg, Germany
| | - Wulf Schneider-Brachert
- Department of Infection Control and Infectious Diseases, University Hospital, Regensburg, Germany
| |
Collapse
|
26
|
Diversity of Multidrug-Resistant Bacteria in an Urbanized River: A Case Study of the Potential Risks from Combined Sewage Overflows. WATER 2021. [DOI: 10.3390/w13152122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Wastewater contamination and urbanization contribute to the spread of antibiotic resistance in aquatic environments. This is a particular concern in areas receiving chronic pollution of untreated waste via combined sewer overflow (CSO) events. The goal of this study was to expand knowledge of CSO impacts, with a specific focus on multidrug resistance. We sampled a CSO-impacted segment of the James River (Virginia, USA) during both clear weather and an active overflow event and compared it to an unimpacted upstream site. Bacteria resistant to ampicillin, streptomycin, and tetracycline were isolated from all samples. Ampicillin resistance was particularly abundant, especially during the CSO event, so these isolates were studied further using disk susceptibility tests to assess multidrug resistance. During a CSO overflow event, 82% of these isolates were resistant to five or more antibiotics, and 44% were resistant to seven or more. The latter statistic contrasts starkly with the upstream reference site, where only 4% of isolates displayed resistance to more than seven antibiotics. DNA sequencing (16S rRNA gene) revealed that ~35% of our isolates were opportunistic pathogens, comprised primarily of the genera Stenotrophomonas, Pseudomonas, and Chryseobacterium. Together, these results demonstrate that CSOs can be a significant source of viable clinically-relevant bacteria to the natural environment and that multidrug resistance is an important understudied component of the environmental spread of antibiotic resistance.
Collapse
|
27
|
Giacometti F, Shirzad-Aski H, Ferreira S. Antimicrobials and Food-Related Stresses as Selective Factors for Antibiotic Resistance along the Farm to Fork Continuum. Antibiotics (Basel) 2021; 10:671. [PMID: 34199740 PMCID: PMC8230312 DOI: 10.3390/antibiotics10060671] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global problem and there has been growing concern associated with its widespread along the animal-human-environment interface. The farm-to-fork continuum was highlighted as a possible reservoir of AMR, and a hotspot for the emergence and spread of AMR. However, the extent of the role of non-antibiotic antimicrobials and other food-related stresses as selective factors is still in need of clarification. This review addresses the use of non-antibiotic stressors, such as antimicrobials, food-processing treatments, or even novel approaches to ensure food safety, as potential drivers for resistance to clinically relevant antibiotics. The co-selection and cross-adaptation events are covered, which may induce a decreased susceptibility of foodborne bacteria to antibiotics. Although the available studies address the complexity involved in these phenomena, further studies are needed to help better understand the real risk of using food-chain-related stressors, and possibly to allow the establishment of early warnings of potential resistance mechanisms.
Collapse
Affiliation(s)
- Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy;
| | - Hesamaddin Shirzad-Aski
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan 49178-67439, Iran;
| | - Susana Ferreira
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
28
|
Turner RJ, Huang LN, Viti C, Mengoni A. Metal-Resistance in Bacteria: Why Care? Genes (Basel) 2020; 11:E1470. [PMID: 33302493 PMCID: PMC7764034 DOI: 10.3390/genes11121470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
Heavy metal resistance is more than the tolerance one has towards a particular music genera [...].
Collapse
Affiliation(s)
- Raymond J. Turner
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China;
| | - Carlo Viti
- Laboratorio Genexpress, Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università di Firenze, 50144 Florence, Italy;
| | - Alessio Mengoni
- Laboratorio di Genetica Microbica, Dipartimento di Biologia, Università di Firenze, 50019 Florence, Italy
| |
Collapse
|
29
|
Altuğ G, Çardak M, Türetken PSÇ, Kalkan S, Gürün S. Antibiotic and Heavy Metal Resistant Bacteria Isolated from Aegean Sea Water and Sediment in Güllük Bay, Turkey : Quantifying the resistance of identified bacteria species with potential for environmental remediation applications. JOHNSON MATTHEY TECHNOLOGY REVIEW 2020. [DOI: 10.1595/205651320x15953337767424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heavy metal and antibiotic-resistant bacteria have potential for environmental bioremediation applications. Resistant bacteria were investigated in sediment and seawater samples taken from the Aegean Sea, Turkey, between 2011 and 2013. Bioindicator bacteria in seawater samples were
tested using the membrane filtration technique. The spread plate technique and VITEK® 2 Compact 30 micro identification system were used for heterotrophic aerobic bacteria in the samples. The minimum inhibition concentration method was used for heavy metal-resistant bacteria.
Antibiotic-resistant bacteria were tested using the disk diffusion method. All bacteria isolated from sediment samples showed 100% resistance to rifampicin, sulfonamide, tetracycline and ampicillin. 98% of isolates were resistant against nitrofurantoin and oxytetracycline. Higher antibiotic
and heavy metal resistance was recorded in bacteria isolated from sediment than seawater samples. The highest levels of bacterial metal resistance were recorded against copper (58.3%), zinc (33.8%), lead (32.1%), chromium (31%) and iron (25.2%). The results show that antibiotic and heavy metal
resistance in bacteria from sediment and seawater can be observed as responses to environmental influences including pollution in marine areas.
Collapse
Affiliation(s)
- Gülşen Altuğ
- Department of Marine Biology, Faculty of Aquatic Sciences, Istanbul University Balabanağa Mahallesi Ordu Caddesi No 8, Laleli, Fatih Istanbul, 34134, Turkey
| | - Mine Çardak
- Department of Fisheries Technology, Faculty of Çanakkale Applied Sciences, Çanakkale Onsekiz Mart University, Terzioğlu Campus Çanakkale, 17020 Turkey
| | - Pelin Saliha Çiftçi Türetken
- Department of Marine Biology, Faculty of Aquatic Sciences, Istanbul University Balabanağa Mahallesi Ordu Caddesi No 8, Laleli, Fatih, Istanbul, 34134 Turkey
| | - Samet Kalkan
- Department of Marine Biology, Faculty of Fisheries and Aquatic Sciences, Recep Tayyip Erdoğan University, Zihni Derin Campus, Rize 53100 Turkey
| | - Sevan Gürün
- Department of Marine Biology, Faculty of Aquatic Sciences, Istanbul University, Balabanağa Mahallesi Ordu Caddesi No 8, Laleli, Fatih, Istanbul 34134 Turkey
| |
Collapse
|