1
|
Zhou Q, Chen Y, Zhang H, Wu S, Liu Y. Evidence for clonal integration of clones contributing to unexpectedly higher benefits for interspecific neighbours. PHYSIOLOGIA PLANTARUM 2024; 176:e70017. [PMID: 39686913 DOI: 10.1111/ppl.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024]
Abstract
Clonal plants benefit from the ability to translocate resources among interconnected ramets to colonize stress habitats. Despite the fact that the physiological integration of clones may influence their general performance and competitiveness, we still lack an understanding of how integration alters the ability of clones to compete with their neighbours. In a greenhouse experiment, we investigated how clonal integration of a perennial herbaceous Cynodon dactylon, which originated from two flooding stress ecotypes, influenced the growth, functional traits, biomass allocation and relative competitiveness of their intraspecific and interspecific neighbours. We also used a greenhouse reciprocal transplant experiment to assess the plasticity and adaptation of clonal integration and test the 'home-field' advantage of clonal integration on the neighbours. The findings showed that, for clones of low-stress ecotypes, clonal integration significantly enhanced the specific root length, biomass storage, root-shoot ratio, and relative competitive ability of the interspecific neighbours, but it had little effect on the overall performance of the intraspecific neighbours across two stress ecotypes. Interestingly, such encouragement also helped the clones expand, suggesting that the clones and their physiologically independent interspecific neighbours can benefit from one another. The home-field advantages of clonal integration were demonstrated by the fact that the clonal ramets from the home site showed more benefit for interspecific neighbours than ramets from the away site. This study provides novel evidence for facilitation and home-field advantage between clones and interspecific neighbours and has implications for understanding stress environments where both high levels of clonality and interspecific facilitation are expected to occur.
Collapse
Affiliation(s)
- Quan Zhou
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Yujie Chen
- School of Geography and Tourism, Chongqing Normal University, Chongqing, China
| | - Hui Zhang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Shengjun Wu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Ying Liu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
2
|
Yuan W, Pigliucci M, Richards CL. Rapid phenotypic differentiation in the iconic Japanese knotweed s.l. invading novel habitats. Sci Rep 2024; 14:14640. [PMID: 38918411 PMCID: PMC11199593 DOI: 10.1038/s41598-024-64109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Understanding the mechanisms that underlie plant invasions is critical for management and conservation of biodiversity. At the same time, invasive species also provide a unique opportunity to study rapid adaptation to complex environmental conditions. Using four replicate reciprocal transplant experiments across three habitats, we described patterns of phenotypic response and assessed the degree of local adaptation in knotweed populations. We found plants from beach habitats were generally smaller than plants from marsh and roadside habitats when grown in their home habitat. In the marsh habitat, marsh plants were generally larger than beach plants, but not different from roadside plants. There were no differences among plants grown in the roadside habitat. We found mixed evidence for local adaptation: plants from the marsh habitat had greater biomass in their "home" sites, while plants from beaches and roadsides had greater survival in their "home" sites compared to other plants. In sum, we found phenotypic differentiation and some support for the hypothesis of rapid local adaptation of plants from beach, marsh and roadside habitats. Identifying whether these patterns of differentiation result from genetic or heritable non-genetic mechanisms will require further work.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Molecular Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Massimo Pigliucci
- Department of Philosophy, City College of New York, New York, NY, USA
| | - Christina L Richards
- Plant Evolutionary Ecology Group, University of Tübingen, Tübingen, Germany.
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
3
|
Cornille A, Tiret M, Salcedo A, Huang HR, Orsucci M, Milesi P, Kryvokhyzha D, Holm K, Ge XJ, Stinchcombe JR, Glémin S, Wright SI, Lascoux M. The relative role of plasticity and demographic history in Capsella bursa-pastoris: a common garden experiment in Asia and Europe. AOB PLANTS 2022; 14:plac011. [PMID: 35669442 PMCID: PMC9162126 DOI: 10.1093/aobpla/plac011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/28/2022] [Indexed: 05/15/2023]
Abstract
The colonization success of a species depends on the interplay between its phenotypic plasticity, adaptive potential and demographic history. Assessing their relative contributions during the different phases of a species range expansion is challenging, and requires large-scale experiments. Here, we investigated the relative contributions of plasticity, performance and demographic history to the worldwide expansion of the shepherd's purse, Capsella bursa-pastoris. We installed two large common gardens of the shepherd's purse, a young, self-fertilizing, allopolyploid weed with a worldwide distribution. One common garden was located in Europe, the other in Asia. We used accessions from three distinct genetic clusters (Middle East, Europe and Asia) that reflect the demographic history of the species. Several life-history traits were measured. To explain the phenotypic variation between and within genetic clusters, we analysed the effects of (i) the genetic clusters, (ii) the phenotypic plasticity and its association to fitness and (iii) the distance in terms of bioclimatic variables between the sampling site of an accession and the common garden, i.e. the environmental distance. Our experiment showed that (i) the performance of C. bursa-pastoris is closely related to its high phenotypic plasticity; (ii) within a common garden, genetic cluster was a main determinant of phenotypic differences; and (iii) at the scale of the experiment, the effect of environmental distance to the common garden could not be distinguished from that of genetic clusters. Phenotypic plasticity and demographic history both play important role at different stages of range expansion. The success of the worldwide expansion of C. bursa-pastoris was undoubtedly influenced by its strong phenotypic plasticity.
Collapse
Affiliation(s)
| | | | | | | | - Marion Orsucci
- Department of Plant Biology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Pascal Milesi
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
- Science for Life Laboratory, 752 37 Uppsala, Sweden
| | - Dmytro Kryvokhyzha
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| | - Karl Holm
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, M5S 3B2 Toronto, ON, Canada
| | | | | | | |
Collapse
|
4
|
Li F, Liu X, Zhu J, Li J, Gao K, Zhao C. The Role of Genetic Factors in the Differential Invasion Success of Two Spartina Species in China. FRONTIERS IN PLANT SCIENCE 2022; 13:909429. [PMID: 35712568 PMCID: PMC9196123 DOI: 10.3389/fpls.2022.909429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Biological invasions have become one of the greatest threats to global biodiversity and ecosystem conservation. Most previous studies have revealed how successful invasive species adapt to new environments and climate change through phenotypic and genetic evolution. Some researchers suggested that understanding unsuccessful or less successful biological invasions might be important for understanding the relationships between invasion adaptability and climate factors. We compared the sexual reproduction ability, genetic diversity, and gene × environment interaction in two intentionally introduced alien species in China (Spartina anglica and Spartina alterniflora) based on restriction site-associated DNA (RAD) sequencing. After more than 50 years, the distribution of S. alterniflora has rapidly expanded, while S. anglica has experienced extreme dieback. A total of 212,939 single nucleotide polymorphisms (SNPs) for the two Spartina species were used for analysis. The multilocus genotype (MLG) analysis revealed that clonal reproduction was the prevalent mode of reproduction in both species, indicating that a change in the mode of reproduction was not the key factor enabling successful invasion by Spartina. All genetic diversity indicators (He, Ho, π) in S. alterniflora populations were at least two times higher than those in S. anglica populations, respectively (p < 0.001). Furthermore, the population genetic structure and stronger patterns of climate-associated loci provided support for rapid adaptive evolution in the populations of S. alterniflora in China. Altogether, our results highlight the importance of genetic diversity and local adaptation, which were driven by multiple source populations, in increasing the invasiveness of S. alterniflora.
Collapse
|
5
|
Cao LJ, Li BY, Chen JC, Zhu JY, Hoffmann AA, Wei SJ. Local climate adaptation and gene flow in the native range of two co-occurring fruit moths with contrasting invasiveness. Mol Ecol 2021; 30:4204-4219. [PMID: 34278603 DOI: 10.1111/mec.16055] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 05/23/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022]
Abstract
Invasive species pose increasing threats to global biodiversity and ecosystems. While previous studies have characterized successful invaders based on ecological traits, characteristics related to evolutionary processes have rarely been investigated. Here we compared gene flow and local adaptation using demographic analyses and outlier tests in two co-occurring moth pests across their common native range of China, one of which (the peach fruit moth, Carposina sasakii) has maintained its native distribution, while the other (the oriental fruit moth, Grapholita molesta) has expanded its range globally during the past century. We found that both species showed a pattern of genetic differentiation and an evolutionary history consistent with a common southwestern origin and northward expansion in their native range. However, for the noninvasive species, genetic differentiation was closely aligned with the environment, and there was a relatively low level of gene flow, whereas in the invasive species, genetic differentiation was associated with geography. Genome scans indicated stronger patterns of climate-associated loci in the noninvasive species. While strong local adaptation and reduced gene flow across its native range may have decreased the invasiveness of C. sasakii, this requires further validation with additional comparisons of invasive and noninvasive species across their native range.
Collapse
Affiliation(s)
- Li-Jun Cao
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Bing-Yan Li
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.,Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Jin-Cui Chen
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Shu-Jun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
6
|
Genitoni J, Vassaux D, Delaunay A, Citerne S, Portillo Lemus L, Etienne MP, Renault D, Stoeckel S, Barloy D, Maury S. Hypomethylation of the aquatic invasive plant, Ludwigia grandiflora subsp. hexapetala mimics the adaptive transition into the terrestrial morphotype. PHYSIOLOGIA PLANTARUM 2020; 170:280-298. [PMID: 32623739 DOI: 10.1111/ppl.13162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Ongoing global changes affect ecosystems and open up new opportunities for biological invasion. The ability of invasive species to rapidly adapt to new environments represents a relevant model for studying short-term adaptation mechanisms. The aquatic invasive plant, Ludwigia grandiflora subsp. hexapetala, is classified as harmful in European rivers. In French wet meadows, this species has shown a rapid transition from aquatic to terrestrial environments with emergence of two distinct morphotypes in 5 years. To understand the heritable mechanisms involved in adjustment to such a new environment, we investigate both genetic and epigenetic as possible sources of flexibility involved in this fast terrestrial transition. We found a low overall genetic differentiation between the two morphotypes arguing against the possibility that terrestrial morphotype emerged from a new adaptive genetic capacity. Artificial hypomethylation was induced on both morphotypes to assess the epigenetic hypothesis. We analyzed global DNA methylation, morphological changes, phytohormones and metabolite profiles of both morphotype responses in both aquatic and terrestrial conditions in shoot and root tissues. Hypomethylation significantly affected morphological variables, phytohormone levels and the amount of some metabolites. The effects of hypomethylation depended on morphotypes, conditions and plant tissues, which highlighted differences among the morphotypes and their plasticity. Using a correlative integrative approach, we showed that hypomethylation of the aquatic morphotype mimicked the characteristics of the terrestrial morphotype. Our data suggest that DNA methylation rather than a new adaptive genetic capacity is playing a key role in L. grandiflora subsp. hexapetala plasticity during its rapid aquatic to terrestrial transition.
Collapse
Affiliation(s)
- Julien Genitoni
- ESE, Ecology and Ecosystem Health, Institut Agro, INRAE, Rennes, 35042, France
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), EA1207 USC1328 INRA, Université d'Orléans, Orléans, 45067, France
| | - Danièle Vassaux
- ESE, Ecology and Ecosystem Health, Institut Agro, INRAE, Rennes, 35042, France
| | - Alain Delaunay
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), EA1207 USC1328 INRA, Université d'Orléans, Orléans, 45067, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Luis Portillo Lemus
- ESE, Ecology and Ecosystem Health, Institut Agro, INRAE, Rennes, 35042, France
| | - Marie-Pierre Etienne
- Institut Agro, CNRS, Université Rennes, IRMAR (Institut de Recherche Mathématique de Rennes) - UMR 6625, Rennes, F-35000, France
| | - David Renault
- UMR CNRS 6553 EcoBio, University of Rennes 1, Rennes, France
- Institut Universitaire de France, 1 rue Descartes, Paris, France
| | - Solenn Stoeckel
- IGEPP, INRAE, Institut Agro, Université Rennes, Le Rheu, 35653, France
| | - Dominique Barloy
- ESE, Ecology and Ecosystem Health, Institut Agro, INRAE, Rennes, 35042, France
| | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), EA1207 USC1328 INRA, Université d'Orléans, Orléans, 45067, France
| |
Collapse
|
7
|
Matesanz S, Ramos-Muñoz M, Blanco-Sánchez M, Escudero A. High differentiation in functional traits but similar phenotypic plasticity in populations of a soil specialist along a climatic gradient. ANNALS OF BOTANY 2020; 125:969-980. [PMID: 32016374 PMCID: PMC7218810 DOI: 10.1093/aob/mcaa020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS Plants experiencing contrasting environmental conditions may accommodate such heterogeneity by expressing phenotypic plasticity, evolving local adaptation or a combination of both. We investigated patterns of genetic differentiation and plasticity in response to drought in populations of the gypsum specialist Lepidium subulatum. METHODS We created an outdoor common garden with rain exclusion structures using 60 maternal progenies from four distinct populations that substantially differ in climatic conditions. We characterized fitness, life history and functional plasticity in response to two contrasting treatments that realistically reflect soil moisture variation in gypsum habitats. We also assessed neutral genetic variation and population structure using microsatellite markers. KEY RESULTS In response to water stress, plants from all populations flowered earlier, increased allocation to root tissues and advanced leaf senescence, consistent with a drought escape strategy. Remarkably, these probably adaptive responses were common to all populations, as shown by the lack of population × environment interaction for almost all functional traits. This generally common pattern of response was consistent with substantial neutral genetic variation and large differences in population trait means. However, such population-level trait variation was not related to climatic conditions at the sites of origin. CONCLUSIONS Our results show that, rather than ecotypes specialized to local climatic conditions, these populations are composed of highly plastic, general-purpose genotypes in relation to climatic heterogeneity. The strikingly similar patterns of plasticity among populations, despite substantial site of origin differences in climate, suggest past selection on a common norm of reaction due to similarly high levels of variation within sites. It is thus likely that plasticity will have a prevalent role in the response of this soil specialist to further environmental change.
Collapse
Affiliation(s)
- Silvia Matesanz
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos. C/Tulipán s/n 28933, Móstoles, Spain
| | - Marina Ramos-Muñoz
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos. C/Tulipán s/n 28933, Móstoles, Spain
| | - Mario Blanco-Sánchez
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos. C/Tulipán s/n 28933, Móstoles, Spain
| | - Adrián Escudero
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos. C/Tulipán s/n 28933, Móstoles, Spain
| |
Collapse
|
8
|
Ma L, Cao L, Hoffmann AA, Gong Y, Chen J, Chen H, Wang X, Zeng A, Wei S, Zhou Z. Rapid and strong population genetic differentiation and genomic signatures of climatic adaptation in an invasive mealybug. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Ling Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
- Institute of Insect Science Hunan Agriculture University Changsha China
| | - Li‐Jun Cao
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Ary A. Hoffmann
- School of BioSciences Bio21 Institute The University of Melbourne Melbourne Victoria Australia
| | - Ya‐Jun Gong
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Jin‐Cui Chen
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Hong‐Song Chen
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests Institute of Plant Protection Guangxi Academy of Agricultural Sciences Nanning China
| | - Xu‐Bo Wang
- Yunnan Academy of Biodiversity, Southwest Forestry University Kunming China
| | - Ai‐Ping Zeng
- Institute of Insect Science Hunan Agriculture University Changsha China
| | - Shu‐Jun Wei
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Zhong‐Shi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
9
|
Catullo RA, Llewelyn J, Phillips BL, Moritz CC. The Potential for Rapid Evolution under Anthropogenic Climate Change. Curr Biol 2019; 29:R996-R1007. [DOI: 10.1016/j.cub.2019.08.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Brady SP, Bolnick DI, Barrett RDH, Chapman L, Crispo E, Derry AM, Eckert CG, Fraser DJ, Fussmann GF, Gonzalez A, Guichard F, Lamy T, Lane J, McAdam AG, Newman AEM, Paccard A, Robertson B, Rolshausen G, Schulte PM, Simons AM, Vellend M, Hendry A. Understanding Maladaptation by Uniting Ecological and Evolutionary Perspectives. Am Nat 2019; 194:495-515. [PMID: 31490718 DOI: 10.1086/705020] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Evolutionary biologists have long trained their sights on adaptation, focusing on the power of natural selection to produce relative fitness advantages while often ignoring changes in absolute fitness. Ecologists generally have taken a different tack, focusing on changes in abundance and ranges that reflect absolute fitness while often ignoring relative fitness. Uniting these perspectives, we articulate various causes of relative and absolute maladaptation and review numerous examples of their occurrence. This review indicates that maladaptation is reasonably common from both perspectives, yet often in contrasting ways. That is, maladaptation can appear strong from a relative fitness perspective, yet populations can be growing in abundance. Conversely, resident individuals can appear locally adapted (relative to nonresident individuals) yet be declining in abundance. Understanding and interpreting these disconnects between relative and absolute maladaptation, as well as the cases of agreement, is increasingly critical in the face of accelerating human-mediated environmental change. We therefore present a framework for studying maladaptation, focusing in particular on the relationship between absolute and relative fitness, thereby drawing together evolutionary and ecological perspectives. The unification of these ecological and evolutionary perspectives has the potential to bring together previously disjunct research areas while addressing key conceptual issues and specific practical problems.
Collapse
|
11
|
Banerjee AK, Guo W, Huang Y. Genetic and epigenetic regulation of phenotypic variation in invasive plants – linking research trends towards a unified framework. NEOBIOTA 2019. [DOI: 10.3897/neobiota.49.33723] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Phenotypic variation in the introduced range of an invasive species can be modified by genetic variation, environmental conditions and their interaction, as well as stochastic events like genetic drift. Recent studies found that epigenetic modifications may also contribute to phenotypic variation being independent of genetic changes. Despite gaining profound ecological insights from empirical studies, understanding the relative contributions of these molecular mechanisms behind phenotypic variation has received little attention for invasive plant species in particular.
This review therefore aimed at summarizing and synthesizing information on the genetic and epigenetic basis of phenotypic variation of alien invasive plants in the introduced range and their evolutionary consequences. Transgenerational inheritance of epigenetic modifications was highlighted focusing on its influence on microevolution of the invasive plant species. We presented a comprehensive account of epigenetic regulation of phenotypic variation and its role in plant invasion in the presence of reduced standing genetic variation, inbreeding depression and associated genomic events which have often been observed during introduction and range expansion of an invasive alien species. Finally, taking clues from the studies conducted so far, we proposed a unified framework of future experimental approaches to understand ecological and evolutionary aspects of phenotypic variation. This holistic approach, being aligned to the invasion process in particular (introduction-establishment-spread), was intended to understand the molecular mechanisms of phenotypic variation of an invasive species in its introduced range and to disentangle the effects of standing genetic variation and epigenetic regulation of phenotypic variation.
Collapse
|
12
|
VanWallendael A, Soltani A, Emery NC, Peixoto MM, Olsen J, Lowry DB. A Molecular View of Plant Local Adaptation: Incorporating Stress-Response Networks. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:559-583. [PMID: 30786237 DOI: 10.1146/annurev-arplant-050718-100114] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ecological specialization in plants occurs primarily through local adaptation to different environments. Local adaptation is widely thought to result in costly fitness trade-offs that result in maladaptation to alternative environments. However, recent studies suggest that such trade-offs are not universal. Further, there is currently a limited understanding of the molecular mechanisms responsible for fitness trade-offs associated with adaptation. Here, we review the literature on stress responses in plants to identify potential mechanisms underlying local adaptation and ecological specialization. We focus on drought, high and low temperature, flooding, herbivore, and pathogen stresses. We then synthesize our findings with recent advances in the local adaptation and plant molecular biology literature. In the process, we identify mechanisms that could cause fitness trade-offs and outline scenarios where trade-offs are not a necessary consequence of adaptation. Future studies should aim to explicitly integrate molecular mechanisms into studies of local adaptation.
Collapse
Affiliation(s)
- Acer VanWallendael
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA;
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Ali Soltani
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA;
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, USA
| | - Nathan C Emery
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Murilo M Peixoto
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA;
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jason Olsen
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA;
- Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, Michigan 48824, USA
| | - David B Lowry
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA;
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
- Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|